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Poincare covariant particle dynamics. II. Fragmentation for ultrarelativistic reactions
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We present a Poincare covariant model for ultrarelativistic particle reactions without any field

degrees of freedom. A relativistic two-particle interaction is made possible by an enlargement of
phase space and a distinction between physical and canonical particle coordinates. A Hamiltonian
formalism with a mass-like quasipotential defines the dynamics of the system. Then interaction
at a distance causes a change of efFective particle masses instead of energy. Particle production is
incorporated by a phenomenological decay procedure for the constituents (partons) in a manner
analogous to a string fragmentation mechanism. This pure particle picture for Poincare covariant
collision dynamics (PCD model) is compared to other microscopic models and tested by simulations
of e+e jet events. Before application to more complex scenarios like ultrarelativistic heavy ion col-
lisions, hard gluonic efFects should be included. In the PCD model, this can be done by introduction
of massive gluons as particles.

PACS number(s): 25.75.+r, 03.30.+p, 24.10.Jv, 13.65.+i

I. INTRODUCTION

The existence of the quark gluon plasma (QGP) as
a real state of nuclear matter is still a question under
intense research [1]. Neither the experimental nor the
theoretical situation can be viewed as satisfactory. The
basic equations of QCD are as yet unsolved for com-
plex dynamical situations as in ultrarelativistic nucleus-
nucleus reactions. Hence several models have been de-
veloped to establish the link between fundamental the-
ory and physical observables. At the same time, the idea
that the formation of a QGP would reveal itself by sim-

ple unique signatures has not been veri6ed in present
heavy ion experiments. Observed effects like strangeness
enhancement or Jjg suppression can be explained via
QGP formation, but equally well in purely hadronic sce-
narios. To detect an eventual plasma formation, exper-
imental efforts tend to even higher energies and larger
nuclei, and theory has to keep up by detailed construc-
tion of reliable models that include all possible hadronic
processes.

Several microscopic models, e.g. , the Lund model
(FRITIOF) [2,3], VENUS [4], relativistic quantum
molecular dynamics (RQMD) [5], or the string gas
model [6,7], have been developed to cover the hadronic
aspects in ultrarelativistic nucleus-nucleus collisions. Ex-
cept for RQMD they all treat the particle dynamics in-

consistently because use of the correct kinematics (in
the form of the relativistic energy-momentum relation)
alone does not provide a Poincare covariant description.
Any sequence of nonlocal events found during a collision
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does depend on the frame of reference, and so do the
results [8]. While this seems not to be a serious deficiency
at Lawrence Berkeley BEVALAC energies, the inQuence
of space-time structure will increase with energy and the
number of hadrons involved.

Unfortunately, the formulation of relativistic particle
dynamics is notoriously stubborn Rom the very begin-
ning. While a (local) nonrelativistic field theory, due to
the locality of interactions, can well be generalized to the
relativistic case, the no-interaction-theorem [9] inhibits a
straightforward relativistic extension of Hamiltonian dy-
namics where N particles interact instantaneously via po-
tentials. One possible way out, the enlargement of phase
space to 8N dimensions, causes serious difEculties with
respect to the physical interpretation in systems with
N ) 2. But if, as is usually done in relativistic heavy
ion interactions, the whole description of the dynamics is
in terms of separable two particle interactions, these difB-
culties can be resolved uniquely. This Poincare covariant
approach was succesfully applied to heavy ion reactions
at BEVAI AC energies [10,11] where pion production was

incorporated by a phenomenological creation process via
4 resonances.

For ultrarelativistic heavy ion reactions, a similar ap-
proach for particle dynamics was taken in Ref. [5]. These
models, however, describe particle production within the
framework of string dynamics [12] and an appropriate
string decay mechanism. In contrast, we have formulated
a model that retains the particle picture consistently for
the fragmentation of a highly excited, strongly interact-
ing pair of partons. This combination of particle dynam-
ics and fragmentation scheme we call PCD (Poincare co-
variant collision dynamics). The model consistently de-

scribes all subprocesses involved in ultrarelativistic reac-
tions on the basis of point particles that obey relativistic
Hamiltonian dynamics.

The principles of PCD for pointlike particles interact-
ing at a distance are summarized in Sec. II. The two-
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particle case is sufBcient because we deal only with quark-
antiquark and quark-diquark subsystems. In Sec. III we
describe a stable and a &agmenting hadron as a pair of in-
teracting partons. Confinement is enforced by a quasipo-
tential, and the excess of effective particle masses deter-
mines the decay. Our fragmentation scheme is verified in
Sec. IV by comparing fragmentation functions of different
models and simulations of jet events in e+e collisions.

II. POINCARE COVARIANT HAMILTONIAN
DYNAMICS

px:ZJ .—x pp' (2.5)

In the c.m. system, it is independent of time, and con-
nected to the spatial distance by g—z2 = ~r' ~. The
reason for this restriction is to guarantee a simple physi-
cal solution for the effective particle masses,

p2 —m2+ 2@V (2.6)

where we have restricted the quasipotential V to depend
only on the component of the relative coordinate z or-
thogonal to the total momentum:

In our approach, the dynamics of two interacting re-
lativistic particles in the absence of any further (field)
degrees of freedom is described in terms of a Poincare
covariant Hamiltonian:

H = ) ' ' + V(zi, z2, pi, p2) .
i=1

(2.1)

dz'
X$ ~

d7.
= (Hz), p;:= ' = (Hp) . (2.2)

To establish a physical interpretation, a unique connec-
tion between ~ and the observer time in any given refer-
ence &arne is required.

The canonical transformation

Here the four-vectors z;" = (t;, x;) and p," = (E;,p, )
(i = 1, 2) represent the canonically conjugate coordi-
nates and momenta of the particles, and the m; are their
masses. Note that the Hamiltonian H and the quasipo-
tential V are ma88like Lorentz scalars, the single-particle
time coordinates t; and energies E; are dynamical vari-
ables of the system, and the total energy E = Eq + E2 is
digemnt fmm H. Furthermore, we have to distinguish
the mass parameters m; &om effective masses M;
~p2. Phase space trajectories are parametrized by an
additional Lorentz scalar evolution parameter ~ which
controls the development of the system via Hamilton's
equations:

Thus particles will always be on their mass shell (M; =
~p, = m;) in regions where V = 0, regardless of what
their interaction might be in other regions of phase space.

The dependence of the quasipotential V on the total
momentum p implies that the canonical coordinate y can-
not be interpreted as representing the physical c.m. , sincey'™is not at rest whenever V(z) is not constant. Con-
sequently we have to distinguish canonical &om physi-
cal coordinates. We do this by defining a new physical
c.m. coordinate

z:= (zo, z):=y+ —z ——q .e' &s'

p' p' (2 7)

This definition entails the following equations of motion:

'=p/m,
p=0,

(2.8a)

(2.8b)

(2.8c)

(2.8d)

T'b, := zo = (E' /m) ~. (2.9)

where V':= dV/dz was introduced. It is seen from (2.8)
that z behaves as a c.m. coordinate should, and, in partic-
ular, its zeroth component in the c.m. system can be used
to establish a unique connection between the Lorentz
scalar v and an observer time T'b,

y:= (yo, y):= (mizi + mzz2)/m,
p:= (E p):= pi + p2,
X:= Zo) F:=Xy —Z2 )

q:= (qo, q):= p(pi/mi —p2/m2)

(2.3a)

(2.3b)

(2.3c)
(2.3d)

m2 p2 q2
H = ——+ V(z),2m 2p

(2.4)

A more detailed description can be found in [11].

[where m:= mi + m2 and p:= (mim2)/m are the total
and reduced mass of the system] defines center-of-mass
(c.m. ) and relative coordinates in the usual way. The
two-particle Hainiltonian (2.1) then reads

Finally, the physical single-particle coordinates are given
by z;:=zk (p/m;)z .

III. PCD MODEL OF THE PARTON-PARTON
INTERACTION

Whereas in conventional string models the interaction
of a highly excited pair of partons is simulated by en-
ergy exchange via a (1+1)-dimensional classical field,
the corresponding PCD interaction uses an appropri-
ate quasipotential which changes the effective parton
masses. In this section we discuss a confinement quasipo-
tential, leading to constant momentum change for the
partons (Sec. IIIA), and give the solution of the equa-
tions of motion in (1+1)dimensions (Sec. III B). Finally,
a consistent formulation of the fragmentation process is
incorporated to the interaction model (Secs. III C—III E).
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A. The con6nement model

V(x ) = r. Q—Z2 = k ~r' (3.1)

To simulate confinement of two partons interacting at
a distance, we choose the quasipotential V as a linear
function of the spatial parton distance in the c.m. system.
Its strength is fixed by a Lorentz scalar K:

sgn x = const ],

zp = —(T —Tp) + zp( Tp),
m

E = const, p= 0,
zp = —(T —Tp) + zp(Tp)

qp

P

z=0, (3.7a)

(3.7b)

(3.7c)
Selecting the c.m. system for our considerations,
the equations of motions (2.8) in (1+1) space-time
dimensions read explicitly

zp ———, z=0, (3.2a)
m

E =0, (3.2b)

Xp
qp (3.2c)
P

qp
——0

p= 0,
q

X )
P

q = —[sgnz] r. . (3.2d)

As a 6rst consequence we observe the linear connection
between the single-particle momentum and observation
time:

Z = —S —(T —Tp) + (T —Tp) + Z(Tp)
q(Tp)

2p, P
qp ——const, q = —s k (T —Tp) + q(Tp) . (3.7d)

It has to be mentioned that E = Ez + E2 and qp

p(Eq/mq —E2/m2) are not independent initial conditions
but are connected to z(Tp) and q(Tp) to guarantee (2.6):

,' + q'(Tp) + 2pKS z(Tp) . (3.8)

While the single-particle energies E; = Em;/m + qp are
constant, the effective parton masses vary periodically:

dp, q m= p[sgnz] k —.
dTobs zp E (3 3)

M;(T) = E, —p,'(T) = m,'. +2prsz(T) . (3.9)

A similar result in (1+1) dimensions is found in clas-
sical string models [12] with underlying noncovariant
Hamiltonian, depending on end-point variables z, and p, ,

H = E = m~ + p1+ m2+ p2 + K]z] —Z2] . (3.4)

The last term sometimes is interpreted as a potential pro-
portional to the distance between the interacting parti-
cles, ignoring the field degrees of freedom as true origin of
the interaction. Applying ordinary Hamilton's equations
leads to

0,5

dp' =
Tobs

= p[sgn(zg —x2)] K (3.5)
0
—1 0

I;/q
0

p;/q
for the end points of the string.

We may compare both models if we relate our quasipo-
tential strength K to the string tension K by

m—K=K, (3 6)

where E and m are the total energy and mass of the two-
parton system. Then the resulting periodic evolution of
individual momenta in the c.m. system is identical in
both models [cf. Figs. 1(a) and 1(b)].

0,5

B. Yo-yo solution in (1+1) dimensions

By direct integration of (3.2) we obtain the complete
solution for a q-q systems at rest. For a half period [ s:=

—05 0
z,-I(; /q

0.5 —05 0
XII(; /q

0.5

To simplify notation, the former symbols for the four-
vectors (x,p, . . .) from now on denote the spatial components
of "two-vectors. "

We refer to the q-q system only, but everything is valid for
the q-qq system as well.

FIG. 1. Particle (left) vs string picture (right): Evolution
in observer time (t) of momenta (a,b) and coordinates (c,d)
of two confined partons in their c.m. system. For both cases
the momenta change linearly with an amplitude q and a time
period T = 4q/I(, In the particle pic. ture the physical (not
canonical) single-particle coordinates (z, ) follow branches of
parabolas. In the string picture physical (and canonical) co-
ordinates (x, —:z, ) are of hyperbolic shape [m( ——q/4 (—),
m, =2m, ( )].
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The T period of the (yo-yo) movement is found from the
condition z(r) = 0 to be 7* = 4q/2, where q is the
maximum relative momentum:

values (M; = m;, M; = gm2+ qz), whereas the end
points of the string [Fig. 2(d)] always stay on the mass

shell (QEz —p2 = m;).

q = max lq(~) I

= Iq (7o) + 2plcs x(~o) . (3.io)

Observation time (T b, ) is equal to the c.m. system time
(zo), and, because of the linear connection to evolu-
tion parameter v, the parton motion eventually can be
parametrized by T b, .

As stated before, the single-parton momenta change
linearly with observation time [Fig. 1(a)]. The spa-
tial trajectories of physical coordinates (z;) consist of
smoothly connected branches of parabolas [Fig. 1(c)].
This is different in the string picture [12], where hyper-
bolic solutions are found for the single-particle coordi-
nates x; [Fig. 1(d)]. For massless partons (m; -+ 0) they
approach straight lines, whereas they remain parabolic
in the particle picture.

From Figs. 2(a—d) the main differences for the yo-
yo mode between particle and string picture can be
seen. The single-particle energy is constant through-
out in the particle picture [Fig. 2(a)]. In the string pic-
ture, the energy is exchanged between both end points
via the classical string field [Fig. 2(b)]. Conversely, the
eff'ective single-particle masses in the particle picture
[Fig. 2(c)] vary between their minimum and maximum

C. Covariant fragmentation

Because the two-parton system subjected to the linear
quasipotential is unconditionally stable, we have to in-
troduce an additional process for particle production
(hadronization). As for the origin of particle creation we
use the growing effective masses of interacting partons.
Since the motion of a highly excited quark-antiquark pair
is restricted essentially to one spatial (longitudinal) di-
mension, we can apply the (1+1)-dimensional equations
of motion with analytical yo-yo solutions in that case.
Assuming a sufficiently large initial relative momentum,
the partons, while separating, may obtain masses large
enough so that a "parton decay" (quark-antiquark cre-
ation) becomes kinematically possible. Since classical
Hamilton theory does not allow for particle production,
a specific parton decay law (Sec. III 0) must be added to
our model to specify the moment (7 point) of &agmen-
tation.

We illustrate particle production in the PCD model
by a fragmenting quark q~ interacting with antiquark q~.
The production of a new quark-antiquark pair q2qz can
be symbolized by

( )
I I

0.5—

I i I

0.5 1

E;/q

0.5—

0

(b)

0.5 1
E, /q

() I I

1.5

(ql n) ~ (~&-q2) + (q2qg)

where parentheses indicate a color singlet and a hyphen
connects partons with enough relative momentum to un-

dergo further fragmentation. The primes indicate that
neither of the primary partons remains in its initial
state. In particular, energy and momentum of the orig-
inal antiquark qq are a8'ected by the decay of qq into q2
and (q2q~) =:h. The created antiquark q2 together with
the quark q~ are coupled to a stable on-mass-shell meson

(m&
——E& —p&), while the newly formed (q&-q2) state

is not necessarily a physical hadron. This would be the
other way around if the original antiquark qz is respon-
sible for the pair production.

After fragmentation we need to know momentum and
energy (or effective mass) of the three particles qI, q2, and
h. In what follows, most of these variables will be 6xed,
but the momentum of the meson is kept as a free para-
meter. The way we choose it is discussed in Sec. IIIE.
Here we use pp, to represent the meson momentum in the
rest kame of the decaying quark q~.

On the basis of a simple two-particle decay (qt m q2 +
h) we calculate the effective mass M2 of the quark q2 .

I i I
M2 ——M& —2M& mh + ph + mh . (3.i2)

0.5 1
M;/q

0.5 ].
M;/q

1.5
M2 is restricted by the bare mass m2 and the effective
mass of the decaying quark qq (Mq ——JEST —pz ):

FIG. 2. Particle (left) vs string picture (right): Evolution
of energies (a,b) and effective masses (c,d) of the same two
parton system as in Fig. 1. Because of the interaction with q2 the eff'ective mass of qz
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is fixed by (2.6):

M] =my+(M2 m2). (3.14)

Finally, in the c.m. system of the diverging (qz-q2)-pair
we have

Eq. (3.18) by replacing string energy E with effective
mass M; of the parton:

( M2i /M2)
dP=Aexp~ —A '

i
di

'
~

=:g(M)dM;. (320)4rz) (4rz)

1
ip-,'i = ip2i =, A(M'2, M-,'2, M22), (3.is)

Then the probability for a parton to decay with effective
mass M; is given by the distribution function

where A(a2, b2, c ):= [a2 —(b + c)2] [a2 —(b —c)2]. In
this same reference frame the direction of pz is selected
to coincide with that of pz. The effective mass M' of the
next-generation confined quark-antiquark pair (qi-q2) is
connected to the initial effective mass M of the original

(qi-qi) system by

M' = M —2 — Ei m&+p& +ps ph +mh,

(3.16)

Note that (Ei, pi) refers to the c.m. system of (qi-qi)
and pg to the rest frame of qi, while (3.1S) fixes pz and pz
in the c.m. system of (qi-q2). As long as enough relative
momentum is left in the system to realize

M, f M,
g(M;) =N

2 exp~— (3.21)

The normalization (N) depends on the actually available
interval for the effective mass M, . The most probable
effective mass for the creation of a quark-antiquark pair,

Mp .——Q2/A r, (3.22)

is (just as A in the string case) in principle a free pa-
rameter of the model, which will be fitted to the experi-
mentally observed distributions of particles. Using A as
estimated &om the pair creation probability in a homo-

geneous chromoelectrical field of the lux tube between
quark and antiquark [6], we would have Mo = 1 GeV.

Mg ) m2+ mh, (3.i7)
E. Meson momentum distribution

for the decaying parton, we may proceed with hadron
production.

A realistic parton &agmentation model would also
need a prescription for fixing flavor and spin in the newly
created quark-antiquark pair. These degrees of &eedom
can be taken into account, as in other models, by intro-
ducing further parameters. Here we assume for simplic-
ity the existence of just one flavor with corresponding
low parton mass. As a consequence, all mesons created
in our simple &agmentation cascade appear as pions.

In order to determine the distribution of energy and
momentum among the fragments, we simplified the pro-
duction process (3.11) to a two-body decay of quark qi
into quark q2 and meson h without inner degrees of free-
dom. Energy and momentum of the decay products are
still not uniquely determined. In the PCD model we fix
the meson momentum by employing a probability dis-

tribution for ph in the rest frame of qi. The maximum
magnitude is found from the masses of the particles in-

volved. From mph
~

= QA(Mi~, M2z, m&~) /2M' we obtain,
using (3.13) [with A as in (3.15)]:

D. Parton decay law
1

ipse ( pmax
1

A(M, , m2, mq) (3.23)

The probability distribution used to determine the mo-

ment (w point) for the decay of a parton closely fol-

lows the area law for the &agmentation of a classical
string [13]. In the string model,

Now we assume an isotropic distribution of meson mo-

mentum ph. Two alternatives will be considered. The
Grst one is homogeneous and isotropic in the available
three-dimensional momentum space (marked by PCDi):

dP(A) = A exp( —A A) dA (3.is) dP = fsD(p~) d'p~ - d'ph . (3.24)

provides the probability for the string to break after a
world sheet A is swept out undisturbedly. The decay
constant A, which can be approximated from +CD [6], is

usually fixed by a fit to experimental data. For a mass-
less string, the swept-out area A is related to the string
energy E by

EA= 4r2 (3.19)

In this string picture, a linear decrease of relative mo-

mentum in the quark-antiquark system is connected to
an increase of string energy. In the PCD model we have a
growth of the effective masses instead. Hence, we adapt

dP = f4D(ph. ) d ph d ph dEh 8(Eh, —pq —mq)
0

—d'pa/ mh + ph (3.2s)

The distribution functions are normalized in the sphere
of possible meson momenta: S(p „):=(ipse~ ( p „j.
Hence, we have

f—1( )
4 s (3.26)

The second one (PCD2) is homogeneous and isotropic in
four momentum space, but with a b function restricting
to on-mass-shell mesons:
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and

f4D(p~)

= 2x m„+pq

/

I

I

Yx

[
'

2

x
~ p Vrrrx+irr —rrrxarcrich

~
. (3.27)

ma )
Once the meson momentum ph, is selected &om one of

the above distributions, all remaining kinematical vari-
ables are uniquely fixed, and the PCD &agmentation pro-
cess is completed.

IV. MODEL DISCUSSION 0
0 0.5

Before integrating the PCD model developed so far
into a more complex scenario like ultrarelativistic heavy
ion collisions, we tested its credibility in two aspects. The
fragmentation function f (z), representing the single frag-
mentation process, is compared to other models, and a
set of calculated jet events is qualitatively compared with
experimental results.

FIG. 3. Fragmentation function f(z) of various models.
For details see Table I.

A. Fragmentation function

Eg+ E —m
W+ =My

Eg + QE~~ —M~2
(4.2)

m~~+ph2 + Ipal cos81W+ (4.1)

where W+ = Eq(0)+[pq(0)] is the initial [v = 0] energy-
momentum of quark qq. In the rest &arne of qq we have

Fragmentation usually is a process where one spatial
direction is predominant. This one is called longitudi-
nal, and in our case it is fixed by the diverging (qq-qq)
pair. Produced hadrons are classified by their energy-
momentum content [Eg + p~[[] with respect to this di-
rection [ph[[ = ]pg[cos8]. The function f(z) gives the
probability for the primary hadron to be provided with a
portion z of the initial energy-momentum content of the
&agmenting system. In the PCD model &agmentation
means decay of the quark q~. Hence, the ratio z, which
is Lorentz invariant in the longitudinal direction, is given
by x d pg f (pa) b z —z(Mg, pa)

s(p „) )
(4 3)

where z(Mq, p~) is defined by (4.1) and (4.2). Note that
the integrations are not interchangeable since the maxi-
mum hadron momentum p „(3.23) is a function of the
e8'ective &agmentation mass Mq. In the large energy

Here Eq is the constant energy of the quark qq in the c.m.
system of the (qq-qq) pair, Mq its r-dependent effective
mass, and m~ the initial bare mass [Mq(0) = mq].

Since in the PCD model the actual decay mass Mq
and hadron momentum pg are selected &om probability
distributions (3.21) and (3.26) or (3.27), the fragmenta-
tion function f (z) is found from all combinations of Mq
and pp, which lead to the given value of z:

@1

f (z) de g(Mg)
mq +Tlb+

TABLE I. Fragmentation function f(z) of various models, where z is the fraction of ini-
tial energy-momentum. Except from the physical hadron mass m& and the transverse mass
mz = /mal + p2&, all other constants are appropriately chosen model parameters.

Model
Field-Feynman
Simple Lund
Standard Lund
Symmetric Lund
VENUS
PCDg
PCDg

f(z)
1 —a+ 3a(1 —z)
1
(1+c) (1 —z)'
Nr, (1 —z)/z exp (—bm~/z)
Nv (1/z) exp (—A m„/z)
Ny (1 —z ) exp ( mg/2 Mo z)
Nz (1 —z) exp( —mz/2MO z)

Ref.
[17]
[2]
[2]
[2]
[4]
(4.4a)
(4.4b)

In Fig. 3



3272 D. BEHRENS, G. PETER, AND C. C. NOACK 49

limit [Eq -+ oo] with zero bare quark mass [m~ -+ 0]
and small hadron mass [mg (( Mo], the fragmentation
functions for our two different momentum distributions
approach

15

[PCDg ]:

[PCD2]:

m'„
fg(z) - (1 —z )exp ]

— "2 —~, (4.4a)
2Mo2 z)

( m„' 1I
f2(z) - (1 —z) exp] — " —

~

. (4.4b)
2Mo2 z)

10
They are included in Table I and Fig. 3, where fragmen-
tation functions of various models are collected. Above
z = 0.1 they all show a similar behavior. For smaller z
values the functions for symmetric Lund, VENUS, and
PCD rise exponentially as a consequence of the under-
lying exponential decay law of an exited classical string
or the dressed parton, respectively. Summarizing, we
find that our PCD fragmentation functions 6t well into
the spectrum of existing models. The steeper decrease
of f2 compared to fq favors production of pions with
low energy-momentum, and thus causes somewhat higher
multiplicities.

B. Numerical simulation

5
10

L.
20 30

'II' [GeVj
50

FIG. 4. Average charged multiplicity (n,z) as a function
of jet energy W. The model predictions for PCDq (o)
and PCD2 (~ ) show an increase similar to the dotted
line, an extrapolation of experimental low energy results
(W & 10 GeV) [18]. The solid line represents a fit to ex-
perimental data (s) taking into account all energies [19].

The comparison with experimental jet results is based
on a Monte Carlo test of 5 x 10 simulated e+ e events
in the PCD model. The jet axis was assumed to devi-
ate from the (qq-qq) direction by an angle that is Gaus-
sian distributed with a width of 5'. Hadron (pion)
mass mh = 0.14 GeV, parton (u, d quark) mass m~ =
0.01 GeV, and string tension K = 1 GeV were kept con-
stant. The most probable decay mass then was adjusted
to be Mo ——1.5 GeV. For an estimate of the number of
charged particles we used 2/3 of the total yields. Be-
cause low-energy effects such as resonance production
or discrete mass spectra are not included in the PCD
model, we only compare to experimental inclusive data
above W = 10 GeV initial energy. In the PCD model R'
is the total energy of the initial (qq-qq) pair in their c.m.
system.

One characteristic of a jet event is the average charged
multiplicity (n,h), which we calculated for both PCD
model variants at four different initial energies (Fig. 4).
As expected for our fragmentation model (which does
not include hard @CD effects such as gluon bremsstrahl-
ung), the multiplicities show a logarithmic increase with
energy:
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of their (slightly inclined) plateaus. This difference is
connected to the small deviation in multiplicity. We do
not expect to reproduce the experimentally observed de-
crease for y ~ 0 because gluon emission and production
of heavier quarks [14] is not included in these simple PCD
versions.

For the PCD model we also examined the composition
of the rapidity plateau. We selected all 34 GeV jet events
with exactly 15 particles in the 6nal state, which is the

(n,h) = a+ b lns (s:= [W/(1 GeV)] ), (4.5)
10

where a = 2.56, b = 1.10 for PCDq and a = 2.48, b = 1.12
for PCD2. Consequently, the PCD model underestimates
the charged multiplicities above TV = 30 GeV where
gluon emission becomes important.

The typical shape of the experimentally observed ra-
pidity distributions dn, h/dy consists of a plateau, broad-
ening with initial energy W, and a steep decrease near the
maximum value y „-ln(W/mg). The overall struc-
ture is well reproduced in the PCD simulations (Fig. 5).
The variants PCDq and PCD2 merely differ in the height

FIG. 5. Rapidity distributions of charged particles at
different jet energies W. Squares represent experimental
data [14], histograms show model results for PCD& (---) and
PCD2 (—). Particles from both jets are included.
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most probable total multiplicity in that case. The ana-
lysis with respect to successive particles (Fig. 6) shows
that only the first few hadrons have a rapidity distribu-
tion with a maximum at nonzero rapidity. All others are
distributed around a maximum at y = 0.

A matter of special interest is the comparison of ex-
perimental data and PCD prediction for the transverse
hadron momentum p~. At least for the primary hadron
this distribution follows directly from (3.26) or (3.27) by
integration:

fi(pi) = d'p fsD(p) b(» i —Ip[ si»)
S(J .„)

10

3pJ

+max

and analogously

2

Ep )
(4.6)

FIG. 6. One particle rapidity distributions (i = I, 3, 5, . . .)
taken from all R' = 34 GeV jet events with total multiplicity
n = 15. The sum over all contributions also is shown.

2p~ arccoshg(m& + p )/(m& + p&)
2 pl
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With growing initial energy W the decaying partons can
achieve larger effective masses, and so the transverse mo-
mentum spectra depend on energy via p . For increas-
ing p „ these distributions broaden.

The results for e+e jet simulations with initial ener-

gies W = 14, 22, and 34 GeV are shown in Fig. 7. The av-
erage transverse momentum (p~) increases only slightly
with energy [Fig. 7(b)]. This is in accordance with
experiment. The average longitudinal momentum (pII)
[Fig. 7(b)] and the average magnitude of the momen-
tum (p) [Fig. 7(a)] increase even stronger than experi-
mentally observed. This again is connected to the under-
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FIG. 7. Average magnitude of momenta (p) (a), lon-
gitudinal moments (pII) (b), and squared transverse mo-
menta (p~) (c) as functions of jet energy W. Symbol con-
ventions as in Fig. 4. Lines just connect corresponding sym-
bols. The triangles in (b) represent average transverse mo-
ments (p~), almost identical in model and experiment.

10
2

p~ fGev jc]

FIG. 8. Transverse momentum distributions of charged
particles at difFerent jet energies W. Symbol and line con-
ventions as in Fig. 5.
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estimated average multiplicities. The decreasing (P~/pii)
ratio in more energetic jets is then, of course, reproduced.

In addition we show the average squared transverse
momentum (p2i) [Fig. 7(c)]. The increase with energy ex-
plains the broadening of the transverse momentum spec-
tra (Fig. 8). Except for the higher transverse momenta,
the PCD variants both are in good agreement with the
experimental distributions. We also reproduce the de-
crease at p~ -+ 0, caused by limited phase space.

Hence, the multiplicities and the distributions of rapid-
ity and momentum components found Rom PCD simula-
tions are in general agreement with experimental results.

V. CONCLUSIONS

Within the framework of Poincare covariant collision
dynamics we have developed a two-parton interaction
model for stable and nonstable color singlets. Con-
Gnement is simulated by a linear quasipotential which,
in (1+1) dimensions, results in simple equations of
motion, leading to parton dynamics with a somewhat
damped space-time structure compared to string mod-
els [Figs. 1(c) and 1(d)]. The linear momentum change,
a feature of both string and particle picture [Figs. 1(a)
and 1(b)], causes complementary behavior of parton en-
ergies [Figs. 2(a) and 2(b)] and masses [Figs. 2(c) and
2(d)]. Whereas string end points exchange energy with
the string 6eld, PCD particles compensate a loss of mo-

mentum with an increase of effective mass in a quasipo-
tential.

Fragmentation of a highly excited two-parton system
is formulated consistently by a particle decay of one of
the partons, provided sufhcient effective mass is achieved
during the interaction. The invariant decay mechanism is
governed by a probability distribution similar to the area-
breaking law in string models, and includes production
of transverse momentum. Numerical results for e+e jet
events, though restricted in this paper to (stable) pions,
show good agreement with experimental multiplicities,
momentum and rapidity distributions.

Inclusion of further degrees of freedom to cover the
whole spectrum of decay products is of no principle dif-
6culty and can be effected either by introduction of ad-
ditional model parameters or, alternatively, by applying
phase-space arguments [15]. Likewise, hard perturbative
gluon emission can be integrated in the PCD formalism
by modeling a hard gluon as a massive particle inter-
acting with the neighboring partons via separate two-
particle quasipotentials. This concept has been explored
for the (qi-G-qi) system [16].

Encouraged by the results obtained so far, we feel that
an extension of the model to ultrarelativistic heavy ion
reactions is very promising. The power of PCD, the con-
sistent Poincare covariant description of all hadronic pro-
cesses, including secondary interactions, should become
even more important with respect to future experiments
at yet higher energies and with heavier projectiles.
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