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Poincare covariant particle dynamics. I. Intranuclear cascade model
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To analyze the high energy heavy ion reactions performed at Lawrence Berkeley BEVALAC,
Brookhaven AGS, and CERN SPS we present a dynamical model that is entirely Poincare covariant.
The description of strong interactions by Lorentz-scalar quasipotentials makes possible a relativistic
extension of the cascade concept without losing its inherent simplicity. No field degrees of freedom
appear explicitly, neither in elastic nucleon scattering nor in particle creation processes. Although
various formalisms describe directly interacting relativistic particles with identical solutions for
the two-particle case, they all suffer from different problems in many-particle systems. The basis
of our approach is a Hamiltonian formulation for N pointlike nucleons, moving unconstrained in
an 8N-dimensional phase space. One additional Lorentz scalar is introduced for an appropriate
parametrization of all trajectories, defining also the connection to the proper times of the individual
interacting nucleons. The creation of particles, for which Hamiltonian dynamics does not provide
a generic mechanism, is incorporated phenomenologically as a "perturbative" process. We describe
heavy ion collisions as a sequence of two-particle reactions without any additional fit to experimental
data. Pion yield and mass spectra of the heavy fragments agree reasonably well with BEVALAC
results. We do not compare to experimental high energy data because the employed mechanism of
particle production is certainly improper in that regime. However, the numerical results give an
impression on how the reaction evolves.

PACS number(s): 25.75.+r, 03.30.+p, 24.10.Jv, 11.80.—m

I. INTRODUCTION

Although the well-known field equations of /CD prob-
ably form the basis of the theory of strong interactions,
no convincing description of any dynamical process asso-
ciated with confinement has been given on these grounds
up to this day. Hence we have to rely on soluble phe-
nomenological models for most of the reactions in nuclear
physics. In particular, this is true in the case of heavy
ion reactions that are complicated by the large number
of nucleons and the finite size of the nucleus.

Because the attempt to solve the many-particle pro-
blem by means of quantum field theory seems to be hope-
less in nearly all cases of interest, at least for the purpose
of an approximation to high energy heavy ion collisions it
should be reasonable to recover the old idea of relativistic
action at a distance where the field degrees of &eedom
are not explicitly taken into account.

An early, simple, and successful model for describ-
ing nucleus-nucleus collisions has been the cascade ap-
proach [1) where the reaction is simulated by a sequence
of individual scatterings between nucleons. As long as
those scatterings are fitted to the &ee nucleon-nucleon
cross sections, the nucleons always appear as &ee ele-
mentary particles on their mass shell. Nevertheless, a lot
of the experimental data up to bombarding energies of
about 1 GeV per nucleon were well explained by such
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models [2], even though the underlying assumptions get
worse with rising energy of the incident projectile.

One basic fault is the absence of manifest Poincare
covariance of the dynamics. If only relativistic kinemat-
ics is respected, which means the relation between en-

ergy, momentum, and mass of a particle as well as four-
momentum conservation, the sequence of scatterings in
space-time depends on the reference f'rame in a simulated
heavy ion reaction [3]. A second point of criticism is the
lack of attraction in the nucleon-nucleon interaction. Be-
cause the nucleons merely react according to elementary
cross sections, nothing else but a repulsion comparable
to hard-sphere scattering is simulated. Furthermore, it
is obvious that no complex stable &agments in the final
state are formed without any attractive part in the inter-
action. To enable a comparison to the experimental data
some supplementary model [4] is needed. Finally, there
is the defect of omitted quantum interference effects (we
expect, however, an improvement of this approximation
with increasing energies).

To solve all these problems we would like to have a
theory of relativistic (quantum) mechanics. It should
describe a system of directly interacting particles by a
Hamiltonian phase space form. alism using one time vari-
able as parametrization. Such a theory unfortunately
does not exist because of the no-interaction theorem [5].
Furthermore, most of the existing relativistic theories for
directly interacting particles moving on ordinary world
lines are useful in the case of two particles only [6—8]. A
generalization to an arbitrary but fixed number of degrees
of &eedoxn often leads to mysterious equations. Some
seem to be more appropriate to the many-particle pro-
blem, others are designed to allow for the desired quan-
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tization. But to get a practicable Poincare-covariant de-

scription for a system of many particles in direct inter-
action (no fields), we cannot respect all conventional re-

quirements that emerge &om classical mechanics.
In this paper we choose the easiest way to avoid analy-

tical difficulties by employing a many-time formalism:
the phase space of an N-particle system is extended
to 8% dimensions without respecting conventional con-
straints that restrict the movement to a (6N + 1)-
dimensional subspace. Hence, to each nucleon i we as-

sign a four-vector of independent canonical coordinates
x"; and a conjugate four-momentum p", . Note that
all components are dynamically independent quantities,
and consequently the nucleons are off their mass shell
in the case of interaction. Last but not least, we intro-
duce an additional Lorentz scalar r for an appropriate
parametrization of the particle trajectories. This quan-
tity acquires in part the role played by time in ordinary
nonrelativistic Hamiltonian mechanics.

From the ladder approximation of the Bethe-Salpeter
equation and a semiclassical approximation it is possi-
ble to deduce a Hamiltonian for the (inelastic) scatter-
ing of two free nucleons by means of a signer transfor-
mation [9]. Because this cannot be generalized to the
case of many off-shell nucleons, we introduce an appro-
priate Hamiltonian in Sec. IIA to describe the individ-

ual nucleon-nucleon elastic interactions based on phe-
nomenological arguments [10,11].

An important consequence of our model is the dis-

tinction between canonical and physical coordinates cal-
culable by a projection. This is not as strange as it
seems to be. In Secs. IIB—IID we discuss briefly some
other formalisms and extract the equal-time description
in the center-of-mass frame of two interacting particles.
We will end up with the same equations of motion in
all cases. Differences, however, emerge for a sequence
of two-particle reactions, used to model a heavy ion
reaction. This is one of the origins for differences to
other models like relativistic quantum molecular dynam-
ics (RQMD) [12].

In Hamiltonian dynamics the particle number is con-
stant throughout, so particle creating processes have

to be incorporated phenomenologically in a Poincare-
covariant manner. In this paper we restrict ourselves to
incoherent pion production, and may consequently not
expect agreement between calculation and experiment
beyond the Lawrence Berkeley BEVALAC range. This
is sufficent for principal considerations, but more refined
mechanisms are discussed in [13].

The elastic scattering for off-shell nucleons is presented
in Sec. III A, followed by the details on pion production
in III B. Section III C contains a discussion on the param-
eters in the many-particle system and an investigation of
the initial state for a heavy ion reaction. The analysis of
the numerical results is given in Sec. IV, followed by the
conclusions in Sec. V.

II. TWO-PARTICLE DYNAMICS

The early attempts to find a theory for particles in-

teracting at a distance were rather disappointing [6]. In

Hamiltonian theory there is a no-interaction theorem [5].
It rules out any interaction between N particles mov-

ing in 6N-dimensional phase space (x;, p, ) if just Galilei
invariance is replaced by Lorentz invariance. To be spe-

cific, we get a unique solution for the two sets of Poisson
bracket relations given in (2.1) and (2.2).

Invariance of the equations of motion with respect to
Lorentz transformations, space and time translations re-

quires the existence of ten corresponding phase space
functions

8 = Po,

P =P" (r = 1, 2, 3)

representing the generators which have to obey the Lie
algebra [g = diag (+ ———

) ]:
(P",P )=0,

(M",P") = g""—P + g""P",
(M",M" ) = —g""M" — " M""

+g" M +g "M"

(2.1)

Identification of canonically conjugate variables x, , p,
with particle observables in three-dimensional configu-
ration space leads to

(x",, P') = b"',

(z",, J') = s-"g„,z', ,

(z";,K') = z', (z', , H).
(2.2)

From (2.1) and (2.2) we get a unique solution for the
generators:

H=) 2 + p 2 (2.3a)

P=) p;, (2.3b)

J=) (», xp), (2.3c)

K = Q x, m,'+ p, '. (2.3d)

They describe a system of free particles, which can be
seen from ((x, , H), H) = 0, meaning "&",' ——const.

To avoid this kind of result, at least some of the above
requirements have to be omitted [6,7], and the exten-
sion of the phase space to 8N dimensions (z;,p, ) seems
to be the natural procedure. Then (2.1) is easily solved
by P" = g, p"; and M~ = g, (x",p, —x";p",)
As a consequence, physical positions and momenta as
measured by any observer in the three-dimensional con-
figuration space as a function of time have to be calcu-
lated by some projection to a subspace, which of course
is not unique. Several of such forrnalisms have been sug-
gested [14]. We will show, however, that in the two-

particle case they all lead to equivalent sets of equations
of motion.

For clarity we now proceed with a particular two-
particle case, which is the basis of our cascade model.
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The interaction is described by a quasipotential V that
depends on the square of just one four-vector r represent-
ing some distance (r ( 0) of the particles. For details
we refer to the discussion of the single Hamiltonian for-
malisxn in Sec. II A 2. We will show that in all formalisms
we end up with the following equations of motion:

dp

d7
dz
d7.

dA;

d7-

dr
d7

0,

p
)m

BV
2 p)

k

P

(2.4a)

(2.4b)

(2.4c)

(2.4d)

where p, z, k, r are four-vectors and v is a Lorentz scalar.
While p = pq + p2 always stands for the conserved total
momentum, the center-of-mass coordinate z, the relative
momentum k, and the relative coordinate r vary slightly
in their interpretation for different formalisms. In all
cases, however, we have

(rp) = (kp) = O, (2.5)

which states that the zeroth coxnponents of r and k are
zero in the center-of-mass system (p = 0). Finally the
scalar w may be removed from (2.4) in favor of the time
component zo because p is conserved and positive. The
details of (2.4), including its derivation, will now be given
for different Hamiltonian and Lagrangian formalisms, but
it should already be mentioned here that in general it is
not possible to look at p, z, k, r as canonically conjugate
variables.

A. Single Hamiltonian formalism

1. Equation of motion

The easiest way to realize a Poincare-covariant for-
malism is to replace the nonrelativistic 12-dimensional
Hamiltonian theory with Euclidean metric, using the
time for parametrization, by a 16-dimensional Hamilton-
ian theory with Minkowski metric, using some scalar v
for parametrization. We then have to worry about the
four additional variables, need an interpretation of 7., and
have to establish a connection between the variables used
and all observables as well as some observer time.

To do so we start with a scalar Hamiltonian of the
usual forxn

2 2
H= Q2——+V

2p
(2.6)

which is a function of the two independent pairs of canon-
ical variables: p = pq + pq, y = (mqzq + mszq)/m and
x = zz —zz, q = (mzpq —mqpq)/m. The constants
m = mq + mz and p = mqmz/m give the total and the
reduced mass of the &ee particles m; = lixnv~o p
Thus we have given an interpretation for two of the re-

dundant variables.
For the quasipotential we select V = V(—z~), where

z:= x — ", p gives the component of x perpendicularp'
to the total momentum (xp = 0), which is nothing else
but the equal-time spatial distance in the center-of-mass
system. The further reasons for the restriction of V to
just this dependence are discussed in Sec. II A 2.

By evaluation of &" ——(II, j we get the equations of
motion for the canonical variables

dp—=0
d~
dy p t'BVI zp„
dw m t Bz~) p~

dq (BVi .
dT (Bz )
dx g

d7 p

(2.7a)

(2.7b)

(2.7c)

(2.7d)

which do not yet have the form of (2.4). Note that qp is a
constant but not equal to zero for unequal-mass particles
(mq g mq). Hence, zp increases linearly with r, and y
is not at rest in the center-of-mass system. In contrast,
the variable

qp & zp
z =

I
y+ —,*

I

——,q
p )

(2 8)

(instead of y) is the physically appropriate center-of-mass
coordinate of the system (dz/d7 = p/m), and the physi-
cal coordinates of the single particles are

z; = z + z = z; + (z —y).P
mi

(2.9)

Indeed we arrive at (2.4) and (2.5) by setting k = q:=
q —~~", l p, and r = z . The connection between the proper
times of the individual particles and the parameter w

reads

p,'-
d7~ = d'T

mi
(2.I0)

It should be noticed that z is not a canonical variable.
However, the expression in brackets in (2.8), together
with p, z, and q determines a canonical transformation
when taking the conserved quantity qp/pz as an inde-
pendent constant. So for the case xp = 0 we regain a
canonical interpretation.

2. The variables of the qaasipotential

When we look at the equations of motion for an ar-
bitrary (scalar) quasipotential in (2.6), it becomes clear
why V should depend on x2 only:

1. The total momentum p is conserved if V does not
depend on y:

dp/d~ = (II,p) = BV/By = 0;

2. The effective masses will assume their constant &ee
particle values (~pz = m;) for V = 0 if BV/Bz is
perpendicular to p:
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~" (Pz —(mz+ 2yV)) = k2 —' (s P) = 0.

This is the case if V only depends on q, p, and the
component x of x;

3. The variable z as defined in (2.8) satisfies the equa-
tion of motion for the center-of-mass (dz/dw

p/m) if, in addition, BV/Bp is perpendicular to p.
This leaves only x, q, and qII

——q
—q as possible

variables;

4. A (possibly too restrictive, but sufficient) condi-
tion to guarantee particle velocity v, = dz, /dzo
smaller than the speed of light is DV/Bq = 0.

B. Multi-Hamiltonian

The more refined Hamiltonian theories make use of
separate Hamiltonians H, and parametrizations 7;. (i =
1, 2) for each particle [15)

m2 — 2
'E Pl V( 2)
2m'

(2.ii)

(notations as in the previous section). The equations of
motion now read &*' ——(H~, z, } and &"' ——(H~, p, }.
Note that we have (H;, z~.} g 0 (i g j). With these
two Hamiltonians the motion of the particles no longer
is along a one-dimensional line but on a two-dimensional
sheet in the 16-dimensional phase space. In order to have
a unique set of world lines, one gauge-fixing constraint is
needed [16],although it is not our intention to discuss all
possible definitions in this paper. Instead we will return
to the single 7 formulation by a suitable choice of ~;(v.).

The compatibility ("predictivity" [15]) condition

0 = (Hi, Hz}
2(zq) ( 8

I &., (ma&2 mlVi)
Im, m, ( i' (2.12)

m2 — 2

H, = ' ' +V(x'),
2m'

(2.13)

is satisfied most easily for equal quasipotentials m~Vq ——

m2V2. Applying a symmetry argument for particle inter-
change and an appropriate normalization we get ~ = ~q ——

~2. Now, for the canonically conjugate variables the same
equations of motion as in (2.7) result from &" ——(H, },
where H = Hq+H2 and V = Vq+ V2. Finally, define z as
in (2.8) and also r = x, k = q to reproduce the equal-time
description in the center-of-mass frame as given by (2.4)
and (2.5).

C. Multi-Hamiltonian with constraints

Considering (2.7) and (2.8), it seems to be quite natu-
ral to retain the canonical interpretation for the center-
of-mass variable z by imposing the explicit constraint
xp = 0 (leading to x = x) for the relative coordinate. jn
other words, equal times (xo = 0) are required for the
canonical variable x in the center-of-mass system. In the
multi-Hamiltonian approach [17]

the quasipotentials then should be independent of p. The
compatibility condition (0 = (Hi, Hz}) now requires

( 8
0=(zp)~I ~, (Vi+Vz)

I

I Bzz

( 0
+(xq) I (mz Vz —mi Vi)

I

.
(Oz )

(2.14)

With m&V& ——m2V2 and xp = 0 we obviously get that
result. The possibility to identify canonical and phys-
ical coordinates is based on (Ki, zq} = (Hq, zi} = 0.
However, well-defined world lines demand an appropri-
ate connection between the parameters 7~ and 72. To
rewrite the equations of motion in terms of ~ it is suf-
ficient to know the derivatives r! = &" r, (r). The first
of two necessary requirements is the conservation of the
explicit constraint xp = 0 for the motion, and the second
one is a normalization that respects the symmetry for
particle interchange:

d ( PPi , PP20= —(zp) =r,
m$ m21, , mi —mz (qpl

(2.i5a)

(2.15b)

These equations indeed define v. properly because both
p = const. and qp = const. hold. Solving for 'T&y we

get the equations for the canonical variables from

}+ &z(Hz, }:

—=0,dp
d7-

du p 1 (qp&
d~ m p(p)
dx 1( qp1
dept, p)
dq (OV )
dT (Bz')

m] m2
q+ pm1+ 2

(2.16a)

(2.16b)

(2.16c)

(2.16d)

where V = wiVi + rzVz ——miVi/p, = mzVz/p in fact is
independent of the momenta.

Since Hq and H2 are conserved and the quasipoten-
tials are equal (miVi ——mzVz), it is possible to force

pz —p2 ——m~ —m2 by the initial conditions. There-
fore (2.16) may equally well be deduced from the single
Hamiltonian

H = r~Hy + 72H2

S'IL —p q

2m 2p

+—
I

—.II qp—
1 (qp& ( ' (m' —p')

I
+ V(x').

y+ ~x —~q
7

1+' '
4m( my p~

(2.18)

(2.17)
From this Hamiltonian, (2.4) and (2.5) are recovered by
settingr=x = x, k=q = q —~pand
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where the denominator looks like a renormalization of
the total mass.

Note that for equal-mass particles (pi —p2 ——mi —m2 ——2 2 2 2

0) everything that may look a little strange does vanish,
as it does in all other formalisms described here. Even
though explicit constraints seem to be a powerful tool to
remove the redundant variables [8], it is not possible to
generalize xp = 0 to more than two particles.

equations of motion. Using (2.20) we have p2i —pz
z-—

mz —m2 for the considered case of equal quasipotentials
(mi Vi ——m2V2). Together with r = z, k = q and (2.18),
nothing but (2.4) and (2.5) will emerge again.

III. POINCARE COVAKIANT CASCADE

A. Relativistic nucleon-nucleon collisions

D. Singular Lagrangian

Lagrangian and Hamiltonian formalisms usually are
connected by a simple Legendre transformation. How-
ever, if it is impossible to eliminate the velocities in favor
of the canonical momenta, a Lagrangian is called singu-
lar, and additional constraints exist. As an example of a
singular Lagrangian [18] consider

2
L(z;, z;) = ) z, (m,'+ 2m, V;(zz)), (2.19)

where ' = &" is the derivative with respect to the
scalar 0 used for parametrization (7 is reserved for later
reparametrization). Because the Lagrangian is singular

det I, .
I

= 0, the canonical momenta p;
& ai & ~ 8L
(Ba;Ba2 j Bx;

cannot be used to obtain an explicit expression for the
0

velocities z, . Instead, by squaring p; the following con-
straints emerge:

p; =m, +2m;V(z ). (2.20)

This is the analog to the conservation of H; in the multi-
Hamiltonian approach.

0 2
The eealare M;(e) = /[mr + 2m~V~(er)]/ a, ,

M(~) = Mi+ M2, and M(0) = MiM2/M, depend-
0

ing on u through x; and x, , mill be used in what follows.
In these terms the Euler-Lagrange equations read

Generalizing the considerations of Sec. IIA, the basis
of our model are the solutions of Hamilton's equations
of motion for two sets of four-vectors z, = (II,z;) and
p, = (H, p;) resulting from the N-particle Hamiltonian:

N

H = ) (m,
' —p,')/2m; + V(z, p). (3.1)

A Lorentz scalar w is introduced for the parametrization
of the solutions in phase space (z;(7),p;(r)). Hence, 7.

assumes in part the role played by time in ordinary non-
relativistic mechanics, but it is independent of all the ze-
roth components t; in the four-vectors x;. An inversion
of the functions t;(r) and subsequent replacement of 7 by
some observation time (t) in the solutions of the equa-
tions of motion is possible for free motion only (V = 0).
Even then t;(r) = t~ (r) is true only for particles of equal
speed (Ix *I/E' = (p'I/E~)

We suppose a system of particles with pair interactions
mediated by Lorentz scalar quasipotentials depending on
one Lorentz-scalar variable only. This is the square of
z = z —p(zp)/p2, which is the component of the relative
coordinate x = x~ —x2 that is orthogonal to the total
momentum p = pi + p2. Hence, d = v —z2 gives the
spatial distance for two particles in their center-of-mass
frame [z, = (0, r) ]. Another reason to choose this
dependence is the mass shell condition p; = m; for free
particles (V = 0), as discussed in Sec. II A 2. Any change
in the potential AV = V —V' effects a change in the
effective masses of the form

mi t9Vi mz 29V2

Mi(0) Bz2 Mz(0) 29z'

p; =M;(0) z;.

(2.21a)

(2.21b)

Because the mass constraints (2.20) have to hold for all 0,
their derivatives lead to the same consequences as (2.14):
xp = 0 and mqV& ——m2V2 ——pV. A further differentia-
tion of the constraint 2;p = 0 with respect to o leads to
a connection between the masslike functions M;(0):

Mi(&) p'+ (pi —p')
M2(~) J ' —(J ', —p', ) pp2

(2.22)

~(0.) = do,
o Mcr (2.23)

to rewrite (2.21) in terms of v, and regain (2.16) as the

This can be regarded as the counterpart of (2.15). What
is left is the freedom for some kind of normalization of
the I; by a world-line reparametrization. We de6ne

(3.2)

Describing a scattering of many particles by a superposi-
tion of interactions between pairs and, for example sup-
posing N free particles (Vi = 0) on their mass shells
(p2 = m2) in the initial state, we then will find a final
state, where all free particles (V,'. = 0) are on their mass
shells again [(p';) = m2], irrespective of the interactions
in between.

In the limit of small momenta we of course regain the
classical nonrelativistic equations of motion. There V
plays the role of an ordinary potential. Because we would
like to describe interacting nucleons, a Yukawa form for
the quasipotentials would be appropriate. But to get a
cascadelike description in the many-particle problem of
two colliding nuclei, we adopt the extreme simpli6cation
that V becomes a discontinuous step function:

0 if d E [@),oo[
V(d) = (

—Vo if d e [B„B0[
oo if dE [O, R [.
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Then all nucleons move on straight lines except at those
points where V changes discontinuously. Using (3.3) the
solution of the equations of motion reduces to a sudden
change of 4-momenta and 4-coordinates:

p,'=p;kAq, (3.4)

Note that the discontinuity of the canonical coordinates
z, is caused solely by the momentum dependence of the
quasipotential V (precisely as in nonrelativistic mechan-
ics) and thus is at most indirectly a consequence of phase
space extension. The change in relative momentum Aq
depends on the momentary distance (

—z ) and the di-

rection of motion (zq) of the particles. Formulas for pen-
etration into the quasipotential (—) and the escape &om
it (+) just differ in the signs:

Qq = — xq p zq p 2pVox2 (3.5)

For a reBection we have

x
Aq = —2(zq) —,x' (3.6)

B. Phenomenology of pion production

k;„=4(Am/2) (Mi + Am/2) (M2 + b,m/2)

x (Mi + M2 + Am/2) (Mi + M2 + Am)

(3 7)

In this paper we restrict ourselves to incorporate a
phenomenological model of pion production. All other
reaction channels will be neglected. An investigation of
particle creation at very high energies is given in a sub-
sequent article [13]. Here we just examine the principles
of energy loss in a relativistic system.

Because of energy and momentum conservation there
is a minimum relative momentum k;„ in the center-of-
mass kame for two particles which allows for particle
creation. If Mq and M2 are the masses in the initial and

(Mi + M2 + Am) in the final state, we have

we restrict ourselves to pion production we may conse-
quently not expect an agreement between calculation and
experiment beyond 2 GeV per nucleon. Furthermore, we
neglect the possibility of coherent multipion production,
which tends to underestimate the pion yield with growing
energy.

As usual we choose the b, (1232) resonance to be the
dominant intermediate state [1] in a nucleon-nucleon
scattering. Hence, pion production is a two-step process,
beginning with a collision-induced excitation of a nucleon
to a delta that is followed by an independent delta decay:

N+N; %+4, ; N+~. (3.9)

(k —2@Vp)RQ —L & 0. (3.10)

We have to fix isospins, coordinates, and momenta of
two particles in each case of (3.9). The Clebsch-Gordan
coeScients of isospin coupling decide about the branch-
ing ratios for different charge divisions when delta re-
sonances are produced from protons (p) and neutrons

(n). For pp (nn) collision there is 6++: b, + (6:AP)
creation with a ratio 3:1. A np-pair has probability 2 to
be in an isospin zero state, which rules out delta excita-
tion. In all other cases we have 6+:60 as 1:1.Decay of
b, ++ and 6 is unique, while for 6+ (6 ) we have the
branching ratio 1:2 for m+: x (vr: vrP).

Momentum and angular momentum conservation de-
termine at most ten of 16 unknown components:

The reaction channel for pion production will be
opened by every hard-core collision of two nucleons

( z=—R, ) in a heavy ion reaction. Because the di-
rect interaction between the nucleons by means of the
quasipotential originates physically from virtual pion ex-
change, only real pions may be created. Then the approx-
imation of neglected reabsorption should not be as bad as
in other models. Apart &om further restrictions, hence,
we impose the subsidiary condition that the nucleons in-
volved in a pion production have to be asymptotically
free. That means they do not enter a bound state of
their common quasipotential V(z2), neither on account
of a small relative momentum k = g—q2 nor because of
a large relative angular momentum [L = z q —(zq) ]:

k2 1 fam~t'" = 2&m
m+ 4 (m~)

(3.8)

So in the laboratory kame we find for the case of two
colliding &ee nucleons (Mi ——M2 ——mN. = 940 MeV) P=) p, =const,

1" = ) (x,". p; —z, p,") = const.

(3.11a)

(3.11b)

Omitting all relative motions and interactions in a nu-

cleus, the lightest hadron (the pion) will be produced in a
heavy ion reaction by a collision of nucleons from different
nuclei at Ei b/A~ & 290 MeV (Am = m = 140 MeV).
Next to the pion we may find the kaon (m~ = 500 MeV)
at about Ei~b/A~ —1600 MeV [Am & mz + (mA—
m~) = 675 MeV] because there has to be a strange par-
ticle in the final state (m~ = 1115 MeV). By increas-
ing the energy many species of mesons will be created,
and the limit for antibaryon production (Am = 2miv =
1880 MeV) is reached at Ei b/Ai & 5600 MeV. Since

Therefore, we fix the effective masses from the beginning.
One nucleon Inay keep its effective mass:

M' = (p') = Mi —— (3.12)

2~ =M, +2m +2m . (3.13)

while the other gets excited by twice the pion mass, re-

flecting the experimental mass difference for nucleon and
delta:
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In the second step the nucleon recovers its original effec-
tive mass:

M2 = P2 =M2 —— (3.14)

and the pion is on its mass shell:

(3.15)

The further details of our mechanism for 6 produc-
tion are best described in the center-of-mass kame of the
colliding nucleon pair:

[p
—(Mi+ Ma) ][p —(Mi —Mz) ]

4p2

angular momentum conservation yields ~r'~ = R, ]k~/~k'~.
In the energetically possible limit ]k'~ -+ 0 we would have
~r'] ~ oo. To avoid this unphysical behavior we introduce
the subsidiary condition ~r'] ( RII that sets a cutofF to the
relative momentum and thus suppresses the low energy
reactions.

Delta decay is easily 6xed in its rest kame. The di-
rection of the pion momentum is chosen completely at
random, and everything is located at one space-time po-
sition.

(i) we hold the time variable of the unexcited nucleon

(ti) fixed,

(ii) the efFective time center (M;t; + M~t )~/(M; + M~)
of the nucleon pair (i = 1,j = 2) is transferred to
the (N+ b, ) state (i=1,j=6),

(iii) in the reaction plane defined by r = ri —r2 and k =
(M2pi —Mip2)/(Mi+M2) we suppose a reHection,

(iv) the direction of the new relative momentum k' =
(M~pi —Mipa)/(Mi + M~) is chosen at random
within the reaction plane.

As a consequence of these settings we obtain an ad-
ditional restriction in the pion production. Because the
magnitude of the relative momentum ~k'~ is fixed by the
effective masses and energy conservation,

If we strictly fix the radii RII and R, in a simulated
heavy ion reaction, there is no disintegration of the to-
tal collision into a sequence of well-separated nucleon-
nucleon interactions despite the simple form (3.3) for
the quasipotential. The reason is the momentum de-
pendence of the invariant spacings between the particles

Id;s = g—es ). Any sudden change of the quasipoten-

tial of nucleons 1 and 2 (b,Vi2 g 0) changes their individ-
ual momenta discontinuously. Hence, all spacings to the
other nucleons (di;, d2;, i g 1, 2) change discontinuously
also, and for example a previous value dq3 & Ro may
become dq3 & Ro because of the sudden change AVj2 in
the quasipotential of nucleons 1 and 2. Then it would be
inconsistent to apply &ee particle motion to nucleon 3.

Instead of solving this many-particle problem analyt-
ically, we allow a variation in the parameters. We com-
pose the heavy ion reaction &om two-particle interac-
tions and permit penetration into the quasipotential for
Ro & 1.13 fm, escape &om the quasipotential or reBec-
tion &om the inside for Ro & 1.13 fm, and reHection at
the hard core for R & 0.5 fm. This procedure of course
becomes questionable if we get a considerable deviation
&om Ro ——1.13 fm and R, = 0.5 fm for a large num-
ber of interactions. Hence, our model —as any cascade
model —is restricted to dilute systems.

A typical distribution for the parameters in a heavy
ion reaction (cf. Fig. 1) clearly shows some interactions
at Ro & 1.13 fm resulting &om reBections at the outer
boundary of the quasipotential in a bound two-particle
subsystem. All other deviations are rather small.

As is true for the radii Ro and R„we also may
not strictly 6x the depth of the quasipotential Vo. In

0.20

0.15—

0.10—
3

C. The nuclear many-particle system

Apart &om usual assumptions concerning the nucleon
distribution in the ground state of a nucleus, all free pa-
rameters of the model are connected to elementary par-
ticle reactions.

0.05—

o.o
0.0 2.0

f. Model parameters in the many-particle system

The parameters of the quasipotential (Ro, R„Vo), in-
troduced in Sec. IIIA, are 6tted to experimental data.
The total nucleon-nucleon cross section ut q 40 mb
determines Ro ——got g/vr 1.13 fm. We then get
a good agreement to the elastic cross section if we set
R, = 0.5 fm and Vo ——60 MeV/c .

FIG. 1. Distribution for the parameters Ro and R of the
quasipotentials in the reaction Ar+Ar at 2 GeV per nucleon.
Hard-core re8ection occurs for 0 fm ( r & Oa5 fm, penetra-
tions into the quasipotentials for 0.5 fm & r & 1.13 fm. The
region r & 1.13 fm is dominated by re8ections from the in-
side, while escapes from the quasipotential nearly form the
symmetrical counterpart to penetrations into the quasipoten-
tiai. We normalized u(r) to the value at r = 1.13 fm (not
included in the Bgure).
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a system of nucleons only (m; = m~) we find a de-
crease in the square of the effective mass by a constant
value (mivVp) with every penetration into a quasipoten-
tial [cf. Eq. (3.2)]. If a certain number of interactions
(mdiv/Vp & 16) is exceeded, p,. would become negative,
and we no longer could interpret it as the square of an
effective mass. Hence, the actual depth for a penetration
into the quasipotential has to decrease with an increas-
ing number of simultaneous interactions, i.e., it has to be
density-dependent.

Choosing &om the many possible ways to set a value
for Vo, we weaken the quasipotential by a direct depen-
dence on the effective masses of the two interacting nu-

cleons:
&n mN, (3.18)

of a chain of two-nucleon quasipotentials, and there is no
interaction between nucleons &om different clusters. For
example we have free nucleons (pz = m~), two nucleons
solely in interaction with each other [p, = mN (m~ —Vp)],
three nucleons linked in a row, and so on. Each of these
subsystems may appear as a stable &agment in the fi-
nal state, since there is no interaction between different
clusters at that given stage. Consequently, we have to
guarantee that clusters always may be interpreted as free
nuclei. This is realized by a mass shell constraint for clus-
ters during the whole reaction:

Vo
p', —m' /p', —m'

') ~, ™')
Thus the effective nucleon mass is greater than the pion
mass even for an arbitrary number of interactions. A

typical distribution for the effective nucleon masses in a
heavy ion reaction at the instant with the greatest num-

ber of interactions is plotted in Fig. 2. The theoretical
limit ~p2 = m = 0.15m~ is far from being reached.

A further subsidiary condition follows from the absence
of a self-consistent mean field. This many-particle effect
of strong interactions is not reproduced in our purely me-

chanical model on the basis of two-nucleon interactions.
Surely we can neglect the change in energy by an addi-
tional mean field for relativistic heavy ion collisions, but
we have to account for the different origin of the off-shell
behavior. In our model off-shell nucleons do not arise
from collective modes of the whole system. Instead, the
nucleons are divided into independent clusters at every
stage of a simulated heavy ion reaction. All nucleons
&om one cluster interact directly or indirectly by means

I I I I

f

I I I I

f

I I I I

]

I I I I

[
I

0.30—

0.10—

0 0 I I

0.80 0.85 0.90
M/m„

I I I I I

0.95 1.00

FIG. 2. Distribution for the effective masses (M = ~p, )
in the reaction Ar+Ar at 2 GeV per nucleon at that instant
where we find the greatest number of interactions. The orig-

inally discret values are contracted and smeared out due to
the factor introduced in (3.17). We normalized u(M/m~) to
the value at M/m~ = 1 (not included in the figure).

which holds regardless of the structure inside that clus-
ter of n nucleons. So the nucleons may leave their mass
shell (~pz & m~ (i = 1, ..., n)), but the cluster as a
whole must remain "on-shell". If this inequality is vi-

olated by pion production or an escape &om an inner
interaction, we cancel that process and replace it by a
reflection. Hence, all the nucleon-nucleon interactions in
a cluster respect condition (3.18).

2. The nuclear greund state

For an arrangement of a nucleus in its ground state
we start as usual &om the distribution functions for non-
interacting nucleons. A nucleus at rest is created accord-
ing to Fermi distributions for coordinates and momenta
whose radii take the values rpAi/s (rp = 1.2 fm) and

QEp(E~ +. 2m~) (EJ; = 33.4 MeV), respectively. The
width of the surfaces in the distributions we arbitrarily
set to 0 for the coordinates, and to 0.03mN ——28.2 MeV
for momenta. At first the time variables all are equal to
zero, and the energies we determine &om the mass shell
condition ~p,. = m~.

Subsequently these distributions are changed on ac-
count of the interactions between the nucleons and the
finite mass number of a nucleus. We select the coor-
dinates successively and require all the invariant dis-

tances (d,~
= —x2 ) to be larger than R, . Further-

more, we reduce the effective mass for every nucleon
whose invariant distance to another one is in the interval
d,~ C ]R„Bp[ according to (3.2). If a nucleus is prepared
self-consistently in such a way it neither will be at rest

(P, i p, g 0), nor will its center be located in the origin

(g,. i m, x; g 0). Hence, we have to perform suitable
transformations in phase space.

As a consequence of the off-shell behavior of the nu-

cleons, the distributions of momenta, energies, and co-
ordinates broaden and the former sharp surface in the
distribution of the coordinates is smeared out. The aver-

age number of interactions in the ground state is a little
less than one. All the distributions of the nucleons in a
nucleus as they emerge from the described procedure are
shown in [11].

Finally, we state that we do not need equal-time vari-
ables in the canonical coordinates for a consistent de-
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consists of two nuclei of masses M~ (
2

,p; [
and

2

Mz —— ,. 1 p, , where the projectile has the total

scription of interacting nucleons. Half of the width in the
distribution of these time variables is caused by the inter-
action of the nucleons. The other part emerges &om large
spatial components contained in the Lorentz transforma-
tion to the nuclear rest kame due to the finite particle
number. In all other distributions there are no essential
finite size effects.

The initial state of a heavy ion reaction (r = 0) now A
I

R
V

I I I

f

I I I

f

I I I

[
I I I

f

I I I

f

I I I

momentum Pp = Mp(1+a, gs(s + 2) e, ) in the labora-
tory frame (target at rest) if E~ b = A~m~s is the bom-
barding energy. Furthermore, at w = 0 the two nuclei
just touch each other, i.e., the first interaction for w ) 0
is a penetration into the quasipotential of one nucleon in
the projectile and one in the target. This fixes the cen-

ters Y~ = (g,. ~ m;x;)/Mp and Y~ ——(P,. ~ m;z;)/Mz
of the nuclei.

IV. NUMERICAL RESULTS

The reaction 18Ar + ~SAr was selected to illustrate
a simulated heavy ion collision that is characterized by
cluster formation and pion production. We examined
this system in the energy range between 300 MeV and
100 GeV per nucleon. To get insight into a collision pro-
cess we then focused on the reaction with 2 GeV per nu-

cleon (s —2.13). Note that the system becomes purely
academic beyond 2 GeV per nucleon, since all but inco-
herent pion production is neglected.

All presented results were obtained by averaging 1000
nearly central nucleus-nucleus collisions with a random
impact parameter b smaller than one quarter of the sum
of both nuclear radii. A single reaction is terminated
when all clusters stay stable, i.e., the bound subsystems
will not strongly decay to smaller clusters, radiate &ee
nucleons or produce real pions.

For more detailed results and the investigation of a
heavier system (Nb+Nb) we refer to [11].

0 I I I I I I I I I I I

0 200 400 600 800 1 000 1200
E]+b/Ap [Mpv]

FIG. 3. Mean multiplicity of negatively charged pions
in the reaction Ar+Ar (circles: Vp = 0 MeV, crosses:
Vp = 60 MeV). Error bars mark the uncertainty in the aver-

age and not the deviation of single values. The dashed line
represents experimental data from the reaction Ar+KCl [20]
and the full line results from the Cugnon cascade [19].

30
I I I I I I II) I I I I I I I II

20

In Fig. 4 we see the general behavior of this simplified
system of nucleons and pions that underestimates the
pion production increasingly with rising energy. How-

ever, it becomes clear that the average number of created
pions is nearly independent of the strength of the attrac-
tive part in the nucleon-nucleon interaction (Vp) already
for energies above 500 MeV.

The average number of stable &agments in the final
state is shown in Fig. 5. We do not count &ee nucle-
ons but otherwise include all fragments regardless of the
number of nucleons contained in the cluster. These are

A. Energy dependence
A

V

Although pions are created in a collision-induced pro-
cess with an intermediate delta state as is done in the
Cugnon cascade model [19], there is an essential difFer-
ence that causes a clear reduction of the pion rate beyond
1 GeV per nucleon. For m this is shown in Fig. 3. By the
fit of the pion production with the &ee nucleon-nucleon
cross section an effective creation process is introduced
that also contains contributions &om multipion produc-
tion. In our model pions are created in an elementary,
dynamical process. Thus the cross section depends on
more than the relative energy of the colliding nucleons
(cf. Sec. IIIB). The excessive pion yield of the Cugnon
cascade relative to the experimental data [20] then be-
comes increasingly reduced.

10

0
0.1

X

0
X

1 10
E„b/AP [GeV]

I I I I I I II

100

FIG. 4. Mean multiplicity of the total number of pions in
the reaction Ar+Ar. Above 2 GeV per nucleon the produc-
tion rate is increasingly underestimated because of the lack
of appropriate reaction channels. However, we do not find
an essential dependence on the depth in the quasipotential
(circles: Vp = 0 MeV, crosses: Vp ——60 MeV).



3262 G. PETER, D. BEHRENS, AND C. C. NOACK 49

I I I I I I II/ I I I I ! I lli

V

4 I I I I I I Ill

0.1 1

J I I I I I II . J LJJ LLLlj

10 100
E„b/A„[GeV ]

4.5 '

0.1

I ! 1 I J IIII l l 1.I»I
10

k lab/AP [GCV
1

100

FIG. 5. Average number of stable fragments in the final
state of the reaction Ar+Ar (regardless of the number of nu-

cleons contained in one cluster). Error bars mark the uncer-

tainty in the average and not the deviation of single values.

mainly built by pairs of nucleons (cf. Fig. 7) and decrease
only slightly in number with increasing energy. The lat-
ter effect will change, of course, for a reaction of heavier
ions [11].

A further comparison of results with and without an
attractive force between nucleons is presented in Fig. 6
(Vo

——0 MeV and Vo ——60 MeV, respectively). To get an
idea on the highest local density obtained during a heavy
ion collision we recorded the maximum number of simul-
taneous interactions that any of the individual nucleons
had at any stage of the reaction. Obviously we find a
clear increase of the nuclear density with increasing Vo

as expected, whereas the number of produced pions ac-
cording to Fig. 4 is nearly uneffected. Hence, our results
contradict the predictions made in [21]. By increasing
the energy beyond 10 GeV per nucleon, the difference
between the curves Vo = 0 MeV and Vo ——60 MeV be-
comes small, of course, since the average ratio of rela-
tive momentum and depth of the quasipotential becomes
large.

Finally, we should add a remark on the mean value of ~
at the end of the reaction. First of all 7;„d does decrease
with increasing energy of the projectile, but the ratio of
7 „g to that value of w where we find the maximum in the
pion production (cf. Fig. 8) is more or less independent
of energy. On the other hand, the physical time elapsed
for an imagined free particle in the equal-speed system of

both nuclei v = ' and s = Enweb/(AI m~) given

in units of fm/c T,„d = '+2 T d is rather constant

for reactions up to 10 GeV, but seems to increase at
higher energies. This may be a consequence of the fact
that in that regime particle production is not described
adequately by our model.

B. Reaction statistics

A multiplicity distribution for the different &agments
(mass number A) is given in Fig. 7. It is strongly decreas-

FIG. 6. Maximum number of simultaneous interactions
that any nucleon had at any stage of the reaction Ar+Ar.
This measure for the local nuclear density obviously in-

creases by increasing the depth of the quasipotential (circles:
Vp = 0 MeV, crosses: Vp ——60 MeV). Error bars mark the
uncertainty in the average and not the deviation of single val-

ues.
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FIG. 7. Multiplicity distribution for the different fragments
(mass number A) in the final state. As a normalization we
have chosen one for the number of free nucleons (the point at
A = 1, however, is omitted).

ing with A even though in 1 event (of 1000) we found
A = 13 in the final state. On the average the ratio of
bound to &ee nucleons is about 1:4.

In Fig. 8 we show the mean multiplicity for pions,
("& ), as a function of the Lorentz scalar r The co. n-

nection of the w scale to a physical time scale may be de-
duced &om an imagined &ee particle. For example, in the

equal-speed system of both nuclei v = ' = 0.728+2

7 [T in units fm/c] or T =
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FIG. 8. Mean multiplicity for the pions as a function of r.
The maximum in the distribution is arbitrarily set to 1.

[ T in units fm/v]. Thus, the maximum in the produc-
tion rate (7 = 5 fm/c) occurs at T —7.2 fm/c —5.2
fm/v, and beyond T = 28.7 frn/c —20.6 fm/v [v = 20
fm/c] pions very rarely emerge.

The number of pions produced by a specified nucleon
is rather small. About 90%%uo of the nucleons are involved
in pion production only once during the reaction. Fur-
thermore, none of the nucleons was responsible for more
than six pions.

Figure 9 gives a first impression of the compression
and the internal energy of the system. It shows the dis-
tribution of the maximum number of simultaneous inter-
actions for a specified nucleon, i.e., the statistics of the
highest local densities. We may conclude that the rel-
ative momentum available for particle creation becomes
distributed quite rapidly among the nucleons. However,
we always find a dilute nuclear system, since the maxi-
mum number of simultaneous interactions for a specified
nucleon also remains small.

The rapid loss of relative momentum effected by
nucleon-nucleon collisions is reBected in Fig. 10. We show
the distributions for the relative momenta in the center of
mass frame of the two interacting particles (k = g—q2 ).
This is done separately just before (a) penetration into
the quasipotential, (b) hard-core scattering, and (c) es-
cape from the quasipotential. Although these reactions
appear in short intervals on the average, the relative mo-
mentum of nucleons from different nuclei (right maxi-
mum) decreases considerably. For hard-core scattering
and the escape from the quasipotential we already find a
domination of the left maximum, containing mainly col-
lisions between nucleons from the same nucleus in the
initial state.

From Fig. 11 we get an impression of the kinemat-
ics in the final state. While the rapidity distribution

y = —ln @
" of the pions has a single maximum at

midrapidity, the nucleons and the fragments exhibit rnax-
ima at projectile and target rapidity as well as a good

FIG. 9. Maximum number of simultaneous interactions nl
for a specified nucleon. Even though in one case nl ——13 oc-
curred we rarely find more than six simultaneous interactions.
[Normalization, P ru(ny) = 1.]
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FIG. 10. Distribution for the relative momenta
(k = g—q~ ) normalized to the free nucleon mass just before
(s) penetration into the quasipotential, (b) hard-core scat-
tering and (c) escape from the quasipotential in the reaction
Ar+Ar at 2 GeV per nucleon. In (c) we arbitrarily set the
maximum to one. The areas below the curves represent the
frequency of the three different events.
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V. CONCLUSIONS

By extension of phase space to 8% dimensions in order
to guarantee a simple representation for the generators
of the symmetry transformations (space-time displace-
ments and rotations), a variety of ways become available
to circumvent the no-interaction theorem. The main dis-
tinction between the different published models describ-
ing interacting relativistic particles regards the prescrip-
tion for the elimination of redundant degrees of freedom.
There the constraint Hamiltonian approach [8] seems to
assume the major role, also incorporating the singular
Lagrangian formalism and predictive mechanics, at least
for the cases of interest.

FIG. 11. Distributions of the rapidity y = —ln z . For@+3'll

the reaction Ar+Ar at 2 GeV per nucleon we analyzed (a) the
nucleons (free aud bound), (b) the pious, aud (c) the frag-
ments in the 6nal state. Normalization is arbitrary.

amount in between.
Often it is impossible to measure the rapidity (no par-

ticle identification) in an experiment. Then the pseudo-
rapidity [rI = —ln(tan 0/2)] is presented instead. Both
are comparable only in the limit p~ )) m, which here
does not apply. Hence, a statement about the rapidity
is rather questionable when only the distribution of the
pseudorapidity is known.

On the other hand, for a comparison of numerical re-
sults to the experimental data, it is essential to subject
the numerical results of the model to the same "61ter"
of the final state that is effected by the detectors [22].
Because we do not aim at a detailed analysis of experi-
mental data in this paper, we have not included such a
presentation here.

It was not our intention to investigate these different
formalisms with respect to their general degree of equiv-
alence. Rather, we have shown here that, for the two-
particle system all these different formalisms lead to an
equivalent set of equations of motion and are thus phys-
ically indistinguishable, while for more than two parti-
cles none of these formalisms can be given a consistent
physical interpretation. In our opinion, the single Hamil-
tonian formalism described in IIA is the closest possi-
ble approach to what may be called physical intuition,
mainly because the nonrelativistic limit is determined by
applying Galilei instead of Lorentz transformations to the
solutions in the center-of-mass kame.

We have therefore used this form to construct a re-
lativistic intranuclear cascade model which allows two-
particle quasipotentials when applied to sufFiciently di-
lute systems. This restriction is a consequence of the
necessary momentum dependence of the quasipotentials,
enforced by the mass shell constraint for free nucleons,
leading to the distinction between canonical and physical
coordinates.

The results obtained for the reaction &8Ar + &SAr in
the energy regime between 300 MeV and 2 GeV per nu-

cleon are in reasonable agreement with the experimental
data [20,22]. A particularly interesting result is that the
pion yield is nearly unafFected by the attractive part of
the nucleon-nucleon interaction, while the nucleon den-

sity increases as expected (cf. Figs. 3, 6). This is in ob-
vious contradiction to an idea presented in [21].

Before more detailed comparisons to the many exper-
imental data obtained by the BEVALAC groups can be
meaningful, it is essential to subject the numerical results
of the model to the same "61ter" of the 6nal state that
is effected by the detectors [22].

The numerical results above a bombarding energy of
2 GeV per nucleon have to be assessed cautiously. While
the direct nucleon-nucleon interaction becomes less im-

portant, the creation of particles will increasingly domi-
nate the whole reaction. Hence, it is necessary to develop
a concept of particle production compatible with the un-

derlying Hamiltonian formalism even for a large number
of created particles. Our present "perturbative" mecha-
nism of pion production on the basis of the nucleon de-
grees of freedom is surely insufficient beyond BEVALAC
energies.

A successful model for describing particle production
has been devised by the Lund group [23], where new
hadrons are created in recursively de6ned fragmenta-
tion processes, using a string picture for the qq inter-
action. The translation of that idea to our model con-
sists in an application of our production mechanism to
the degrees of freedom of quarks confined by a linear
quasipotential inside the hadrons. In other words we are
aiming at incorporating the quarks into a description of
heavy ion reactions purely on the basis of particle dynam-
ics, where all field degrees of freedom (including strings)
are subsumed in quasipotentials. We call such a model
"Poincare-covariant collision dynamics" [13]. Whether
this framework may be justi6ed by other approaches like
lattice /CD [24] or quark gluon transport theory [25] is

yet an open question.
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