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A formalism for the calculation of intermediate energy charge exchange reactions exciting the 6
resonance region in nuclei is presented. The nuclear structure part of the formalism is based on the
isobar-hole model and the nuclear reaction part is treated within the distorted-wave impulse approx-
imation (DWIA). In the nuclear structure part, all important nuclear medium eff'ects are included,
such as nucleon and isobar binding, two-body 4 isobar-nucleon hole correlations, and intermedi-
ate coupling to multiparticle-multihole channels. The latter coupling is treated phenomenologically
through a A spreading potential. Explicit account is also taken of the nucleon knockout mode and
the related nucleon particle-nucleon hole correlations. In order to perform the calculations, we 6rst
set up coupled-channel equations for the excited nucleon and 4, which are slightly, but impor-
tantly, transformed into equations for localized functions only. We solve these equations by using
the Lanczos method. The resultant formalism allows us to calculate cross sections for 6 excitation,
quasielastic scattering, and low-lying Gamow-Teller excitations on the same footing. In this way
a detailed study of the nuclear medium effects on the 4 isobar can be done. Particular attention
is paid to the b;hole correlations in the spin-longitudinal (S q T) channel. It is shown that the
coherent pion production events in the exclusive ' C(p, nor+)' C(g.s.) and ' C( He, t7r+)' C(g.s.)
reactions provide a unique signature on the nuclear pionic mode.

PACS number(s): 14.20.Gk, 21.10.Re, 24.30.Cz

I. INTRODUCTION

The most important and widely publicized issue in the
study of intermediate energy charge exchange reactions
is the downward energy shift of the 6 resonance peak
position by 70 MeV in nuclear targets as compared
to the proton target [1—7]. The physical significance of
this shift was first recognized by Contardo et al. [2) in
their studies of the (sHe, t) reaction at the Laboratoire
National Saturne in Paris. The phenomenon, however, is
also found to persist in other charge exchange reactions,
such as the (p, n) reaction at E=800 MeV [4—7]. In Fig.
1 we show an experimental zero-degree spectrum for the
p(p, n)D++ reaction [3] at E=800 MeV incident energy
in comparison with a corresponding one of the i2C(p, n)
reaction [5]. The spectra are plotted versus the excitation
energy wL, in the laboratory (L) system. A considerable
energy shift of 70 Mev is observed between the ele-
mentary 4 excitation of the proton and the 4 excitation
in C. For the proton target the 4 resonance peak po-
sition appears at ~L, 365 MeV while for the C target
the peak appears at wl, 295 MeV. The peak position
for the proton target can be explained by the sum of the
4 resonance excitation energy co~——295 MeV and the re-
coil energy of 95 MeV received by the 6++ in the (p, n)
excitation process. The small energy difference of —25
MeV between the sum of the two energies (390 MeV)
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FIG. ].. Experimental zero-degree spectra of the '
C(p, n)

reaction [5] in comparison with the p(p, n)A++ «a«ion [3] at
E =800 MeV.

and the observed energy (365 MeV) can be ascribed to
the momentum transfer dependence of the form factors
involved in the p+ p ~ n + 6++ transition operator.

The shift of the 4 peak position, as observed in Fig. 1,
has various origins. The most important one is the Fermi
motion (binding) of the nucleons and of the 6 isobar in

the nuclear mean field [8,9]. Other, smaller effects come
from 6 conversion processes, such as 6 + N ~ N + N
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[10—12], and from projectile excitation [13,14). These
effects together account for 40 MeV of the shift,
leaving 30 MeV unexplained. This latter part of the
shift is thought to be due to a nuclear medium corre-
lation effect on the spin-longitudinal response function
[10,11,15—18]. In particular, recent calculations of De-
lorme and Guichon [10] and Udagawa et al. [11] per-
formed for Gnite nuclei consistently show that this sec-
ond part of the shift is caused by the energy (u) de-
pendent vr-exchange interaction in the nuclear medium.
The vr exchange provides a strongly attractive interac-
tion between 6-particle nucleon-hole (6N 1) states in
the spin-longitudinal (S q T) channel leading to a col-
lective pionic mode in the nucleus at lower excitation
energies of ~L, 250 MeV.

The inclusive charge exchange cross sections contain
information on both the spin-transverse (TR) and the
spin-longitudinal (LO) nuclear response functions. The
two responses can be experimentally separated either by
performing complete spin-flip transfer experiments [19]
or by measuring the pion decay of the 6 resonance in
coincidence with the ejectile [20—26]. In this paper we
shall show that in particular, the coherent pion decay is
very sensitive to the LO response function. We remark
that the TR and LO spin responses can be experimentally
separated by using other probes, such as photon-nucleus
and pion-nucleus scattering. The photon is a purely spin-
transverse (S x q T) probe while the pion is a purely
spin-longitudinal probe. Indeed, a shift of the 6 peak
position has been observed in vr-nucleus total and elastic
scattering cross sections [27—29]. In contrast to this, in
the case of p absorption [29,30] and inelastic electron
scattering experiments [31—33] the 6 peak does not show
such a pronounced displacement.

The aim of this paper is twofold. First, we present a
detailed account of the formulation and methods of calcu-
lation used in the analysis of the data. This formulation
is given in Sec. II. Second, we present results of nu-
merical calculations in a more systematic manner than
we did before in our short Letters [11,23]. We shall also
discuss various new aspects of the nuclear medium effect,
the central issue of the present work.

In Sec. II we first summarize the basic model as-
sumptions made throughout the present paper and state
the model Hamiltonian. The nuclear structure part of
the model is based on the isobar model [27—29,34] and
the nuclear reaction part is treated within the distorted-
wave impulse approximation (DWIA) [35]. In the nu-
clear structure part, all important nuclear medium ef-
fects, such as the 4 mean field effects, the 4 spread-
ing potential, and the two-body A-hole correlations, are
taken into account. In addition, the nucleon knockout
effects are included explicitly, so that the resultant for-
malism allows us to calculate cross sections for 4 excita-
tions and quasielastic charge exchange scattering on the
same footing. For that purpose, ere 6rst set up a set of
coupled-channel equations for the excited nucleon and 4,
respectively. This set is slightly, but importantly, trans-
formed into equations for localized functions. We then
apply the Lanczos method for solving the equations. We
split the calculated inclusive cross section into its vari-

ous partial cross sections, as there are the coherent pion
production cross section, the quasi&ee decay, the spread-
ing cross section, and the nucleon knockout and nucleon
knockout-fusion cross sections.

In Sec. III we erst discuss the parameters used in the
present calculations. Then we present the results of our
cross section calculations and compare them to the ex-
perimental data. We also make various studies of the nu-

clear medium effect on the 4 with a special emphasis on
the 6-hole correlations in the spin-longitudinal channel.
Finally, in Sec. IV we give a summary and conclusions.

II. THEORY'

We are interested here in the calculation of the in-
clusive cross sections for intermediate energy charge ex-
change reactions, such as A(p, n), B(d, 2p), or C( He, t).
Since we shall deal with high incident projectile ener-

gies (E~, ~ ) 650 MeV/nucleon), we assume that the
impulse approximation is valid and that the cross sec-
tion can be calculated within the DWIA [35]. We have
to keep in mind, however, that the scattering data which
we analyze in this paper involve large momentum trans-
fers (q 2 fm ). Therefore two-step processes can still
give a significant contribution to the cross section.

A. The distorted-wave impulse approximation

We start our formulation writing down the double dif-
ferential cross section for the inclusive charge exchange
process A + a M B+ b, where A (B) and a (5) represent
the target (residual nucleus) and projectile (ejectile), re-
spectively (see Fig. 2). In the reaction a particle-hole

(ph) state is created in the residual nucleus B, where the
particle p can be either a 6 or a nucleon 1V. Using rela-
tivistic kinematics the cross section in the Breit kame of
the target system is given as

dEgdOg

E&E~EaEg pg M~ Ms

2~2$&(s, M2, M„') Ea E. Es

x) ] rp. ~' S(E~ + E, —E„—E.),

(b)

FIG. 2. Graphical representation of reaction processes in-
cluded in the distorted-wave impulse approximation calcu-
lations. For the effective projectile —target nucleon interac-
tion the free t~~ ~~ matrix is used {a) and for the projec-
tile-isobar coupling the t~~, Na interaction of Eq. {10)is used
{b).
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where E; = QM2+ p,. is the total energy of particle
i (i = A, B,a, 5), M, is its rest mass, and p; is its momen-
tum. (We use natural units throughout, i.e. , 5 = c = l.)
An average over the initial spin orientations and a sum
over the final spin orientations of both the projectile and
the target spin states are taken.

In first order DWIA the transition amplitude Tp cor-
responding to the graphs in Fig. 2 is given as

P dR~b kb, R @B@'b

x ) t,, 14~4 )y~+l(k, R),
j=l)A
i=1,a

(2)

tp, (ur, rp —r, )

1

(2vr) s dq ' exp[iq '
(rp —r~. )]tp (&, q '), (3)

and use the fact that tpi(z, q ') is only weakly momen-

where the initial and final nuclear states of the projec-
tile and target are denoted by

I C~),
1

4b) and
I 4~),

I
4~), respectively. The indices A, B, a, and b represent

all quantum numbers necessary for specifying the corre-
sponding state, including the spin and isospin quantum
numbers. For the intrinsic projectile (ejectile) wave func-
tion

I
4 ) (I @b)) we use the simple product form, i.e. ,

14 ) =1$ ) 1$,. „),where
I P ) a dnI P, .)are

the space part and the spin-isospin part of the wave func-
tion, respectively; v denotes the isospin projection. As

usual, y and yb are the optical model wave func-(+) (-)
tions of the projectile and ejectile in the initial and final
channels. They are functions of the relative coordinate
R between the center of mass of the projectile and the
target. Because of the high incident energies we neglect
the spin-orbit interaction in the distortion. The transi-
tion amplitude of Eq. (2) is evaluated in the Breit frame
of the target system. In this system the state of the nu-

cleus is well described by an ordinary nonrelativistic wave
function.

In Eq. (2), t,z is the effective interaction between the
projectile nucleon i and the target nucleon j. The t;~ is
represented by the free nucleon-nucleon tN~ ~N matrix
in the case of the nucleon excitation [Fig 2(a)] w. hile it
is approximated by the free nucleon-nucleon XN —+ ND
transition operator t~~ ~~ for the 4 excitation. We
shall discuss the specific form of the interaction later.
For the moment we just take advantage of the fact that
at high incident energies and large momentum transfers
both interactions turn out to be rather short ranged, i.e. ,

very weakly dependent on the four-momentum transfer
(u, q) [—:(E~ —Eb, p~ —pb)]. Therefore they can be
well approximated by local operators in r space of es-
sentially b-function form. We shall show later the con-
sequences of the short rangeness of the interaction for
nucleon-induced reactions. In the case of nucleon-nucleus
scattering the effective interaction depends on the rela-
tive distance ro~

——ro —r~ between the projectile 0 and
the target nucleon j. Then we express tpi(u, rp —r~) in
terms of its Fourier components tpi(w, q '),

turn dependent in the four-momentum transfer region of
interest. Then we may approximate Eq. (3) by

tp~ (u, rp —ri)= tp~(~, q) dq ' exp[iq '
(rp —ri))

27r s

= tp, (~, q )b (rp —r, ),

where (cu, q ) is the four-momentum transfer of the reac-
tion.

If the projectile is a composite particle, we have to
take into account the finite size eÃect of the projectile
by using the projectile transition density pb . In a high
energy approximation for t;~, as in Eq. (4), this effect
can be included by means of the Fourier transform of pb
written in a Lorentz invariant form as fb (g—t). This
Fourier transform is most conveniently performed in the
Breit frame of the projectile since in this frame the wave

functions of the projectile and ejectile can be described
by nonrelativistic wave functions [36]. We may then write

(4b I t'&14-) = fb-(~-t)4(~ q )~'(R —r~) (5)

Here fb (g t) is —the projectile transition form factor in
momentum representation. It is a function of the square
of the four-momentum transfer t = e —g . Note that
Eq. (5) is also valid for nucleon-nucleus scattering if one

puts fb (g t) = I, —R = rp, and i = 0. Inserting Eq. (5)
into Eq. (2), we find for the transition amplitude

&p. =(4' I~I c' ) (6)

where p is the hadronic transition operator defined as

t = ):(0..-,-. 1 ):f (&—t)t' (~ q)
j=1,A i=1,a

with

xXDw(k, kb, r, ) I P, ), (7)

XDw(k, kb, r) =
pbbs

i (kb, r) pl+i (k, r)

It is clear that XD~ describes the projectile distortion
effects in the reaction. In the plane wave (PW) ap-

proximation, the distorted waves g and gb are re-(+) (-)'
placed by plane waves and XDw is reduced to XDw(r) =
exp (iq r). Although unjustifiable quantitatively, the
PW approximation is often useful in the understanding
of the more complicated results Rom the distorted-wave
calculations.

B. The efFective projectile —target-nucleon
interaction

For the evaluation of Eq. (7) we need the explicit rep-
resentation of t;i(u, q). For NN excitations the spin-
isospin-dependent part of t~~ NN in the NN c.m. frame
is given by [37,38]

t~~,~N. (s, t) = [n —ip(o, n+ o~, n) + Po, nai . n

+So, . qo'~ . q+ eo; poi p]r, vi, (9)
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where the unit vectors [p, n, q] form a right-handed co-
ordinate system in the two-nucleon center-of-mass kame.
They are connected to the initial and final nucleon mo-
menta tc, and tc' by p = tc + tc', q = rc, —tc, ', and
n = q x p. Three different types of spin excitations are
possible, namely, a longitudinal one with the spin trans-
fer along the momentum transfer direction q (term b),
and two transverse ones with the spin transfer occurring
either in the scattering plane (term e) or perpendicular
to the scattering plane (term P). The coefficients n, p,
P, b, and e are functions of the Mandelstam variables s
and t and are determined from NN scattering data.

For AN excitations the t~N N~ transition operator
consists in principle of 16 linearly independent terms [39].
In the present study, however, we assume the following
simple form,

and by using the relation

EgE~EJBEs
dEi,dOs 2vr'QA(s M2 M')

E~ E Eg28 +1 (13)

where H is the total Hamiltonian of the residual nuclear
system with H

I
4'~) = e~

I
@is). e~ is the excitation

energy of nucleus Bmeasured relative to the ground state
energy E~ of the target, which we choose as E~ ——0. The
double differential cross section is then given as

( 2 ) 2

A' —t )
+(cr; x q) (St x q)]~; Tt, (10)

where S is the strength function defined by

~ = ™[-(p
I
&

I p)/~]

with

(i4)

where J~iv~ = f~~~ f~~ri/m = 800 MeV fm ob-
tained with the widely accepted values of f2ivN/4m=0 08.
and f~~~ = 2f~iv~ The st.rength parameter tN& and
the cutoff mass A' in the vertex form factor [(A'2—
m~ )/(A'2 —t)]2 are adjusted to experimental data as will
be discussed in Sec. IIIA. The assumed operator is es-
sentially of b-function type; the only momentum depen-
dence comes from the vertex form factor.

Using the identity (cr; x q) (St x q) = cr, nSt n+
o; pSt p, we can rewrite Eq. (10) in the form

t~iv, ~r (s, t) = [P'n;. nS,. n+8'ir; qS,. q

+e cT p~S p]rq ' T.

with P' = b' = e' = t~~ J N~[(A' —m')/(A' —t)]2.
The interaction of Eq. (10) or (11) has a very simple
spin structure; the strength of the spin-Lo term is equal
to that of the spin-TR terms. In spite of its simplicity,
the assumed t,~ can reproduce not only the cross sections
but also the spin observables from the reactions with the
proton target. (See the discussion in Sec. III A. )

(15)

and

4) —H + 'EE
(16)

I p) of Eq. (15) is the doorway state excited initially by
the external operator p; G propagates this state resulting
in the so called continuum wave function

I
~) = &

I p) (i7)

Equation (13) together with (18) provides the final cross
section formula expressed in terms of

I i') of Eq. (17).
Now it is our task to calculate

I
4').

D. The correlated source function method

With the aid of
I
i') we can express S of Eq. (14) in an

alternative form as

C. Alternative form of the singles cross section

The operator p defined by Eq. (7) serves as an external
field acting on the target nucleus. It is often referred to
as the hadronic transition operator. The operator p de-
pends on the coordinates of the target nucleons only; the
projectile coordinates are all integrated over. Note that
in distinction &orn the usual calculation of the DWIA
transition amplitude, as in Eq. (2), we have interchanged
in Eq. (6) the order of the integrations over the projec-
tile coordinate R and the target-nucleon coordinate r~.
This has been done since we want to transform the cross
section formula into the nuclear response function form
by carrying out the sum over the final state

I
4~). This

sum can be performed by inserting Eq. (6) into Eq. (1)

The correlated source function method provides a very
efficient way of calculating

I
4). The method makes use

of the fact that the Hamiltonian H of the target system
is given by

H = Hp+ Vph,

where Hp is the single-particle Hamiltonian and V&h is
the residual ph interaction. In the following we assume
that the target is a double magic nucleus with spin par-
ity I& ——0+. Furthermore, we approximate the target
ground state wave function by a single Slater determi-
nant of the independent-particle model. This means that
we choose

I
4'~) to be an eigenfunction of Ho instead of

H, i.e.,
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Ho
I

@'~) = &~
I @A) (zA = 0). (20) where Go is the unperturbed Green's function defined by

The above approximation neglects the effects of Vph on
the ground state wave function. The effects of V~h are
included, however, in the wave function of the excited
states. This different treatment of V&h for the ground
state and the excited states is known as the Tamm-
Dancoff approximation. To proceed we split Hp into
Hp ——H~ + Kz, where H~ is the Hamiltonian of the
hole nucleus C and H„ is the Hamiltonian of the excited
particle p. The spectrum of H~ is defined by

1
Gp ——

(d —Kp + lE
(24)

I A) =I p)+ &»Go
I

A) (25)

so that

To solve Eq. (23) we first transform the integral equation
into an equivalent integral equation [40]

Hc
I
c'i) = Eh

I
c'&), (21) I@) —= G, IA). (26)

where Eh, is the hole energy. Finally, the Hamiltonian of
the excited particle p is given by

Hp ——Tp+ Up+i (p = 6 or N),
I'( )

(22)

where Tp is the kinetic energy operator, Up Vp + iWz
is a complex one-body potential, and I'„~ is the free
decay width of the 6 (I'p iv = 0, of course). Note that
I'~(s~) is a function of the intrinsic energy of the b, , and
is related to the energy transfer ~ by s~ ——~ —H~ —Eh.
We follow Ref [27]. in dealing with the Hr) dependence
of I'~(s~).

Using the Hamiltonian of Eq. (19), we can derive the
following integral equation for the continuum wave func-
tion:

Note that
I A) thus deFined plays in Eq. (26) a similar

role as
I p) in Eq. (17). We call

I A) the correlated source
function since it includes the correlations due to Vph.

Equation (25) is now solved by first integrating over
all coordinates, except the radial coordinate of particle
p. In this way the equation is reduced to a set of coupled-
channel (CC) equations for the radial wave functions of
particle p. In order to achieve this we expand both

I A)
and

I p) in terms of the channel wave functions

1[&p@'h)~ ) = ) (jpmpjhmiljm) I v~. .@'2a h)
mpmh

(27)

where y~ m is the spin-angle wave function of p and

C~„„is the hole-nucleus wave function of Eq. (21). The
channel expansion is then given by

IA)=
j t~tm jt met m

+2(ssmzs~ —m~
I

s&m, , )(—1) '+

I p) =

N,

x(j,m, , s, —m„
I
f, —mr, ) ) I [ypC h].. . ),

Aph(r)

ph

v 2(si,mbs —m~
I

sim, , )(—1) '

jtEtmj mg m, t

N

x{jimq, sz —m,
I

~& mz ) ) I (&pc'h]i „)
'- ppi(r)

ph

(28)

where j&, E~, and s& are the total, orbital, and spin an-
gular momenta transferred in the reaction, respectively;
m~„mg, , and m„are the corresponding angular mo-
mentum projections. The quantities Aph(r) and pph(r)
are the correlated and uncorrelated radial source func-
tions, respectively. Note that both radial source func-
tions depend on the quantum numbers jq/zmg, , though
these indices are not shown explicitly. The sum involved
in Eq. (28) is taken over all ph pairs. The total number
of ph pairs is denoted by N .

Inserting the expansions of Eq. (28) into Eq. (25), we
obtain a set of CC equations for Aph(r),

I

where the ph matrix elements V~h „,z, (r, r') are defined

by

&,'h „,h, (r, r') = «'([vp @hd],, I&,hI [up@'h], ). (30)

t' A„,h, )
I ~) =

Here the parentheses denote an integration over the chan-
nel variables. Introducing column vectors of dimension
1xN,

(p„a, )
xg +, „I (r', r")Ap ), (r"), (29)
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we can write the CC equations in matrix form as

I ~) =I p) + Vg.
I ~),

where V is the interaction matrix

(v)ph p'h'( I ) ph, p'h'( I )

(33)

(34)

In the last equation g h is the radial optical model
Green's function. Note that the operation of go (and
V) onto

~
A) in Eq. (33) involves a radial integration

besides the matrix multiplication.
Equation (33) is the final equation to be solved. The

source functions pph(r) can be calculated in a straight-
forward manner. The details of the calculation are

I

of dimension N, x N, and go is the diagonal Green's
function matrix defined by

(QO)ph, p'h' gph ~ph, p'h'.(+)

presented in Appendix A, along with the results for
V~h „,h, (r, r') T. he merit of solving ] A) first instead of the

corresponding ] Q), defined below by Eq. (37), lies in the
fact that Aph (r) is a localized (bound) function. This is so
since pph(r) is proportional to the radial hole wave func-

tion uh(r). Similarly, the interaction terms V h, h, (r, r')
are also localized because they include uh(r), too [see
Eq. (A15)]. This fact makes it possible to expand

~
A)

in terms of a set of orthonormal basis functions. The
problem can then be reduced to solving a set of inhomo-
geneous linear equations for the expansion coeKcients
(Lanczos method). These equations are derived by in-

serting the expansion into the original integral equation
(25). It turns out that this method enables us to solve

Eq. (33) in a very efficient way. The Lanczos method we

used in solving these equations is described in Appendix
B.

Once
~

A) is known, it is easy to calculate
~

@). In
partial wave expansion ] @) is given by

ygcgmq~ mE~ m, ~

~2(shmhs —m~ [ sim„)(—1) '+

X(j,m~, si —m„~ Ei —mr, ) ) ] [ypCh]~, , ).
'- &ph(r)

ph

It is easy to see that the column vector
~ g) defined by E. The residual ph interaction

can be given as

(O,h )

I &) = &o I A)

(37)

(38)

The residual ph interaction V~h is treated within the
(z + p + gs) model (see [7] and references therein).
In the p exchange we keep only the tensor interaction
and drop the central part assuming that the latter can
be effectively included in the short-range interaction.
The matrix elements V~h, h, consist then of the four
coupiings VNN 1NN INN ——1 gN ——1 VgN —1 NN —1 and

V~N 1~N —1 . We write V-ph in terms of spin-LO and spin-
TR components according to

Vph(ur, q) = V h (&u, q)8p q8, q+ V h (ur, q)(8p x q) (8, x q) 7p 7„„ (39)

where

(LO)
( ) ( )

f Npf Np' q' 2 Jp(~, q) q'

f NN
" v —q —m +i& 3& (~q) ~ —q2 —m2+iE (4o)

and

V(TR)
( ) J ( )

f Npf Np' 1 ~p(~ q) q'

f NN
" J3~(~ )qu —q —m + i~

(41)

In Eq. (39) 8„ is the spin (transition) operator with
8p = o' (S) for p = N (6,). Similarly, 7„ is the isospin
(transition) operator with 7p = r (T) for p = N (6).
The force strength parameters J and J~ are de6ned by

I

and

pNN p p (43)

respectively, where f NN/4vr=4 86 and fpN& = .2fpNN,
while the values of f~NN and f~N~ were already given
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in Sec. IIB.
The quantities in parentheses in Eqs. (42) and (43)

are the form factors which describe the finite size of the
meson-nucleon vertices. Use is made of the cutofI' masses
A = 1.2 Cev and A~ = 2.0 GeV. The three Landau-
Migdal parameters g~~, g~&, and g&& are to be ad-
justed to reproduce the experimental data. The value
of giv~ (=0.6) has been determined &om the excitation
energy of the giant Gamow-Teller resonance (see [7] and
references therein). The value of g~& is less well known
and only has some constraints from Brueckner G-matrix
calculations (see [7] and references therein). Further, the
value of g&& is not known. In the present study, we treat
both g~& and g&& as free parameters which have to be
determined from the 6t of the calculated spectra to the
experimental data.

F. The decomposition of the inclusive cross section
into components

S = Scpp + SQF + Ssp + SKQ + SKF.

Here the partial strength functions are defined by

(46)

Scpp = —(i11
I
ImV h I 4),

1
S~F = —(e I

ra/2
I
e),

1s» = -(+
I
-Iv~

I ~)

SKc ——Im(e
I
n b(E —Hc —Tp) n( ) t

I 4),
1

SKF = —(@ I

—IViv
I

@).

(47)

(48)

(49)

(50)

(51)

where n( ) = 1 + (U„+ -'I ~)Go is the Moeller wave

operator and TVN is the imaginary part of the optical
potential of the nucleon particle p = %, we obtain the
following decomposition of the strength function S of Eq.
(44):

s = —im((~
I V,'h I ~) —(A I

G.
I A))

1
(44)

Using now the identity

ImGo —— 7m( )8(E —H—c —T„)n(

+Gt(w„+ w —r /2)G„ (45)

The inclusive cross section of Eq. (13) can be decom-
posed into partial cross sections corresponding to differ-
ent physical processes. These processes are schemati-
cally represented by the graphs in Figs. 3(a)—(e). Only
the lowest-order diagrams are shown. We distinguish
between coherent pion production (a), quasif'ree decay
(b), nucleon knockout (c), 6 spreading (d), and nucleon
spreading (e). The incoherent sum of these various pro-
cesses gives the inclusive, single-step cross section.

The Erst step of the decomposition of the cross section
is to rewrite S in terms of

I
A). Inserting Eq. (25) into

Eq. (18) we obtain

The physical significance of the various components is as
follows. Scpp describes the strength function of the co-
herent pion production (CPP) process A+ a ~ b+ A+ 7r,

where the residual nucleus is left in its ground state
[see Fig. 3(a)]. This strength function is proportional

to ImV h. ImV h comes from the pion pole in the 7t-ph' ph
exchange interaction of Eq. (40). SqF describes the
strength function of the quasi&ee (QF) decay process
where the 6 excitation in the nucleus is followed by the
decay 6 —

& 7r+N [see Fig. 3(b)]. Ssp denotes the spread-
ing (SP) strength function that results from 4 conversion
processes, such as 6 + N ~ N + N [Fig. 3(d)]. SKo is

the strength function for the nucleon knockout (KO) pro-
cess [Fig. 3(c)], and finally SKF is the strength function
for the nucleon knockout-fusion (KF) process where the
excited nucleon knocks out additional nucleons &om the
target [Fig. 3(e)]. Among these five strength functions,

SQF, Ssp, and SKF can be calculated in a straightforward
manner from Eqs. (48), (49), and (51). This is not the
case, however, for SKo and Sccp. They are more easily
calculated from the alternative expressions

(b)

1
sKo ——(—(A I

Go
I A)) —SKF —ssp —sqF

1
scPP —s ——(—(A I

Go
I A) }.

(52)

(53)

In terms of the partial strength functions S (cr=CPP,
QF, SP, KO, KF) the double differential, partial cross
sections are given by

(d) (e)

d2cr EgE E~Eb Pb M Mb )-
~Ebdnb 2~2/a(s, M2, M„') Ea E. Eb

(54)

FIG. 3. Schematic representation of the physical processes
included in the analysis of the data. For each process only
the lowest-order approximation is shovrn. The diagrams have
the following meaning: (a) coherent pion production, (b)
quasifree b, decay, (c) nucleon knockout, (d) E spreading,
(e) nucleon spreading.

G. Exclusive cross section for coherent pion
production

The most interesting component of the partial cross
sections of Eq (54) deriv. ed in the previous section is that
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1—ImV „=Va~ 14~)b(u) —T )(I'~ I V»

d3

,2E V~~. I O~&(p-))

x~(& —E )(C~&(& ) I
V» (55)

where T is the kinetic energy operator of the pion; V~N
is the xlVA interaction Hamiltonian

of the coherent pion decay (n=CPP). In the CPP pro-
cess, the excited nucleus deexcites to the target ground
state

I 4g) by emission of a pion of energy E = ul. E—R,
where E~ is the recoil energy of the final nucleus A. The
cross section given by Eq. (54) with a = CPP, however,
involves an integral over the angle of the emitted pion.
In what follows, we derive the difFerential cross section
starting &om Eq. (54) with Scpp given by Eq. (47).
For this purpose, we first notice that in the 4 resonance

region ImV h comes exclusively &om the vr-exchange in-
ph

teraction. Therefore ImV & can be written as

V» = St tc F(rc )Tt
mar

(56)

expressed in terms of the variables of the 6 rest frame
(involving the relative pion-nucleon momentum m ). In-
serting Eq. (55) into (47) and the result of that into (54),
we find that the CPP cross section can be expressed as

where

0 CPP d 0CPP

dEbdOb dEbdObdO

d PCPP EAEaEBEb Pbym™aMb

dE&dA&dA~ (2~)span(s, M2 M2) E& E. E&

x). 1(@~&(p ) I Va~. I @) I' (58)

is the triple difFerential exclusive cross section.
In order to calculate the transition matrix elements in

Eq. (58), we use the partial wave expansion Eq. (36)
for

I
4') and also the partial wave expansion of

I P(p )).
After some lengthy algebra we obtain

where

(e 4(p ) I

v' .Ie) 8bmbaa —ma Sqm„
ytEtm~ met

x(—1) ' ' (jqmz sq —m, , I
f&m&, )P&,z, m&, i (59)

P, ,~, , = F(~ )2~4vr ) (—1)" Y, "(& )
Ctyt m&, l w

&f &~Zaa~

xi + " '"jzjs,lgl (lg0l 01l&0) (J0101l 0) l& 2 j&
j, )

x dr h' " r j~ p~ru~r xISO (60)

is the reduced transition amplitude. In the last equation ISO is the isospin factor which amounts to ISO= 1(1/~3)
for the 6++ ~ p+ n+ (6+ -+ n+ 7r+) transition. Insertion of (59) into (58) results in the triple differential cross
section in the form

d 0Cpp EAEaEBEb pbp~ Ma Mb 1

dEsdAsdA (2~)span(s M2, M2) EIs E Es (2s + 1)(2I~+ 1)
2

) (—1)" "(&~ g, st ™., I
&~me, )P,r. ..

jtEtm~ mg,

(61)

where IA is the spin of the target ground state. Prom
this cross section formula we can calculate the angular
distributions for the coherent pion decay [23]. We re-
mark that similar exclusive cross section formulas can
also be derived for the other partial cross sections, such
as for n=QF, SP, etc. These cross section formulas will
be published elsewhere [41].

as the x correlations in the nucleus is provided by the
measurement of the spin observables. In particular,
the projectile polarization-transfer observables are sen-
sitive to the spin-LO and spin-TR response functions.
The polarization-transfer observables can be expressed in
terms of the Cartesian polarization-transfer coeKcients
[42,43]

H. Spin observables

Another important source of information on the spin
structure of the t~~~~ transition amplitude as well

(~ ~) (P

mmmm)

T (C'4),

m = z, y, z; m' = x', y'z', (62)
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S; = Im[ —(p, [G[p, )/vr] (i = LO or TR),

where

I p*) = O'IC'~) (64)

with

where the 0 (m = x, y, z) are the Pauli spin matri-
ces acting on the projectile system. We choose the z
axis (z' axis) along the beam direction k (kb) and the
y axis perpendicular to the scattering plane parallel to
n = (k x kb)/

~

k x kb [. The x axis is then cho-
sen so as to obtain a right-handed coordinate frame, i.e. ,
x = y x z (x' = y' x z'). Note that the coordinate frames
in the incident and exit channels are related through a
rotation around the y axis by the scattering angle 0. The
primed index on D reminds us that the initial and 6-
nal states of the beam polarization do not need to be
referred to the same coordinate frame.

For the discussion of the spin observables it is useful to
define the spin-LO and spin-TR strength functions SQQ
and STR. They are defined by
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and

Oi, o = e' '
(S q)T (65) 0.00
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I I

300 400

~, (M.v)

500 600 700

OTR = e' (S x q)T
2

(66)

(0.)
I+i ol'+ 2[INTR['

(67)

I+i,ol'+ 2I~TRI'
(68)

These equations show that the spin transfer coefficients
are sensitive to the vr correlations through SLQ.

III. RESULTS AND DISCUSSION

A. The t~~ ~~ transition operator

The two parameters t~& and A' involved in the ef-
fective NN -+ NA transition operator defined in Eq.
(10) are adjusted to the experimental data. In Fig. 4(a)

The factor I/i/2 in Eq. (66) has been included for con-
venience because there are two transverse directions, n
and n x q, but only one longitudinal direction q. In the
present paper we shall restrict our analysis of the spin ob-
servables to forward scattering (0 = 0') where the scat-
tering problem has a symmetry around the beam axis.
In this case there exist only two interesting polarization
transfer coefFicients, namely the one with the spin trans-
fer along the beam direction (D„)and the other with the
spin transfer perpendicular to the beam direction (D ).
Assuming that the cross section in the A resonance re-
gion is dominated by spin-flip processes, D„and D
can be expressed as [43]

FIG. 4. Zero-degree spectra for charge exchange reactions
off the proton target. (a) The p(p, n)A++ reaction at E=800
MeV. The data are taken from Ref. [3]. (b) The p( He, t)A++
reaction at E=2 GeV. The data are taken from Ref. [2].

we show the zero-degree spectrum of the basic reaction

p(p, n)A++ at E = 800 MeV incident energy obtained
with the interaction of Eq. (10) using t~z ——0.55 and
A' = 650 MeV. Both the shape and the magnitude of
the experimental cross section [3] are reproduced very
well. From this comparison the parameters t~& and
A' are fixed. In Fig. 4(b) we show a similar analysis
of the p( He, t)A++ reaction at E=2 GeV and zero de-

grees. In this case the finite size of the projectile has to
be taken into account. Because of the D-state admix-
ture to the He and triton (ls) wave functions the spin-
LO and spin-TR form factors Fi,o(t) and FTR(t) have
a difFerent momentum transfer (t) dependence. Faddeev
calculations show [44] that Fi,o(t) falls ofl' much more
slowly than FTR(t) with t Guided by t, hese .calculations
we parametrize the form factors as F~Q ——e ' and
FT~ ——e™~~~,where o.LQ ——0.4 fm and o.TR ——0.56 fm .
A plot of the form factors is shown in Fig. 5. With these
form factors and the t~& and A' values fixed above we
can reproduce the p( He, t)A++ data rather well, as can
be seen from Fig. 4(b).

In order to check the spin structure of the transition
amplitude t~~ ~~, i.e., to find the ratio between the
I 0 and TR interaction components, we analyze the spin
observables of the p(p, n)A++ spin-flip transfer reaction
at 0 = O'. In case of a proton target the polarization
transfer coe%cients of Eqs. (67) and (68) reduce to
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where P', e', and b' are the interaction components of
Eq. (11). In Fig. 6 we show the measured [45] spin
transfer coefficients D and D„ for the p(p, n)b, ++ re-
action at E=800 MeV. Note that the measured values of
D„=D = —1/3 can only be reproduced by the inter-
action of Eq. (11) if the force components are all equal,

This implies that the 6, exci-
tation process is dominantly spin transverse with a cross
section ratio of TR/LO= (I P' I2 + I

e'
I )/ I

b' I2=2/l.
We remark that this TR/LO ratio also explains the ob-
served tensor analyzing power data of the p(d, 2p) 60 re-
action [46]. In addition, the p(d, 2p)b, o data require that
trrIv ~a is nearly constant in the (u, q) range relevant to
the b, resonance region [47]. Both conditions are satisfied
by tIv~ rra of Eq. (10).

B. Analysis of ~ C(p, n} and sC( He, t) reaction
spectra

X. Input panametev s

With the formalism described in Sec. II we have calcu-
lated energy spectra at various scattering angles for the

C(p, n) reaction at E=800 MeV and the 2C(sHe, t) re-
action at E=2 GeV. The calculations were performed by
using the optical potential parameters of Table I. For
the target ground state wave function a pure shell model
configuration was assumed. The single-particle wave
functions were generated &om a Woods-Saxon poten-
tial with the geometrical parameters a0 ——a, =0.53 fm,
and rp ——r, = rc ——1.20 fm and the spin-orbit strength
V, =5.53 MeV. The strength parameters for the pro-
ton and neutron potentials were fixed as V„=65.7 MeV
and V =66.0 MeV, respectively. The A-nucleus opti-
cal potential, U~ = V~ + i W~, was taken as a (com-
plex) Woods-Saxon potential with the radius parameter

100 200 300 400 500
Energy Transfer ( MeV )

600 700

FIG. 6. Calculated spin transfer coefficients for the

p(p, n)E++ reaction at E=800 MeV in comparison with the
experimental data [44I.

2. Inctnsive spectra of the C(p, n) reaction

In Fig. 7 we show the calculated inclusive cross sec-
tion for the 0 spectrum of the C(p, n) reaction in com-

TABLE I ~ The optical potential parameters used in the
DWIA calculations.

p

He
t

V
4.70
-3.27
4.70
-3.27

0.900
1.125
0.900
1.125

a
0.530
0.976
0.530
0.976

-30.0
-25.0
-77.0
-40.0

&I

0.931
1.125
0.931
1.125

al
0.568
0.592
0.568
0.592

B = 1.1A3 fm, diffuseness a=0.53 fm, and the depths
V~ ———35 MeV and W~ —— —40 MeV for the real
and imaginary potentials, respectively [34]. The real
part V~ was assumed to be the sum of the 6-nucleus
single-particle potential (depth of —65 MeV) and the 6
spreading potential (strength of +30 MeV); W~ was as-
sumed to be energy dependent with the parametrization
W~(ur) = —0.24ur + 7.6 MeV for u & 200 MeV and

W~(u) = —40 MeV for &u & 200 MeV. The free decay
width I'~(s~) was parametrized in the usual form [9].

The two unknown Landau-Migdal parameters g&& and

g&& in V~h were fixed from an overall fit of the calculated
cross sections to experiment. The values thus determined
are gN&

——g&& ——0.333. The experimental data thus
require the minimal value for g~& and g&& that cancels
out the b-function piece from the x-exchange potential.
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FIG. 7. Zero degree neutron spectra for the reaction
'

C(p, n) at E=800 MeV [5]. (a) The theoretical spectra are
calculated with (full curve) or without (long-dashed curve)
ph correlations. The longitudinal (LO) and transverse (TR)
cross sections are also shown separately for the case where
correlations are included.
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parison with the experimental data. The solid and long-
dashed curves represent the cross sections calculated with
and without inclusion of V~h, respectively. We shall call
these curves the correlated (Vp~ g 0) and uncorrelated
(V~h = 0) results. The theoretical cross sections under-
estimate the data by a factor of %=1.3. This is due to
the fact that the 6 resonance is located on top of a large
continuum (background). The background is the result of
various processes, the significance of which varies with ex-
citation energy. On the high energy side of the resonance
(~1, ) 350 MeV) the background is mainly produced by
projectile excitation where the proton is excited to a 6+
which subsequently decays into a n+vr+. At very high ~L,
(& 500 MeV) a large fraction of the neutron cross section
can be ascribed to neutrons resulting from the quasifree
decay of the 6 in the target. The missing cross section
on the low energy side of the 6 resonance (url. & 200
MeV), i.e. , in the so called "dip" region, may be due
to two-step processes, two-body exchange currents, and
projectile excitations [13].

The essential result in Fig. 7 is the strong energy
shift between the LO (short-dashed curve) and TR (dash-
dotted curve) cross sections. While the former cross sec-
tion has its peak at wI. 260 MeV, the latter has its
peak at al, 325 MeV. The relative energy shift of 65
MeV between the two peaks is an effect of the strongly
attractive 7r-exchange interaction in the LO channel. The
mechanism for this shift will be explained in detail in the
next section. Note that the TR cross section is roughly
twice as large as the LO cross section. This is an ef-
fect of t~~ ~~ which produces a cross section ratio of
TR/LO=2/1. As a result of this ratio, the large shift of

65 MeV in the LO cross section leads only to a rel-
atively small energy shift of 30 MeV in the inclusive
spectrum. This can be seen from a comparison of the
correlated and uncorrelated results in Fig. 7.

The theoretical description of the experimental spec-
tra at other scattering angles is also reasonably good.
This can be seen from Fig. 8, where we compare the the-
oretical C(p, n) cross sections with data at scattering

0.10-

0.00
100 200

I I

300 400

ts, (IleV)

500 600 700

FIG. 8. Neutron spectra for the reaction ' C(p, n) at
E=800 MeV at scattering angles of 8 = 3' (a) and 8 = 9'
(b). The data are taken from Ref. [5].

angles of 0 = 3' and 9 . Both the shape and the magni-
tude of the data are reproduced well. The peak position
and magnitude of the experimental cross sections change
with angle. This behavior is reproduced very well by our
calculations.

8. Inclusive spectra of the C(eHe, t) reaction

The main features of the 4 excitations described above
for the C(p, n) reaction can also be found in the

C( He, t) reaction. Important differences between the
two reactions, however, arise from the 6nite size of the
projectile and the different projectile distortion. In the

C( He, t) reaction the projectile form factor (shown in

Fig. 5) causes a trivial shift of the 6 peak position to-
wards lower excitation energies. This is demonstrated in
Fig. 9 by a comparison of the full and the long-dashed
curves. The latter is calculated for a point projectile,
i.e. , neglecting the projectile form factor. The inclusion
of the form factor cuts oR' the high energy part of the
spectrum. The relative energy shift of 40 MeV be-
tween the A peak positions of the (p, n) and ( He, t) data
(compare Figs. 7 and 9) is a result of this effect.

The efFect of the projectile distortion on the calculated
spectrum is also shown in Fig. 9. The full and short-
dashed curves represent DWIA and plane wave impulse
approximation (PWIA) calculations, respectively. The
two theoretical cross sections difFer in magnitude, but
agree in shape. This means that the distortions at inter-
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FIG. 9. Zero-degree triton spectra for the reaction

C( He, t) at E= 2 GeV. The data are taken from Ref. [2].
The theoretical spectra are calculated with (full curve) or
without (long-dashed curve) ph correlations. The long-dashed

line is the cross section calculated with a point projectile. The
latter cross section was multiplied by 0.31.

mediate incident energies mainly lead to a pure absorp-
tion of flux, reducing the magnitude of the cross section
but leaving the shape of the cross section unchanged.
If there is at all an effect of distortions on the resonance
shape, then it is a small upward energy shift of the DWIA
cross section relative to the PWIA result.

In Fig. 10 we compare the theoretical cross sections for
the ~2C(sHe, t) reaction at 0 = 0' with the experimental
data. The solid curve represents the cross section with in-
clusion of V~h, Rnite size e8ects of the projectile, and the
distortion eKects. We call this curve the correlated result.
The long-dashed curve represents the corresponding un-
correlated result. Also the I 0 and TR cross sections are
shown separately. In analogy to the ~ C(p, n) reaction,
the LO cross section (short-dashed curve) peaks again
at tdL, 240 MeV. The TR cross section (dash-dotted
curve), however, peaks now 40 MeV lower in energy than
in the (p, n) case, namely at tdl, 285 MeV. This is an ef-
fect of the He-t form factor which reduces the magnitude
of the TR spectrum at high excitation energies because

of its exponential falloff with g —t .The shape of the LO
spectrum is also affected by this, but less strongly.

It is remarkable that the calculation including the cor-
relations reproduces the higher td part of the ~ C( He, t)
spectrum very well. This is due to the fact that, in con-
trast to the ~ C(p, n) reaction, there is no background on
the high energy side of the resonance in the ~2C(sHe, t)
reaction. In the latter reaction there is little cross section
from projectile excitation, since the probability that the
excited projectile decays to the triton ground state plus
a pion is small. Similarly, only few tritons are expected
&om the quasi&ee decay of the target.

We remark that our calculation for the ~2C(sHe, t) re-
action, as for the ~2C(p, n) reaction, fails to describe the
cross section in the lower &d region (in the dip region).
This underestimation may be ascribed to background
components resulting &om other reaction mechanisms
than the one-step process. It is possible to extract some
qualitative information on this background from the ex-
perimental data. In Fig. 11 we compare the data [2] of
the ~2C(sHe, t) reaction at 8 = 0 for three different in-

cident energies of E=1.5, 2.0, and 2.3 GeV. As seen, the
cross section in the 6 resonance region increases rather
dramatically with E. In contrast, the cross section be-
low uL, 150 MeV remains essentially unchanged. The
calculated spectra describe the data in the 6 resonance
region very well, in particular the incident energy (E)
dependence.

The analysis of the data indicates that the excitation
mechanisms below and above ul, 150 MeV are dif-

ferent. In our view the reaction mechanisms involved
at cu (150 MeV are due to two-step and multistep nu-

cleon knockout processes. This conjecture receives fur-
ther support by the fact that the cross section below
u (150MeV is proportional to the mass number A, while
the cross section in the 6 resonance region is proportional
to (3Z+ N) [2] (where Z and N are the proton and neu-

tron number of the target). The 3Z + N dependence of
the cross section is a characteristic feature of the 6 exci-
tation coming &om the fact that the cross section of the
p+ p —+ n+ 6++ process is three times larger than that
for the p+n ~ n+6+ process. Such a characteristic fea-

1.60

C( He, t)1.40-

~ 1.20-

«1.00-
E

0.80-
3
8 0.60—

at) 040

0.20—

0.00

—Corre fated

—Uncorrelated

- LongitudinaI

Transverse

1.60
12 3

140 C( He, t)

~ 1.20-

0= 0~1.00-
E

0.80-
3
a 0.60-

-t 0.40-

0.20-

100 200 300 400
~ ,(ttev)

500 600 700

FIG. 10. Zero-degree triton spectra for the reaction
C( He, t) at E=2 GeV. The data are taken from Ref. [2].

The full curve represents the final result. In addition, the lon-
gitudinal (LO) and transverse (TR) cross sections are shown
separately.
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FIG. 11. Zero-degree spectra for the C( He, t) reaction
at E= 1.5, 2.0, and 2.3 GeV. The data are taken from Ref.
[2]. The full curves represent the calculated cross sections
including ph correlations.
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ture is not seen in the cross sections below u 150 MeV,
indicating that the (virtual) 4 excitations do not play a
significant role there.

In Fig. 12 we compare the theoretical cross section
for the ~C(sHe, t) reaction with the experimental data
at other scattering angles. Although the magnitude of
the cross sections changes rather dramatically with an-
gle, this behavior is rather well reproduced by our calcu-
lations.

C. Explanation for the energy shift of the L
resonance peak position in nuclei

In order to explain the origin of the energy shift in the
spin-LO spectrum (see Figs. 7 and 9) we first perform
a multipole decomposition of the inclusive cross section.
In Figs. 13(a) and 13(b) we show the various partial
cross section contributions o.J corresponding to unnat-
ural (a) and natural (b) parity states J, respectively.
One immediately recognizes that the cross section con-
tributions of the unnatural parity states are lowered in
excitation energy by 60 MeV relative to those of the
natural parity ones. This is due to the fact that the
pion couples strongly to the unnatural parity (pionlike)
states, but not to the natural parity states. Among the
unnatural parity states the lower spin states undergo the
bigger energy shift. This observation can be brought to
a more quantitative level by explicitly calculating the en-

ergy shift

+EJ (0J" I +ph I OJ")

0.80

0.70-
"C (P, II) (a)

for each given state [Qg ). Here [gg ) denotes the partial
wave component of the continuum wave function

[ 4} of

Eq. (23) and is normalized according to (gq- [ g~-) = l.
Note that AEJ defined above is complex; the real part
DE& describes the energy shift, while the imaginary
part AE& describes the width associated with the co-
herent pion production process, as discussed already in
Sec. IIF,

In Figs. 14(a) and 14(b) we show the real part AE&+. of
the complex energy shift for natural and unnatural parity
states, respectively. While the energy shift of the natu-
ral parity states is slightly repulsive (about +5 MeV),
it is strongly attractive (about —50 MeV or so) for the
unnatural parity states. In addition, in the latter case
[EE& [

is large for small J, and decreases rather rapidly
as J increases. Here the x-exchange interaction plays an
essential role. To explain this in more detail, we show in
Fig. 15(a) the momentum (q) dependence of the real part
of V~t, in the LO channel (full curve) at ~ = 250 MeV.
In addition, we show the square of two typical transi-
tion densities with J = 1+,L = 0 (dashed curve) and
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FiG. 12. Triton spectra for the reaction C( He, t) at scat-
tering angles of 8 = 2' and of 8 = 4 . The data are taken
from Ref. [2]. The theoretical spectra are calculated with
(full curve) or without (dashed curve) ph correlations.

FIC. 13. Zero-degree neutron spectra for the reaction
' C(p, n) at E=800 MeV [5]. (a) The cross section contribu-
tions of different unnatural parity multipoles J . The dashed
curve represents the sum of these multipoles. (b) The cross
section contributions of different natural parity multipoles J
The dashed curve represents the sum of these multipoles. The
cross sections of the natural parity states have been scaled by
a factor N=2.
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60 and enters into the calculation of the energy shift as
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FIG. 14. The real part of the energy shift AE&~ as function
of the multipole J .
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J = 5+, L = 4 (dash-dotted curve), respectively. The
square of the transition density is de6ned by

Mr, o(q) = f dq(gz
~

exp (
—iq r) si .q T~

q ~
D)

x (0 l T„+q S—. q exp (iq r')
l Q~) (72)

Here we have split the energy shift into LO and TR
components. The expression for MTR(q) is obtained
from MQQ (q) by replacing (S . q) by (S x q) . From
Fig. 15(a) one observes that VLho has a singularity at

qp I, ——gur2 —m2 = 1.05 fm ~. VL&o is repulsive for

q & q~ ~„but attractive for q ) qz ~, . In the charge ex-
change reactions the 6 in the spin-LO channel is excited
by virtual x exchange. The three-momentum

l q l
carried

by the virtual n is always larger than qp I, —gu2 —m2.
Thus the transition density for the 4 creation has its
peak always at a momentum q ) q& ~, . The peak of
the transition density moves toward larger momentum
transfers with increasing spin J . This can be seen by
a comparison of the J~ = 1+ and J = 5+ transition
densities in Fig. 15(a). From Fig. 15(a) it is then obvi-

ous that by folding V~h with q2MLO(q) a net attractive
energy shift is obtained. This happens for all multipoles
in the LO channel, leading to the downward energy shift
of the 6 peak position. The lower the multipolarity J
of the state is, the larger the attraction is.

In Fig. 15(b) we show a similar study for the spin-
TR channel. V& is repulsive and has no singularity.

Therefore by folding V& with q MTR(q) a moderate,
repulsive energy shift is obtained.

D. Partial cross sections

(bj

I I I I I I I I

J=1,L=1

I I I I I I I I I I I I

0.0 0.2 OA 0.6 0.8 1.0 1.2 1A $.6 1.8 2.0 2.2 2A 2.6
ihmentam Transfer (fm ')

FIG. 15. The AN residual interactions at u = 250 MeV
as functions of momentum transfer q. (a) The full curves rep-
resent the real part of the interaction in the LO channel. The
dashed and dash-dotted curves show the longitudinal transi-
tion densities with quantum numbers J = 1+,L = 0 and
1 = 5+, L = 4, respectively. (b) The fuH curve represents
the real part of the interaction in the TR channel. The transi-
tion density with quantum numbers 1 = 1,L = 1 (dashed
curve) is also shown.

In Sec. IIF we discussed the decomposition of the
total strength function S into the five components SKQ,
SKp, Sqp, Ssp, and Supp. The corresponding partial
cross sections cr (= d2o /dEdA) are given by Eq. (54).
Among these partial cross sections, oKO and +Kp are
rather small in the 6 resonance region. Therefore, in the
following discussion we shall ignore crKO and oKp and
concentrate on the other three partial cross sections osp,
ogp, and &cpp.

In Fig. 16 we show the three partial cross sections as
well as the summed singles cross section for the ~2C(p, n)
reaction. In Fig. 17 we show the corresponding results
for the ~2C( He, t) reaction. In both cases o'cIp gives the
largest contribution to the singles cross section, explain-
ing roughly 60Fo of it, while osp and o.~pp contribute
30% and 10%, respectively. Note that osp and ocpp
are peaked at energies roughly 100 MeV lower than ogp.
The shift of o.~pp is mainly produced by the pionic mode
in the LO channel [see also Fig. 18(c) below]. The large
shift of osp relative to ogp is somewhat surprising, but it
can be understood &om the fact that the main contribu-
tion to osp comes from the nuclear interior where W~(r)
has an appreciable value. The calculations show that the
low spin states give a relatively large contribution to osp.
This is interesting since, as seen in Fig. 13, the peaks of
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FIG. 16. Decomposition of the zero-degree singles cross
section into partial cross sections for the C (p, n) reaction at
E=800 MeV. The different cross section contributions are due
to quasifree 6 decay (QF), 6 spreading (SP), and coherent
pion production (CPP).
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"C (p, n)

main contribution to o.sp comes from lower spin states,
in which more correlations are involved. Therefore, the
effects of the correlation appear in a more dramatic man-
ner in osp than in O.qF.

Figure 18(c) shows that the coherent pion production
cross section o.cpp is dominated by the LO component.
The cross section peaks at an excitation energy of ~L,
=250 MeV. This is in line with the peak position of the
LO cross section in Fig. 7. An interesting aspect here is
that the TR spectrum peaks at ~L, ——230 MeV, which is
even lower than the peak of the LO spectrum. This is
an effect of the nuclear form factor, as will be explained
in Sec. IIIE, where calculations of the triple differential
cross section for CPP are presented. The comparison of

the spectra of lower spin states are shifted down to lower
energies.

In order to further study the correlation effect on the
partial cross sections, we decompose them according to
LO and TR excitations, taking the ~2C(p, n) reaction as
an example. In Figs. 18(a)—(c) we show the LO and TR
components of ogp, osp, and ogpp, respectively. The
TR part of oqF in Fig. 18(a) peaks at about the same
position as the uncorrelated spectrum in Fig. 7, indicat-
ing that no correlations are involved in this part of the
spectrum. However, the LO part of oqF peaks at a lower
~L, by about 30 MeV than the TR part, indicating that
even in the QF production events there are some corre-
lation effects through the correlated wave function

l
l().

Note that the TR/LO ratio of oqF is approximately 2, as
expected from the TR/LO ratio of the tNN Nn, operator
in Eq. (10).

The TR/LO ratio, however, strongly deviates from 2 in
0 sp, as seen in Fig. 18(b), and this is due to the correla-
tion effects in the LO channel. As already remarked, the
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FIG. 17. Decomposition of the zero-degree singles cross
section into partial cross sections for the C( He, t) reaction
at E=2 GeV. The different cross section contributions are due
to quasifree b, decay (QF), E spreading (SP), and coherent
pion production (CPP).
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FIG. 18. Decomposition of the zero-degree singles cross
section into partial cross sections in case of the C(p, n) reac-
tion at E=800 MeV. (a) The QF cross section separated for
LO and TR excitation. (b) The SP cross section separated for
LO and TR excitation. (c) The CPP cross section separated
for LO and TR excitation.
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the calculated CPP cross section with experiment will
also be made there.

E. Exclusive differential cross sections for coherent
pion production

120

100~

80

60

C( He, tTT )

T, = 2GeV
He

In order to obtain more concrete evidence for the
coherent mode, exclusive cross section data have been
taken for the ~2C(p, nor+) [20] and 2C( He, ter+) [21,22]
reactions. In Fig. 19 we compare the calculated
~2C(p, nor+) ~2C(g.s.) coincidence cross section (dotted
curve) with the measured data of Chiba et al. [20]. The
calculations were done by integrating the triple diKer-
ential cross section of Eq. (61) over the pion angle in
the acceptance range of 12 & 0 & 141 of the detector
[20]. The theoretical cross section somewhat underesti-
mates the data, and also the calculated peak position
of E = 250 MeV is lower than the experimental one.
Note, however, that the experimental cross section in-
cludes not only contributions &om real CPP events, but
also from false events, such as those of the 2C(p, nvr+n)
and C(p, nn+p) reactions where the neutron or pro-
ton escapes the experimental detection [20]. An addi-
tional contribution to the pion cross section may also
come from projectile excitation events, where the pro-
jectile is excited to a 6+ which decays into n+ x+. In
Fig. 19 we show among others the contribution from the

C(p, nvr+n) reaction (dashed curve). The calculated
cross section of this reaction has its peak at much higher
excitation energy (wL, 350 MeV) than the cross sec-
tion of the CPP process. This additional contribution,
if added, leads to an improvement of the fit to the data
(full curve). Further improvements will be obtained if
one adds the contributions from the other processes (or
if one subtracts the false events from the data). An ex-
ample of this will be seen below in the analysis made for
the C( He, ter+) C(g.s.) reaction.

In Fig. 20 we compare the calculated
~2C(sHe, br+)~2C(g. s.) (pion angle integrated) coinci-

c 40
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0 50 100 150 200 250 300 350 400 450 500
+ c (MeV)

FIG. 20. Pion coincidence spectrum for the C( He, t) re-
action at E=2 GeV in comparison with the data of Hennino
et al. [22].

dence cross section with the measured data of Hennino
et al. [22]. In this measurement [22] events with tritons
emitted into the angular range between 2.5' and 3.5'
and with an energy window of 50 MeV around the target
ground state were taken. Because of this choice of the
triton emission angle, the contribution of the false events
from the ~2C(sHe, tvr+p) reaction is strongly suppressed.
Also, the contribution from the projectile excitation is
expected to be small for this reaction. The data are re-
markably well reproduced by the calculated coincidence
cross section. We note particularly that the calculation
reproduces fairly well the magnitude of the CPP cross
section in relation to that of the singles; in fact the ob-
served ratio of the peak cross section of CPP to singles
is 0.12 [22], while the calculated ratio is 0.11.

In Fig. 21 we compare the calculated pion angular
distribution obtained by integrating the triple differen-
tial cross section over the triton energy with the data
[22]. The contributions from the LO and TR channels
to the calculated cross section are also shown separately.
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FIG. 19. Pion coincidence spectrum for the C(p, n) re-
action at E=822 MeV. The data are taken from Ref. [20].
The data are compared to the calculated zero-degree coher-
ent pion production cross section (dotted curve) and to the
er+n coincidence (dashed curve) cross section. The sum of
both cross sections is represented by the full curve.

FIG. 21. Count rate of the C( He, ter+) reaction as func-
tion of 8(q, p ), which is the angle between the outgoing er+

and the momentum transfer g. The data are taken from
Hennino et al. [22]. The theoretical angular distribution
is represented by the full curve. The angular distributions
for spin-LO (long-dashed curve) and spin-TR (short-dashed
curve) excitation are also shown separately.
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For the sake of comparison, we have normalized the final
theoretical cross section to the experimental count rates
at 0„=O'. Note that the angle 8 is measured from the
direction of the momentum transfer q. The calculated
cross section fits to the experimental cross section very
well. The shape of the LO angular distribution is strongly
forward peaked, which means that most of the pions are
emitted into the direction of the momentum transfer q.
This forward peaked character is partially explained in
terms of the spin structure of the excitation (St . q) and
deexcitation (S . k ) operators involved in the pion pro-
duction through the spin-LO channel. The product of
these two operators gives rise to a factor qk cos0 in the
resultant transition amplitude and thus a factor cos~ 8 in
the cross section. This factor peaks at 0 = O'. As seen,
however, both the calculated and the experimental angu-
lar distributions are much more strongly forward peaked
than the cos 0„ factor predicts. An important additional
angular-dependent factor comes, however, from the ra-
dial overlap integral in Eq. (60). This overlap integral
becomes larger as the scattering angle 0 gets smaller.
This is due to the dependence of the integral on the re-
coil momentum

~ q —p ~

transferred to the target in
the coherent m decay process. This recoil momentum is
smallest for q parallel with p, making the overlap inte-
gral largest for 8 =0'.

It is important to note that the angular distribution
of the LO component is very similar to that of the pion
elastic scattering. This suggests that there is a close rela-
tion between the LO coherent pion production on the one
hand and elastic pion-nucleus scattering on the other. In
fact, we may view the coherent pion production process
as a kind of elastic scattering process, in which an ini-
tially oK-mass-shell pion with the momentum q is con-
verted into an on-mass-shell pion by the multiple scat-
tering in the nucleus. This conversion process is possible
since the target nucleus as a whole can provide the ex-
tra momentum needed to put the pion on its mass shell.
In the i2C( He, t7r+) i2C(g. s.) reaction the recoil momen-
tum amounts to Aq 0.5 fm at ui, ——250 MeV corre-
sponding to a recoil energy of A~L, & 1 MeV for the C
nucleus.

In Fig. 21 we also show the TR angular distribution.
This angular distribution has again a characteristic shape
with a minimum at 8 = 0' and a maximum at 8 = 30 .
This shape is very similar to that of angular distributions
observed in pion photoproduction (p, x) reactions [48—50]
and pion electroproduction [51—53]. The spin structure of
the excitation (S x q) and deexcitation (St k ) operators
involved in (p, m) reactions is exactly the same as that of
the TR excitation of the nucleus by (p, n) reactions. The
product of both operators makes the angular distribution
proportional to

~ q x k ]
= (gk sin 8 ) . This product

vanishes for 0 =0' and peaks for 0 =90 . As discussed
above, there is, however, an additional eKect coming &om
the overlap integral, which makes the resultant angular
distribution more forward peaked. Note that the mag-
nitude of the TR cross section is small in comparison to
that of the LO cross section. This is again an eR'ect of the
overlap integral which decreases rapidly with increasing
momentum transfer. This is also responsible for the fact

that in Fig. 18(c) the peak of the TR energy spectrum
appears at a lower wL, than that of the LO spectrum.

F. Spin observables in the C(p, n) reaction

The calculated spin transfer coeKcients for the 800
MeV i2C(p, n) reaction are shown in Fig. 22. Here the
observables D and D„calculated with inclusion of ph
correlations (full curves) are compared with the uncorre-
lated results (dashed curves). A large effect due to the
correlations is seen in both quantities. It is thus highly
desirable to measure the coeKcients D and D„.

We remark that at Saturne in Saclay an experiment
with similar motivation looking for the spin-LO corre-
lation effect in nuclei was performed [46). In this ex-
periment the tensor analyzing power in the C(d, 2p)
reaction at Ei b=2 GeV was measured [46]. We have an-
alyzed [47] these data, finding that the data at forward
angles were not reproduced very well by our calculations,
particularly not in the excitation energy region where the
pion correlations play an important role, i.e., at ruL, 250
MeV. We believe that this problem that we have in de-
scribing the data at forward angles and lower excitation
energies is due to cross section contributions from other
reaction mechanisms, e.g. , multistep nucleon-knockout or
other reaction mechanisms which destroy the information
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FIG. 22. Calculated spin transfer coeKcients for the

C(p, n) reaction at R=800 MeV and at zero degrees. (a)
D, and (b) D The theoretical resu. lts with and with-

out the AN correlations are shown by the full and dashed
curves, respectively.
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in the spin observables. Just as in the (d, 2p) reaction,
contributions &om difFerent reaction mechanisms other
than one-step 6 excitation might also contribute to the

(p, n) reaction. This is particularly true for the lower u
energy region of the b, resonance, as the observed (p, n)
spectra are not reproduced here by our calculations.

IV. SUMMARY AND CONCLUSIONS

We have presented an approach to calculate the spin-
isospin response function of nuclei in the 6 resonance
region. Our approach treats the distortion efFects on
the incident projectile and outgoing ejectile properly and
includes the Vph correlations in the nucleus explicitly.
When the residual ph interaction is switched on, the
equations for the 4 wave functions become coupled equa-
tions. We have solved these equations by using the, Lanc-
zos method.

Results of numerical analyses are presented for the
(p, n) and ( He, t) reactions at intermediate projectile
energies. The shift of the 6 peak position observed
in these reactions is shown to be due to the strongly
attractive correlations in the LO spin-isospin channel.
This attraction comes kom the energy-dependent +-
exchange interaction. To obtain sufficient attraction
we need a g&& parameter of about 1/3 (in units of
J~s,~ ——f~~~ f~~s, /m = 1600 MeVfms). This value
corresponds to minimal short-range correlations. No sig-
nificant energy shift is found in the TR channel. This
is in agreement with what is observed in the electroex-
citation of the 6, e.g. , in the photon-nucleus total cross
section.

Furthermore, we have shown that for charge exchange
reactions the pion coincidence cross section is an excel-
lent tool for the study of the LO response function in
the 6 resonance region. The peak position of the coher-

I

ent pion component is significantly shifted toward lower

excitation energies by the 6 hole correlations. In addi-

tion, it is shown that the pions are strongly forward (in
the direction of q) peaked. Both effects, the energy shift
and the forward peaking of coherent pions, prove that
the recent SATURNE experiment has indeed identified
the nuclear pionic mode [22]. A more accurate interpre-
tation of the vr+ events requires a thorough investigation
of both the angular distribution of the per+ events and
of the x+ events originating &om projectile excitation.
Such investigations are in progress.

Finally, we have pointed out that the spin transfer co-
efficients are a good source of information on the pion
correlations in nuclei. Up to now only few data are avail-

able. We thus hope that more data, especially those with
better resolution, will be accumulated in the near future.
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APPENDIX A: EXPLICIT FORMULA FOR THE
SOURCE FUNCTION AND FOR THE MATRIX

ELEMENTS OF THE PARTICLE-HOLE
RESIDUAL INTERACTION

In this Appendix, we derive the formulas for the ra-
dial source function p~h(r) and for the ph matrix ele-

ments V~&,&, (r', r). The radial source function is ob-
ph, p'h'

tained from Eq. (28) by inversion

p~h(r) = ) (—1) + (sbmss —m
I

sqm, ~)
2

st ~2t

(- )" "(~~ ', s~
I ~mt, )r((~t-i@'~l', -, I p)

(A1)

where Xt~(k, ks, r) = (ys I
i Yg

I
g&+&). (A4)

I p) = ).(4..-.-. 1 ).f- (~-t)t* (~ q)
j=l,A i=1,a

xXDw(k, ks, r,.) I P, „)I 4~). (A2)

XDw(k, kg, r) = ) Xg (k, kg, r)i Yj (0), (A3)

with

In the overlap matrix element of Eq. (Al) the parenthe-
sis denotes the integration over all channel coordinates
including those of the hole nucleus. To perforra the in-
tegration we first make a multipole expansion of the dis-
tortion function,

t;~ = ) Vj, ((u, q)Yg(q) . [o; x 8~]&"l,
k=0, 2

(A5)

/12vrV~((u, q) if k = 0,
V~(~ q) =

24m
s VT ((u, q) if k = 2. (A6)

Insertion of Eq. (A2) with (A3)—(A6) into Eq. (Al) leads
after some lengthy angular momentum algebra to

Now we write the efFective interaction t;z in terms of cen-
tral (t ) and tensor (T) components,
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pl, h(r) = v 2f~s(~, q) ) kj,W(IIe1 1; kj,)
a,e

X Vi, (~, q) [XeYe]e, , ge1., (p&)r &h (T), (A7)

The central and tensor multipole coefFicients are defined
by

vee (r» "2) = tve ("»"2)C C

where the ph angular momentum matrix element is re-
duced in spin and isospin space and is given by

ge~(ph) =
& '(p II t'[Ye~]~7 II h-).

The evaluation of V„'& & (rl, r2) starts from its defi-

nition in Eq. (30). First we transform the ph interaction
into coordinate space,

2&+ ~ T
Vee(T1, T2) = Tlr21Ve 1(T1,T2)(rl + T2)28+ 1

2Z —1
Xtpe (rl ) T2) + Tlr2tpe+1(rl& T2) &2E+ 1

V~h(x) = d q exp(ix q)Vph(q). (A9)
le+1(rl~ T2) = T2tve 1(rli T2) 2rlr2~e (ri ~ T2)

T 2 T T

2 T+rie+i(rl T2) (A12)

Vph = —(7 & ) ). ve, e,&(» T2) [&
' Ye, ~i]&

el e2j m

x [i"Ye, 8 82],-, (A10)

where

A multipole expansion with respect to the coordinates rq
and r2 gives (z =I rl —r2 I) T"e+ie—i(r» "1) = "e—ie+i("» "2)~

where

tve (ri, T2) = — Vc(r)Pe(/e)d/1,C 1

2
(A13)

ve e22 (rl / T2) = —47I ve e (Tl T2)he
C

+ 4~v 6(—1)'E,E2(E,0120
I

20)
x W(E1 1/2 1;j2)ve, e (rl, r2) . (All)

I

1
tve (r, ) r2) = — r Vz (r)~Pe(/e)d

2
(A14)

and y, = cos(rl, r2). Insertion of Eq. (A10) into Eq. (30)
results in

(Tl/ T2) ) ve e j (rl/ T2)rl&h (rl)ge j (pl/il)T2&hg (T2)ge j (p2I12) )

e, e,

(A15)

where ge~ (ph) has been defined already in Eq. (A8).

APPENDIX B: LANCZOS METHOD

We discuss here the Lanczos method used to solve Eq.
(33). In this method we expand IA) with a set of N+1
biorthogonal basic wave functions ID, ) (i = 0, 1, ..., N),
which we generate iteratively as I&) = ).&'ID').

i=o
(B4)

I

N; in Eq. (B2) is the normalization constant determined

from the condition (D, ID, ) = 1, ID, ) being the conju-
gate state to ID;). The coefficients nz, given by (B3) are
determined from the Schmidt orthonormalization proce-
dure.

In terms of ID, ), IA) is expanded as

with

1

0

'e

ID,+1) N +Op]D*) —).ID, )~.. .
j=o

(D~IVgpID;) ifj &i +1,
0.0 if j )i+1.

(Bl)

(B2)

(B3)

Inserting Eq. (B4) into (33) one can easily derive an in-

homogeneous linear equation for the expansion coeKcient
1.e.)

) (8,, —a.„)C, = Nphp, . (B5)

The values of C; are then determined by solving Eq.
(B5). Note that Eq. (B5) can be solved rather easily,
because o.j; = 0 for j ) i + 1.

[1] V. G. Ableev et a/. , Pis'lna Zh. Eksp. Teor. Fiz. 40, 2

(1984) [Sov. Phys. JETP. Lett. 40, 763 (1984)].
[2] D. Contardo et a/. , Phys. Lett. B 168, 331 (1986).
[3] C. G. Cassapakis et a/. , Phys. Lett. 63B, 35 (1976).

[4] B. E. Bonner et a/. , Phys. Rev. C 18, 1418 (1978).
[5] D. A. Lind, Can. J. Phys. 65, 637 (1987).
[6] C. Gaarde, Annu. Rev. Nuc1. Sci. 41, 187 (1991).
[7] F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992).



49 6 EXCITATIONS IN NUCLEI AND THEIR DECAY PROPERTIES 3181

[8] B. K. Jain and A. B. Santra, Nucl. Phys. A519, 697
(1990).

[9] H. Esbensen and T.- S. H. Lee, Phys. Rev. C 32, 1966
(1985).

[10] J. Delorme and P. A. M. Guichon, in Proceedings of
the 10th Biennale de Physique Nucleaire, Aussois, 1989,
Lycen 8906 (unpublished); p. C.4.1, Phys. Lett. B 263,
157 {1991).

[11] T. Udagawa, S. W. Hong, and F. Osterfeld, Phys. Lett.
B 245, 1 (1990).

[12] S.-W. Hong, F. Osterfeld, and T. Udagawa, in Proceed
ings of the International Conference on Nuclear Collec
tive Motion and Nuclear Reaction Dynamics, edited by
K.-I. Kubo et al. (World Scientific, Singapore, 1991), p.
261.

[13] E. Oset, E. Shiino, and H. Toki, Phys. Lett. B 224, 249
(1989).

[14] P. F. de Cordoba and E. Oset, Nucl. Phys. A544, 793
(1992).

[15 M. Ericson, Nucl. Phys. A518, 116 (1990).
[16 V. F. Dmitriev and T. Suzuki, Nucl. Phys. A438, 697

(1985).
[17] V. F. Dmitriev, Phys. Lett. B 226, 219 (1989); Phys.

Rev. C 48, 357 (1993).
[18] G. Chanfray and M. Ericson, Phys. Lett. 141B, 163

(1984).
[19] J. B. McClelland et a/. , Phys. Rev. Lett. 69, 582 (1982).
[20] J. Chiba et al. , Phys. Rev. Lett. 67, 1982 (1991).
[21] T. Hennino et a/. , Phys. Lett. B 283, 42 (1992).
22] T. Hennino et al. , Phys. Lett. B 303, 236 (1993).
23] P. Oltmanns, F. Osterfeld, and T. Udagawa, Phys. Lett.

B 299, 194 (1993).
[24] F. Osterfeld, B. Korfgen, P. Oltmanns, and T. Udagawa,

Phys. Scr. 48, 95 (1993).
[25] E. Oset, P. F. de Cordoba, J. Nieves, and M. J. Vicente-

Vacas, Phys. Scr. 47, 793 (1993).
[26 T. E. O. Ericson, Nucl. Phys. A560, 458 (1993).
[27 M. Hirata, J. H. Koch, F. Lenz, and E. J. Moniz, Phys.

Lett. 70B, 281 (1977); Ann. Phys. (N.Y.) 120, 205
(1979).

[28] E. Oset, H. Toki, and W. Weise, Phys. Rep. 83, 281
(1982).

[29] T. E. O. Ericson and W. Weise, Pions in Nuclei (Oxford
University Press, Oxford, 1988).

[30] J. Arends et al , Z. . Phys. A 311,367 (1983); Phys. Lett.
98B, 423 (1981).

[31] P. Barreau et al. , Nucl. Phys. A402, 515 (1983).
[32] J. S. O' Connell et a/. , Phys. Rev. Lett. 53, 1627 (1984).
[33] R. M. Sealock et al. , Phys. Rev. Lett. 62, 1350 (1989).
[34] Y. Horikawa, M. Thies, and F. Lenz, NucL Phys. 345A,

386 (1980).
[35] A. K. Kerman, H. McManus, and R. M. Thaler, Ann.

Phys. (N.Y.) 8, 551 (1959).
[36] V. F. Dmitriev, O. P. Sushkov, and C. Gaarde, Nucl.

Phys. A459, 503 (1986).
[37] L. Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952).
[38] M. H. MacGregor, M. J. Moravcsik, and H. P. Stapp,

Annu. Rev. Nucl. Sci. 10, 291 (1960).
[39] J. P. Auger, C. Lazard, R. J. Lombard, and R.R. Silbar,

Nucl. Phys. A442, 621 (1985).
[40] T. Udagawa and B. T. Kim, Phys. Rev. C 40, 2271

(1989).
[41] P. Oltmanns, F. Osterfeld, and T. Udagawa (unpub-

lished).
[42] J. Bystricky, F. Lehar, and P. Winternitz, J. Phys.

(Paris) 39, 1 (1978).
[43] J. M. Moss, in Proceedings of the International Confer

ence on Spin Ezcitations in Nuclei, edited by F. Petro-
vich, G. E. Brown, G. T. Garvey, C. D. Goodman, R. A.
Lindgren, and W. G. Love (Plenum, New York, 1984), p.
355.

[44] P. Desgrolard, J. Delorme, and C. Gignoux, Nucl. Phys.
A544, 811 (1992).

[45 G. Glass et al. , Phys. Lett. 129B, 27 (1983).
[46 C. Ellegaard et a/. , Phys. Lett. B 231, 365 (1989).
[47 P. Oltmanns, Ber. Forschungszent, Jiilich, ISSN 0366-

0885, 2510 (1991).
[48] J. H. Koch, E. J. Moniz, and N. Ohtsuka, Ann. Phys.

(N.Y.) 154, 99 (1984).
[49] T. Takaki, T. Suzuki, and J. H. Koch, Nucl. Phys. A443,

570 (1985).
[50] I. Laktineh, W. M. Alberico, J. Delorme, and M. Ericson,

Nucl. Phys. A555, 237 {1993).
[51] J. H. Koch and N. Ohtsuka, Nucl. Phys. A435, 765

(1985).
[52] S. Hirenzaki, J. Nieves, E. Oset, and M. J. Vicente-Vacas,

Phys. Lett. B 304, 198 (1993).
[53] I. Bergqvist et aL, Nucl. Phys. A469, 648 (1987).


