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Study of in-medium NN inelastic cross section from relativistic
Boltzmann-Uehling-Uhlenbeck approach
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We have derived the explicit expressions for calculating in-medium NN —+ NA cross sections,
which are simultaneously given with the other integrands of the transport model such as the mean
6eld, NN elastic cross section, as well as the transport equation itself based on the efFective La-
grangian. Our results can reproduce the experimental data of free cr„p~pp 0+p + nicely. The
in-medium inelastic cross section o~~~~& is calculated up to twice the nuclear matter density and
is in agreement with the Dirac-Brueckner calculation.

PACS number(s): 24.10.Cn, 25.70.—z, 21.65.+f

I. INTRODUCTION

There is increasing interest in developing a more strict
and self-consistent dynamic theory for intermediate and
high energy heavy ion collisions (HIC) for it has been
found that the information for properties of hot and
dense nuclear xnatter, i.e., the equation of state (EOS),
comes out very indirectly. Botermans and Malfliet [1]
proposed an approach in which the time evolution of the
HIC process is described by the relativistic kinetic equa-
tion and the G matrix served as a dynamical input for
the two-body interaction. However, it has great prac-
tical difficulty to acquire a complete numerical solution
with their approach. More practically, in Refs. [2—4] a
self-consistent relativistic Boltzmann-Uehling-Uhlenbeck
(RBUU) equation is derived based on the effective La-

grangian, in which both mean field and in-medium NN
cross sections are treated self-consistently and can be cal-
culated simultaneously so that the medium effect can be
taken into account autoxnatically. However, in Refs. [2—4]
only the nucleonic degree of freedom is taken into ac-
count. As is well known for high energy HIC the delta
plays a very important role. The NN ~ NA channel
in the two-body collision term becomes more and more
important as the colliding energy increases. And, on the
other hand, as the energy increases the density of mat-
ter produced in the HIC becomes higher. The role of
medium efFects becomes more pronounced. One has to
include the in-medium NN —+ NA cross section in the
two-body collision term.

The in-medium NN —+ NA cross section has been
studied by ter Haar and Malfiiet with the Dirac-
Brueckner approach [5]. They found that the NN ~ Nb,
cross sections were suppressed strongly at high density.
Later Bertsch and Brown et al. [6] pointed out that the
screen and antiscreen efI'ects of the medium on the in-
teraction enhanced the NN ~ NA cross section at
high density substantially. However, a nonrelativistic
description is used in their work. It seems highly de-

sirable to treat all the ingredients of the transport model

such as mean field, elastic NN cross sections, inelastic
NN cross sections, as well as the transport equation
itself within the same framework in order to keep self-

consistency. The aim of this paper is to study the in-

medium NN + NA cross section based on the same
framework with Refs. [2—4], where a rr utype efFecti-ve

Lagrangian is used. In order to study NN + NA cross
sections the delta and pion degrees of &eedom have to
be included in the effective Lagrangian in addition to
nucleon and o, u mesons. Serot and Walecka in Ref. [7]
indicated that inclusion of the pion only changes the cou-

pling constants g and g by less than 10'%%up and has only

a small efI'ect on nuclear matter saturation property at
the Hartree-Fock (HF) level, and we will not change the
parameters of Ref. [4] for cr, ur mesons in this work.

This paper is organized as follows. In Sec. II we will de-

rive the inelastic part of the collision term and a brief re-
view of the model is also given in this section. In Sec. III
we give the numerical results of both the free and effec-

tive inelastic cross section. Finally, a brief summary and
outlook is given in Sec. IV.

II. FORMALISM

In this section we will give the derivation of the inelas-
tic NN cross section through construction of the collision
part of the kinetic equation. First of all, we write down
the total efI'ective Lagrangian used in the model. In or-
der to consider the inelastic scattering cross section for
NN —+ NA reaction the 4 and m degrees of freedom
have to be taken into account. The Lagrangian density
for a system of nucleons and deltas interacting through
o., cu, vr mesons can be written as

L = Lp+LI .

Here L ~ is the Lagrangian density for &ee nucleon, delta,
and meson fields:
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Lp = 0 [ip„O" —Mrv]y+ 0 w„[ip„a" —M~]@~ + 2—a„oo"~—U(o) ——,'(u„.~" + ,'m—'~„u"+ ', (-0„7rB"Tr —m'„7r'),

(2)

U(o) = 'm-cr + sb(g o) + 4c(g o) (3)

I I is the interaction Lagrangian density

I =g-&(z)&(*) (*)+g-@ -( )&" (*)o(*)—g-&(*)~ &( ) "(*)—g-& -(x)~ & (*) "(*)
+ Q(x)p„ps~ Q(z)B"m(x) — Q~„(z)B"n (z) S+Q(z) — g(x)Sgr, „(z) 0"m(z),

mar m. mar
(4)

where g~„ is the Rarita-Schwinger spinor of the 6,
baryon, the symbols and notation are the same as in [7].
Here we have assumed that the coupling to scalar and
vector mesons for both nucleons and deltas are the same
following the same arguments of [8].

For a nonequilibrium problem it is convenient to make
use of the closed time-path Green's function technique
[9]. The nucleon Green's function in the interaction pic-
ture can be written as

E(4, 3) = EHp(4, 3)+ EB,„(4,3) . (8)

g(4,3) which is also a matrix like Gi2. Detailed discus-
sions of Dyson equation for the delta particle go beyond
the scope of this paper.

Under Born approximation the nucleon self-energy
Z(4, 3) becomes

iGi2 —— T exp i dx—HI(x) ~@(1)@(2)
)

ZHp(4, 3) includes the Hartree term and the Fock term
(5)

~G, Gi+ ~
G» =

I
G+'- G+'+ I

12 12
(6)

Other particle's Green functions can also be expressed
in the same way. In Appendix A we give the zero-order
Green's functions of nucleon, delta, and m mesons used
in the present paper.

The corresponding Dyson equation for nucleon's
Green's function has the form

Here T[ ] denotes the time-ordered product, fdz
ddt dx, f stands for the integral along the contour which
is given in Fig. 1.

According to a specified time of the field operator g(l)
and g(2) on the contour we have four different Green's
function Gz2 Gza Gx2 Gxz consisting of a matrix

ZHp (4, 3) = ZH(4, 3) + Ep (4, 3) .

The Born term Ep„„(4,3) is illustrated by Fig. 2, where

a doubled line denotes delta particle, solid and dashed
lines represent nucleon and meson, respectively. Since in
the intermediate energy regime the one delta production
is dominant, only one doubled line appears in each corre-
sponding diagram. Figures 2(a) and 2(b) are related to
the following process (see also Fig. 3) which contribute
to the elastic cross section for N + N —+ N+ N reaction.
We have studied this part in detail in Ref. [4]. Figures

2(c)—(f) are related to the process of Fig. 4, which con-

tribute to the inelastic cross section for N + N ~ N + 6
reaction. The detailed expressions of parts corresponding
to Figs. 2(c)—(f) are given as

zG~2 ——zGx2 + dz3 dx4G&4Z 4, 3 cG32

The Dyson equation for the delta particle has the simi-
lar formulation [16]. The Dyson equations for delta's and
nucleon's are coupled with each other through self-energy

tp

vq
I I

I

3I lg

(a)
-6

{b)

e
I

I
I

I
I

3l ~ 4
I

{e)

I

I
3'=

{~)

5 — 6

FIG. 1. Contour along the time axis for an evaluation of
the operator expectation value.

FIG. 2. Feynman diagrams for lowest-order contributions
to the collision term.
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FIG. 3. Feynman diagrams for NN elastic scattering.

FIG. 4. Feynman diagrams for NN inelastic scattering.

St't(4, 3) = ) '
/dztj4zt t S, Tt q"k"G„„(4,3) Tt S,+ t

T4CS 46

xtr t6 p5w t5 G 56 t5 p5w~t6 G 65 6 536 46
mar m.

(10)

Et (4, 3) = —) /dzr/dzt t t(qtzt tt Gt(4, 5) tt
"

)tqtzi tt
m~ m,

C4C5 Tg

xG (5, 6) ts S, Ts G „(643)q~k" Ts 8,+ t b, (5, 3)b, (4, 6),
m. ' mm

'

Iiys~; tKt't(4, 3) = ) fdzt/dzt t
"

dqtzt t4 G (4, 3) tt
mar m.

4445 Tg

xtr T6 S,+. t5 G 5, 6 t5 S~T6 G 6, 5q k 6 5, 36 4, 6

Zttt(4, 3) = —) /dzt/dzt t St Tt G„(4,5)q kT4 S"~+ tt
m. ' mx '

T4454g

xG (5, 6) ts gp&~~ ts G (6, 3) ts g fs7. t b,o(5, 3)b, (4, 6) .

Here t represents the isospin of the nucleon and capital T is that of delta. k, q is the four-momentum transfer of pion.
By making Wigner transformations on both sides of Eq. (7) and adopting the semiclassical approximation in which

G and Z are assumed to be peaked around 2." = zq —x2 and smoothly changing with x =
2 (zq + x2), the equation

of motion for G +(X,P), which we are interested in, has the form

Here

[p„K"(X,P) —M(X, P)]iG +(Xt P) = I"~(xt P) . (14)

K"(X,P) = P" —ZHF (X,P) + i (8» + B„Z~HF(X,P)BJ, —BI,Z~HF (X,P)8„], (i5)

M(X, P) = M~ + ZHF(X, P) —i[49„ZHF(x, P)BJ, —OJ.ZHF(X, P)B„],

P (X,P) = Z+.,„(X,P)iG +(X,P)——Z;+.(X-, P)iG+ (X,P) . -

Then we make Clifford-algebra decomposition in spin- and isospin-saturated system and introduce the quasiparticle
approximation and achieve the following kinetic equation,
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([~ ~HF(z p)~ ~ ~HF(z, p)C] ". ' + [&.*~HF(z p)~ ~ ~HF(z, p)~:]}tr['G +(z, p)]
1

= tr [EH+,„(z,p) G + (z, p) —ZH+, „(z,p) G+ (z, p)], (18)

where

~HF(z P) = ~."~HF(z P) —~."~HF(»P)

P"(* P) = P" —~HF (» P) (20)

m'(z, P) = M~ + E„F(*,P) .

We further define a distribution function f (x, p, &) as

(21'

—,'t [G-+(*,p)] = E. ~-(p. —&'(p))f( p ) (22)

Finally, we obtain the equation

([~."—~HF(z p)C —~;~HF(z p)C]p. +m*[~.*~HF(»p)~; —~;~HF(z p)C]) '„' =C(* p)

The left-hand side of Eq. (23) is the mean field part and the right-hand side is the collision term which includes two
parts, that is, the elastic part and inelastic part

C(z, p) = C,i(z, p) + C;„(z,p) . (24)

For the detailed expressions of Hartree-Fock self-energy terms and the elastic part of collision terms can be found
in [4]. The inelastic part of collision terms reads as

where

1
C;„(z,p) =— cL p2

(2m-) '
d'p3

(2') 3

d'

(2') 3
' (2~)'~" (P+P2 P3 P4)% (P P2 P3 P4)(I"2 —Fi) (25)

Fi = f(x, p, r) f(x, p2, r)[1 —f~(x, p3, r)][1 —f(x, p4, r)], (26)

F2 ——[1 —f(x, p, r)][1—f(x, p2, r)]fz(x, p»r) f(x, p4, r),
and W;„(p,p2, p3, p4) is the transition probability,

~in(P&P2~P3~P4) 1(P~P2)P3~P4) + G2(P)P2~P3)P4) + P3 ~ P4 )

(f./m. )'(f*/m. )'
1(P P2 P3 P4) —

@ ( )E ( )@ ( )@~( )( c c d d)

(f-/m-)'(f */m-)'
(30)

Here T„Td, T„Tf are the isospin matrix and 4'„@d, 4„4y are the spin matrix. The subscripts c, d, e, f denote
the terms contributed from Figs. 2(c)—(f), respectively. The concrete expressions for T, f and O, f are

T. = ) (tl~~lT3)(T31~,+It)(t21~'lt4)(t4~~'It2)
t2t4T3

Td = ) . (tl~&lt4)(«1~*1&2)(t2IS~ IT3)(T31~+lt)
t2t4T3

(32)
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T. = ) (tl~glt3)(tsl~'It)(T41~+lt2)(t2I~~IT4)
C2 43T4

(33)

t = ) (tl~'I 4)( 4I~,+lt2)(t2lr'I 3)(tsl~*lt)
t2 t3T4

(34)

4, = tr((yt3 + m&) (p —p3) (p —p3) "D„„(p3)tr[(gf—)3)»(A(2 + m*)(gf—$3)»(pe + m*)](p+ m*))
1 1

(p —p3)2 —m' (p —p3)' —m' ' (35)

c's = tr((&—&4)»(&4™)(& &3)»(&2™)(&3+mr )DPl (»)(p —p4)'(p —»)"(&™))
1 1

(p —p4)2 —m2 (p —p3)2 —m2 (36)

C, = tr{(yf—$3)»(gf+ m')(p —$3)»tr[($2+ m*)($4+ m&)(p —p3) (p —p3) D~ (p4)](p+ m'))
1 1

"(p —p. )2 —m2 (p —p, )2 —m2 ' (37)

C'y ——tr{(g4+ ma)(p —p4)" (p —p3) D„(p4)(g2+ m')(g —y4)»(ps+ m*)(y —g3)»(y + m'))
1 1

(p —p3)2 —m2 (p —p4)2 —m2

The detailed expression of D„„is given in Appendix A. The relation between W;„(p,p2, p3, p4) and differential cross
section is [10]

(2~) &' '0 +n. n. n4)%. (n, n. , ns,—n—4) = f~~.(a, t)~~ps 8 p4 4 4

(2 )' (2 )' (39)

Insert Eq. (39) into (25) and we find

C; (z, p) = — vo;„(s, t)(F2 —Fi)dO.
d'p

2 27r 3

Here v is the M)(ilier velocity, o';„(s,t) is the inelastic
differential cross section. The detailed expressions of
o;„(s,t) are given in Appendix B.

I'(q) = (0.47/[I + 0.6(q/m ) ]jq /m .

The centroid mass of delta (M~) is given by

JM "f(M~)dM~

(43)

(44)

III. NUMERICAL RESULTS

Before coming to the calculation of NN + NA cross
section we have to make some preparation. Firstly, for
application to the calculation of HIC, the delta particle
should be a decay particle, which in the formalism given
in Sec. II is treated as an elementary particle. To take
into account the decay width of the 4 isobar, following
Ref. [11] we introduce a distribution function f(M~) of
Lorentz form,

Here S is the total energy of two colliding particles in
the &ee space, MN and m are the masses of nucleon and
pion in &ee space, and Mo and I'0 are the mass and width
of 6-isobar resonance, respectively. The commonly used
values of above quantities are as follows [12]:

M~ ——939 MeV, m = 138 MeV, Mo ——1232 MeV,

f2 fe2
I 0 = 110 MeV, —= 0.080, = 0.37.4' ' 4'

f (M~) = —4'I'(q)/[(M~ ™o)'+41'(q)]

where

[M& —(MN + m ) ][M& —(MN —m ) ]
g

4M~2

and width I'(q) is

(41)

A2
FNNx (t)— (45)

Secondly, the effects arising &os the finite size of
hadrons and a part of the short-range correlations have
to be taken into account, therefore a phenomenological
form factor is introduced at each vertex. For the NN7t
vertex we take the commonly used form
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)'=
A -t ((M.)' M. ) +,r,

1/4

(46)

However, for the Ne'er vertex there exist various versions
of the form factor [13,14]. Here we choose the mixed
version of the cut off expression. Considering the mass
distribution function of the delta particle we introduce
the form factor for the NA7r vertex as the following form:

35 .

30

25:
20

&5.—

10:—
CL

0:-"..
-5—

-10:— exchange
Here the center-of-mass momentum (g) is obtained from
Eq. (42) with the M~ replaced by (M~). If (M&) =
Mo, the difference between FNa (t, (M~)) and FN pg~(t)
vanishes. The free parameter for calculating the inelastic
cross sections left is only the cutoff mass A which will be
fixed by fitting the experimental data of the free inelastic
cross section.

-15
09 O.S 0.9

E - M (GeV)

1.2

FIG. 6. The contributions of direct diagrams and exchange
diagrams.

A. The free inelastic cross section

After averaging over the initial state and eliminating
the double counting at the final state the cross section
for N + N ~ N + 6 process reads as

1
aN~~~a = — a;„(s,&)dA,

32

0;„(s,t) is given in Appendix B. The relation between
0.NN~N~ and o.

pp pp 0+p +

seems to be small, it is because we have not taken the p
meson into account in the efFective Lagrangian used. To
simulate the effect of the p exchange a small cutoff mass
for the pion has to be used [6]. Considering only one free
parameter our results are rather good. In Fig. 6 we show
the contributions of the direct term and exchange term,
respectively, one can easily find that the cancellation ef-
fect of the exchange term could not be ignored. (The free
scattering cross section for the N + N ~ N+ 6 reaction
can be found in Fig. 8, see later. )

B. The in-medium inelastic cross section
4

Opp~pp~0+p„~+ = 3&NN+NA. (48)

The factor 3 arises from the Clebsch-Gordan coefIicient
of the isospin. The results for the free cross section of
0pp~pp 0 +p + are displayed in Fig. 5 for difFerent val-

ues of A. The dots are the experimental data taken from

[15]. When A = 510 MeV the best fit to the experimen-
tal data of free Opp~pp 0+p + can be reached, the other
two values of A are taken from Ref. [6]. The A value

m* = M~ —g (0), (49)

In the medium, nucleons (deltas) interact with each
other and the efFective mass of nucleon (delta) decreases
with increasing density. For simplicity let us eliminate
the Fock term in the mean field and then the effective
mass for nucleon and delta is

m& ——(M~) —g (a). (50)

30
——-m ~O.Q3

g 10
5

0
0.3 0.6 0.9 1.2

E —M (GeV)

1.5
0

4 4.5 5
S (GeV')

5.5

FIG. 5. Free scat tering cross section for reactions
pp m ppm and pp m pnm+. The dots are the experimen-
tal data from [15].

FIG. 7. The dependence of in-medium NN —+ NA cross
section on the effective mass, the dots are Dirac-Brueckner
results taken from [5].
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TABLE I. m = 550 MeV and m =783 MeV are used for all cases.

Set A
Set B
Set C
Set D

ga
11.24
9.40
6.90
7.937

g~
14.03
10.95
7.54
6.696

3

—0.69
—40.49

42.35

4
&g~

40.44
383.07
15?.55

Eb-
—15.45
—15.57
—15.76
—16.00

0.538
0.70
0.83
0.85

K (MeV)
561.7
380
380
210

po
0.145
0.145
0.145
0.153

First let us investigate the infiuence of the difFerent

equations of state, which is characterized by saturation
efFective mass and compressibility, on the in-medium

NN ~ NA cross section. Parameters corresponding to
different equations of state used in this calculation are

given in Table I.
Figure 7 shows the effective NN ~ NA cross section

&om difFerent parameter sets at normal density p = po.
The dots are the results of Dirac-Brueckner (DB) cal-
culations [5]. One can find that o~~ ~& is sensitive
to the effective mass and insensitive to compressibility.
Our results are in agreement with the DB approach con-

sidering in their calculations with m* = 0.605. Then
we study the dependence of efFective NN + NA cross
sections on the density and energy. Figure 8 shows the

~&N~&& at difFerent densities and energies. The calcu-
lation is done for parameter set B. It can be found that
the 0.~N~&& substantial decreases with the increase of
density especially at large momentum and high density.
From this calculation we find a strong medium effect on
the NN + NA cross section. It would be very impor-
tant to take this effect into account in the calculations of
heavy ion collision.

Figure 9 displays the effective differential inelastic
cross section as a function of c.m. scattering angle for
different densities and energies. It is shown from Fig. 9
that the differential cross section becomes steeper with
the increase of energy. There exists an evident density
dependence at small angle but at large angle the density
dependence is not very pronounced.

in transport model calculation which is simultaneously
given with other integrands such as the mean fields, NN
elastic cross section, of relativistic kinetic equation as well

as the RBUU type kinetic equation itself based on the ef-

fective Lagrangian by using the closed time path Green's
function technique. With only one parameter of cut-
off mass which is fixed by fitting the experimental data,
the theoretical prediction can reproduce the experimen-
tal &ee NN ~ NA cross section nicely. The in-medium
NN —+ NA cross section shows an obvious dependence
on the saturation effective mass. The NN m NA cross
section and the difFerential NN —+ NA cross section at
forward angle are suppresed at high density. The screen
and antiscreen effects of the medium of the interaction
has not been included in the present investigation of the
medium effect, which could be important for high density
according to the studies of Bertsch et al. [6]. However,

a nonrelativistic description was used in their study. For
our case the relativistic description should be used for
consistency with this work; work with this aspect is in
progress.

After the presentation of our model and the determi-
nation of parameters of effective Lagrangian &om this
work as well as our previous work [2—4] the optical po-
tential, the NN elastic and inelastic cross section can
be calculated simultaneously. As a first time a com-
prehensive agreement with experimental data of opti-
cal potential, mean &ee path in nuclear matter as well

IV. SUMMARY AND OUTLOOK
E„=O.S {asV)

In this work we have provided the explicit expressions
for calculating the in-medium NN ~ NA cross section

E

1

~15

a z)QZ

p=o

P=P 0
0

t
0

0
0

45
S (Ge

FIG. 8. The in-medium NN ~ NA cross section with dif-
ferent densities and energies.

FIG. 9. The in-medium NN —+ NA differential cross sec-
tions as a function of c.m. scattering angle 8, for different
nucleon kinetic energies and nuclear densities. The different
curves correspond to different densities, which is the same as
Fig. 8.
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as free n-n scattering cross section can be reached till
E 1 GeV/nucleon . We believe that our model is a
promising and suitable approach for the studies of HIC
at BEVALAC and SIS energy range. The application for
relativistic heavy ion collision is underway.
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APPENDIX A

For the convenience of the reader in this appendix we give the expressions of the zero-order Green s function used
in this paper.
(1) Nucleon

d4I
iG'(1, 2) = i G'(*,k).-'"("-*l

(2~)4 (Al)

G ++(z, k) = (/+M~) . + h(kp —E(k))f(z, k)
(k2 —M~~ hie E k

(A2)

G'+ (z, k) = — b(kp —E(k))[1 —f(z, k)](g+ M~), (A3)

G +(z, k) = 6'(kp —E(k))f(z, k)(Ii+ M~). (A4)

(2) Delta

d4I
iG„(1,2) = i G„„(z,k) e

2vr 4 (A5)

G„++(z,k) = (g+ Mn)D„„2 2 . +
k

&(kp —E(k))fz(z, k)"
I

k2 —M~2~i. E k
(A6)

Gp+ —(,k) = — b(k —E(k)) [1 —f~(z, k)](4t'+ M~)D„„, (A7)

G'„+(z, k) = ~(kp —E(k))f~(» k)(F+ M~)L'~E k
(A8)

1 1 2—g~~ + —
7P f~ + (+ilk~ 7ggkP) + M2 P '

3M~ 3

(3) Pion

iA (1,2) = i
d4k ~P ( k)

—ik(ag —~g)

(2~)4
(A10)

—2~iv(k' —m.')f.(z, k),k2 —m2 +i~ (A11)

4'++(z, k) = —2~ih(k' —m')[0(+kp) + f (z, k)]. (A12)
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In our theoretical framework the negative energy states are neglected. Here f(x, k), f~(x, k), f (x, k) are nucleon,
delta, pion distribution function, respectively. The numbers 1, 2 denote xq, x2.

APPENDIX B

In this appendix we present the analytical expressions of inelastic difFerential cross section which are obtained by
computing Eqs. (31)—(38) and finally transforming it into the center of mass of two particle system:

where

2 2
& a —m* —m* —4m* m*

lj2

'" ' ' =
(2 )'. I, .) &

.) &
.(.- 4 ) )

D 8, t
m*lt[(m& + m*) —t]2[(m& —m*) 2 —t]

( ) = —
6 2(t )

(Bl)

(B2)

42

E(s, t) = — .. . , [E, + E, + E, + E4+ E, + E,],

Eq ——mn [(8a —3t)m* t —2(a + 3t)m* + 3m* —2s t + 2t ],

E2 ——m& m*[(2s + t)t —2(s + t)m' + 6m' ],

Es ——m&m* [(2s —t) m* t + (s + 3t)m' —(s + t) at —3m* ],

(B4)

(B5)

(B6)

E4 ——m&m'[s —t —3m' ] + m& [(s —3t)m* + 2st —t2], (B7)

Es ——(a+ Qt)m* + (a+ 6t)(a+ t)m* t —6(a+ 2t)m* t, (B8)

E, = — ' ' —2 *' —t'( +t)', (Bo)

where D represents the contribution of direct diagrams
and E is that of exchange diagrams and

s = (p+ p2)' = [E'(p) + E'(p2)]' —(p+ p2), (B10)
t = (P —Ps)

= '(3m*'+ mn' —s) + 2lpllpslcostl

u = (p —p4) = 3m* + m& —s —t

0 is the scattering angle in c.m. system and

lpl = —,
' v'(a —4m*'),

1 Q(a m+2 m+2)2 4m+2m+2
Ipsl =

2

E*(p) = Qp'+ m*2,

E*(p2) = p,'+ m*',

(B13)

(B14)

(B15)

(B16)
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