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Three-body resonances in He, 6Li, and Be, and the soft dipole mode problem of
neutron halo nuclei
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Using the complex scaling method, the low-lying three-body resonances of He, Li, and Be are
investigated in a parameter-free microscopic three-cluster model. In Ire a 2+, in Li a 2+ and a 1+,
and in Be the 0+ ground state and a 2+ excited state is found. The other experimentally known
2+ state of Li cannot be localized by our present method. We have found no indication for the
existence of the predicted 1 soft dipole state in He. We argue that the sequential decay mode
of He through the resonant states of its two-body subsystem can lead to peaks in the excitation
function. This process can explain the experimental results in the case of Li, too. We propose
an experimental analysis, which can decide between the soft dipole mode and the sequential decay
mode.

PACS number(s): 21.10.—k, 21.60.Gx, 24.30.Gd, 27.20.+n

I. INTRODUCTION

Recently, some experimental and theoretical analyses
claimed the discovery of a new type of collective exci-
tations, the soft dipole mode, in nuclei far &om stabil-
ity. It seems probable now, that in certain nuclei, near
the neutron drip line, a dilute neutron halo with large
spatial extension can exist around a compact core [1—5];
e.g. , in ~~Li and sHe two neutrons form the neutron halo
around the Li and He cores, respectively. Shortly af-
ter their discovery it was predicted that the oscillation
of the halo neutrons against the core can produce col-
lective excited states in these nuclei [6]. These collective
states are thought to be similar to the giant dipole reso-
nances, where the neutrons of a nucleus oscillate against
its protons. In the neutron halo nuclei the restoring force
is weak (soft), which leads to low-&equency, viz. low-

energy (1 —5 MeV) states compared to the giant dipole
resonances ( 20 MeV).

The overwhelming majority of the experimental and
theoretical studies confirm the existence of these low-

energy soft dipole modes. However, all these works with-
out exception conclude for the existence of these states
&om the behavior of certain quantities (bound state ap-

proximated energies and electric dipole strengths [7], ex-
citation cross sections [2,8—10],dipole sum rules [11],etc.)
at real energies, i.e., they are all indirect evidences of
the soft dipole mode, thus they are far from being un-
arnbiguous. For instance, recently we demonstrated [12]
that the possibility of resonance+scattering-type asymp-
totic behaviors in a three-body system can lead to an
apparent, resonancelike structure in the three-body con-
tinuum. To show up a direct proof for the existence of
the soft dipole mode, we must find three-body resonant
poles of the scattering matrix at compex energies with
the predicted properties (excitation energy, decay width,
spin-parity) .

In this paper we search for three-body resonances in
He using the complex scaling method. In order to test

our method, we study the Li and Be nuclei, as well.

II. MODEL

Our model is a microscopic three-cluster (cr + N + N)
Resonating Group Method (RGM) approach to the six-
nucleon systems. The trial function of the six-body prob-
lem has the form
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where the i, j, and k indices denote any one of the labels
o., n, and p, and the first sum runs over all possible dif-
ferent arrangements of the clusters [a(nn) and n(an) in
the case of sHe, a(pn), n(up), and p(an) in the case of
Li, and a(pp) and p(ap) in the case of Be]. In (1) A is

the intercluster antisymmetrizer, the 4 cluster internal
states are translation invariant harmonic oscillator shell
model states, the p vectors are the different intercluster
Jacobi coordinates, and [ ] denotes angular momentum
coupling. In the sum over S, lq, I2, and L we should in-
clude all angular momentum con6gurations of any sig-
nificance. Putting (1) into the six-nucleon Schrodinger
equation we arrive at an equation for the intercluster rel-
ative motion functions y.

It is of prime importance to choose a nucleon-nucleon
interaction which is appropriate for all subsystems ap-
pearing in the model space [13]. We choose the Min-
nesota interaction [14], containing central, Coulomb, and
spin-orbit terms, with the parameters as in [13]. It was
pointed out [13], that using the size parameter P
0.606 fm for the o. particle, which minimizes its inter-
nal energy, together with the exchange mixture param-
eter u = 0.98 of the Minnesota force, the experimental
a + N phase shifts can be excellently reproduced (see
Fig. 1 of [13]). This force also gives very good phase
shifts in the ~So, and st (J=0,1,2) states of the n + n
and p+ p systems. Since our interaction cannot account
for the charge independence breaking of the N —N force
due to the different vr and sr+ pion masses, our p+ n
phase shifts are slightly worse than the n + n and p+ p
ones (see the discussion in [13]). It was emphasized in
[13,15] that the Minnesota force is inappropriate in the

Sq N + N state, because it reproduces the ground state
of the deuteron without the tensor coupling of the Dq
state. This leads to a too strong interaction in the Sq
N + N state. Fortunately, in He and Be a triplet-even
state cannot be present between the outer neutrons and
protons, respectively, thus this problem does not appear.
In Li, however, we have to pay definite attention to this
problem. We neglect the tensor force because there is no
Arm ground to determine its parameters. For test pur-
poses we shall use the tensor force of Refs. [16,17], which
reproduces the J = 1, 2, 0 order of the low-energy IJ
phase shifts [13].

In a similar model [13] but using three size parameters
for the o. (allowing two monopole excited states in addi-
tion to the ground state) and also including rearrange-
ment (3+3 nucleon) channels, we got excellent results
for the ground state of sHe and its (bound state approx-
imated) isobar analogues in Li and Be. In that work
we demonstrated that the high-lying 3+3 rearrangement
channels are responsible for the 0.3—0.6 MeV energy lack
appearing in the three-body models of the A = 6 nu-
clei (for a recent review of the three-body models see
[18], and the references therein). The He wave func-
tion of [13] was used in the study of the beta delayed
deuteron emission from He, and proved to give good
agreement with the experiment [15]. Unfortunately, the
use of that huge model space would be hardly managable
computationally, and would cause numerical instabilities
in the present work. Using only one size parameter for

IIs = U(0)HU '(8), (2)

where the U(8) unbounded similarity transformation
acts, in the coordinate space, on a function f(r) as

[If 8 is real, U(g) means a rotation into the complex
coordinate plane, if it is complex, it means a rotation
and scaling. ] In the case of a many-body Hamiltonian,
(3) means that the transformation has to be performed
in each Jacobi coordinate. If the potential is dilation
analytic [24], then there is the following connection be-

tween the spectra of H and He [25]: (i) the bound eigen-

states of H are the eigenstates of Hg, for any value of
8 within 0 ( 0 ( vr j2; (ii) the continuous spectrum of
H will be rotated by an angle 28; (iii) the complex gen-

the o. particle, and no rearrangements, we can keep the
excellent reproduction of the o. + N phase shifts, which
means that the description of the dynamics of the two-
body subsystems is correct. The price we have to pay for
this model space reduction is that the two-neutron sep-
aration energy in the ground state of He is not correct,
being 0.670 MeV to be compared to the experimental
value 0.975 MeV. We could get closer to the experiment
including the t + t rearrangement channel. However, the
inclusion of this channel into the He wave function re-
quires the good reproduction of the n + n phase shifts in
a (a + n, t+ d) coupled channel model [13]. Although,
using three o. size parameters we got excellent n+n phase
shifts in such a model [13],using only one n size param-
eter it is no longer possible. The source of the problem
is probably the change of the threshold splitting between
the o, + n and d+ t channels. We emphasize that requir-
ing the good reproduction of the N+ N and o. + N data,
there is no remaining free parameter left in the model.

The next step is to find a method which can handle
three-body resonances. There are indirect and direct
ways of doing that. The indirect methods, e.g. , [19],
study the three-body problem at real energies, and ex-
tract resonance parameters from the three-body phase
shifts. In the direct methods the aim is to find the com-
plex energy poles of the three-body scattering matrix.
For example, in [20—22] the authors determined the pole
positions of the three-body S matrix by analytically con-
tinuing the homogeneous Faddeev equation to complex
energies. To get a decisive answer to the question of the
soft dipole mode of He, we must use a direct method.
Our choice is the complex scaling method (CSM) [23].
This method reduces the problem of resonant states to
that of bound states, and can handle the Coulomb inter-
action without any problem. It has been demonstrated
recently that the CSM can be used to find three-body
resonances in such problems which are very similar to
our present situation [12]. Here we recall only the main
points of the CSM, the details can be found in [12] and
the references therein.

Suppose, we search for (N-body) resonant states of the

Hamiltonian H. We define a new Hamiltonian by
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eralimed eigenvalues of Hs, s„, = E —iF/2, E,I' ) 0

(where F is the full width at half maximum) belong to its
proper spectr»m, with square-integrable eigenfunctions,
provided 28 )

~
args„, ~. In nuclear physics the CSM

has been successfully applied in the RGM description of
sBe [26], in an Orthogonality Condition Model (OCM) of

Ne [27], and in the OCM description of the resonances
of Li [28].

Since the resonant wave functions become localized in
the CSM, we can use any bound state method to de-
scribe them. Here we use an expansion of the wave

function, in terms of products of tempered Gaussian
functions of the Jacobi coordinates, in a variational
method [13]. A typical term of this expansion looks like

pi' exp[ (pi—/p; ) ]Yi,~, (pi) p~' exp[ (p—2/p, ) ]Yi,~, (p2) ~

where lq and l2 are the angular momenta in the two rela-
tive motions, respectively, and the widths p of the Gaus-
sians are the parameters of the expansion. We choose ten
p parameters in each relative motion, and they follow a
geometric progression [29] with pi ——1 fm and bio ——15
fm.

III. RESULTS

We have carried out calculations for the 0+, 1+, 2+, 0
1,and 2 states in the A = 6 nuclei. In order to keep all
important angular momentum channels in Eq. (1), and
at the same time keep the size of the problem manage-
able, we should know the contribution of each channel
to the total wave functions. That is why we first made
real energy calculations (i.e., without complex scaling)
for the above-mentioned states, using square-integrable
trial functions. The resulting weights of the different or-
thogonal (S,L) components are in Table I. The number
of different (i(jk); S, (li ls )L) configurations in Eq. (1)
was typically 10—12, most of them are nonorthogonal to
each other. We calculated the amount of their clustering,
which measure the weights of the different nonorthogo-
nal channels [30,31,13], and kept the most important 5—6
channels in the complex calculations.

In Li we leR out all angular momentum configuration
which contain triplet-even state between the outer proton

and neutron. The inclusion of the configurations which
contain the Si p + n state [e.g. , (cx(pn); S, (lil2)L
1, (02)2) in the 2+ state of Li] would suppress all other
channels because the Minnesota force is too strong in
this p+ n state. For example, this would lead to 99.8%
weight of the (S,L) = (1,2) component in the 2+ state
of sLi, while without this (o.(pn); 1, (02)2) configuration
the weight is only 0.5 %%uo, as we can see in Table I. With
their omission we dropped only a tiny part of the model
space, because these components have large overlaps with
the nonorthogonal angular momentum configurations in
the (ap)n and (an)p partitions [31]. Without a ten-
sor force, the omission of the configurations which con-
tain the D~ p+ n state almost does not change any-
thing. If a tensor force and the Dq p+ n components
[e.g. , the (o.(pn);1, (20)2) configuration in the 1+ state
of sLi] were present, the Li would become 10 MeV
overbound. This is because our force would lead to a

10 MeV overbinding in the case of the Sq- Dq coupled
deuteron, itself. Although, we have no explicit Sq p+ n
state in sLi, the coupling of the (n(pn); 1, (20)2) state to
the (S, L) = (1,0) channels, which are nonorthogonal to
the omitted (n(pn); 1, (00)0) component, would result in
this 10 MeV overbinding of Li. With the omission of
the triplet-even p+ n components in Li, these problems
do not appear, but the 1+ ground state becomes slightly
underbind (E=—3.01 MeV compared to the experimen-
tal —3.70 MeV). The 3+ three-body bound state of sLi
appears at —1.77 MeV (experiment: —1.51 MeV). So, in
conclusion, there is definitely room for improvements in
Li. In the literature there are models for sLi, e.g. , [21],

which do not suffer from the present force problem.
The parameters of all three-body resonances which

we found are listed in Table II, along with the exper-
imental energies and widths. We solved the complex
scaled Schrodinger equations with difI'erent 8 rotation
angles. Without approximations, the resulting pole po-
sition would not depend on 8. Using an approximate
method (in our case a variational method), the pole po-
sition slightly depends on 8, and the stationary point of
the 8 trajectory should be accepted as the position of the
resonance [26]. Our best 0 values were around 0.25—0.3
rad.

TABLE I. The weights (in percents) of the orthogonal (S,L) components in the various J states
of He, Li, and Be.

He

Li

Be

p+

(0,0) 86.5
(1,1) 13.5

(0,0) 87.3
(1,1) 12.7

(0,0) 87.7
(1,1) 12.3

y+

(0,1) 0.5
(1,0) 2 0

(1,1) 97.1
(1,2) 0.4
(0,1) 3.3
(1,0) 96.0
(1,1) 0.7
(1,2)
(0,1) 0.2
(1,0) 0.6
(1,1) 99.1
(1,2) 0.1

2+

(0,2) 52.8
(1,1) 46.5
(1,2) 0.7

(0,2) 50.0
(1,1) 49.5
(1,2) 0.5

(0,2) 59.9
(1,1) 39.6
(1,2) 0.5

0

(1,1) 100.0

(1,1) 100.0

(1,1) 100.0

1

(0,1) 86.0
(1,1) 14.0
(1,2) &0.1

(0,1) 81.4
(1,1) 18.6
(1,2) &0.1

(0,1) 84.0
(1,1) 16.0
(1,2) &0.1

2

(0,2) &0.1
(1,1) 100.0
(1,2) &0.1

(0,2) &0.1
(1,1) 100.0
(1,2) &0.1

(0,2) &0.1
(1,1) 100.0
(1,2) &0.1

Not included.
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Theory
E (MeV) I' (MeV)

He 2+ (1) 0.74 0.06
Li 0+ (1) 0.22 0.001

2+(0)
2+(1) 1.59 0.28
1+(0) 5.71 3.89

Be 0+ (1) 1.52 0.16
2+ (1) 2.81 0.87

Experiment
E (MeV) I' (MeV)

0.822+0.025 0.113+0.020
—0.137

0.610+0.022 1.7+0.2
1.696+0.015 0.54+0.020
1.95+0.05 1.5+0.2

1.371+' 0.092+0.006
3.04+0.05 1.16+0.06

TABLE II. Energies (relative to the n energy) and full
widths of three-body resonances in He, Li, and Be. The
experimental values are taken from [32].
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Bound state.
Cannot be resolved by the present method (see the text).

'No errors are given in [32].

As a consequence of our not complete model space,
which resulted in the 10.7 MeV underbinding in the
ground state of sLi, the 1+(T = 0) resonance is pushed
to higher energy, considerably increasing its width. The
same underbinding effect which appeared in the ground
state of sHe pushes the slightly bound 0+(T = 1) state
of Li into the continuum, resulting a three-body reso-
nance. The experimentally known 2+(T = 0) state of sLi
at E = 0.610 MeV with I'=1.7 MeV cannot be resolved
by our present method because the pole at (0.610—i0.85)
MeV is mixed up with the points of the rotated dis-
cretized continuum, using any rotation parameter.

The agreement of the resonance parameters with the
experimental values is good for the 2+(T = 1) states
of He, Li, and Be, and the 0+ state of Be. It is
important to note that while our interaction underbinds
the 0+ state of He by about 0.3 MeV, the 2+ state is
"overbound" by about 0.1 MeV (and its width is smaller
than the experimental value, accordingly). It means that
the sometimes usual way to re6t the interaction strength
so as to get the correct binding energy for the ground
state is dangerous. In our present case it would result in
the parameters E = 0.46 MeV and I' = 0.008 MeV for
the 2+ state. The best thing we can do is to accept the
results, coming from an interaction which is good for the
subsystems, as they are. To test the effect of the tensor
interaction, we performed a calculation for the 2+ state of
sHe with the tensor force of [16,17] included. It resulted
in E = 0.76 MeV and I' = 0.07 MeV parameters, thus it
has small effect.

The Riemann sheets, on which the resonances reside,
can be uniquely identified by the relative position of the
resonances and the rotated branch cuts [33,34].

To illustrate the working mechanism of our method,
we show in Fig. 1 the results of the calculations for the
2+ (T = 1) and 1+(T = 0) states in sLi. As we can
see, the rotated discretized continuum is a mixture of the
three-body scattering continuum points, starting at the
origin, and the resonance+scattering continua, starting
at the 3/2 and 1/2 resonance positions of the 5He and
5Li subsystems [12]. The probably not accurate enough
double-precision numerics and the interaction between
the continua, which are close to each other, makes the
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FIG. 1. Energy eigenvalues of the complex scaled Hamilto-
niau of the (a) 2+ and (b) 1+ states of Li. The dots are the
points of the rotated discretized continua, while the circles
are three-body resonances. The rotation angle is 0.3 rad.
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FIG. 2. Energy eigenvalues of the complex scaled Hamilto-
nian of the 1 states of He. The rotation angle is 0.3 rad.

picture a bit fuzzy, but the identification of the resonant
states is unambiguous.

In Fig. 2 we show our result for the 1 state of He,
where the soft dipole mode was predicted at (6 —i2.5)
MeV (E = 6 MeV, I' = 5 MeV [9]). As we can see, our
model does not con6rm the existence of such a state. No
resonant state occurred while increasing the 0 value to
as large as 0.7, where the CSM becomes unstable. This
result is in agreement with [35,36], where the authors did
not Bnd any indication for the existence of a 1 state,
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analyzing the He strength functions and break-up cross
sections at real energies.

In the literature there are works for the A = 6 nuclei in
which the three-body resonance parameters are extracted
from real energy phase shifts [19,37], and Faddeev calcu-
lations [20—22], respectively. The results of these works
are consistent with each other and with ours, except that
in [37], in addition to the well-known 0+ ground state and
2+ excited state, the authors found low-lying narrow 0+
and 1+ excited states in 68e, a fact which we try to ex-
plain later.

In [12] we argued that we can identify three-body res-
onances using the fact that they have to appear in each
possible Jacobi coordinate system. Here, using the 2+
state of sHe, we check this claim. Switching off all o.(nn)
and n(nn) channels, respectively, the resonance occurs at
1.01 —i0.081 MeV and 1.89 —i0.094 MeV, respectively.
If we keep only the (S,L) = (0, 2) channels, we get the
resonance at 2.00 —i0.446 MeV, while keeping only the
(S, L) = (1, 1) configurations the resonance appears at
2.04 —i0.760 MeV. Thus, our present model shows that
the three-body resonances appear not just in every dif-
ferent Jacobi coordinate systems, but in every different

(S,L) configuration. It means that a 1 three-body res-
onance, if it exists, must show up even if our model space
were very restrictive.

To sum up our results, we have found the experimen-
tally known resonances, but not found any indication
that the 1 soft dipole mode exists in He. In the next
section we give a possible explanation of the experimental
finding of soft dipole resonances in neutron halo nuclei.

IV. DISCUSSION

We have shown in [12] that if there are resonances in
a two-body subsystem of a three-body system, then the
sequential decay of the system through these resonant
states leads to structures in the three-body continuum,
in addition to the structures coming &om the three-body
resonances. This is because around the two-body reso-
nance energy, in addition to the three-body phase space,
a substantial two-body phase space is available for the
system to decay into. We emphasize that these structures
have kinematical, rather than dynamical origin. The 0+
and 1+ excited states of sBe, found in [37], are nice ex-
amples to demonstrate the operation of the sequential
decay mode. The model wave function of [37] consists
of He+ He and Li+p channels with, bound state ap-
proximated, 3/2, 1/2, and 3/2+ 5Li states. The 0+
and 1+ resonances of [37] in the Be phase shifts are ap-
parent. They are the consequence of the fact that the
Li+p asymptotic decay modes are built into the wave

function. These states are sequential decay modes, hav-
ing two-body dynamical structures. Thus, these are not
three-body resonances in Be. In a similar work [19] the
method of the hyperspherical harmonics does not allow
sequential decay modes, that is why the authors did not
find excited 0+ and 1+ in the Be phase shifts.

We can conclude &om our results that it is possible
that the soft dipole mode does not exist in He, and the

experiments see only the He+n sequential decay mode
of this nucleus. We show that there is no experimental
finding which contradicts our assumption.

In He the sequential decay mode leads to a superpo-
sition of the 3/2 and 1/2 sHe states and the neutron
in the final state. The angular momentum of the relative
motion is most probably / = 0 to avoid the centrifugal
barrier. As a consequence, 0, 1, and 2 structures
can appear in the excitation function of He. From the
0+ ground state, only the 1 state can be excited con-
ventionally, the other two states can only be excited by
parity transfer e.g. by using pions. Due to the split-
ting of the 3/2 and 1/2 states of sHe (these states
are 'at 0.89 MeV and 4 MeV [32], respectively), two 1
bumps can appear in the excitation function of He at
0.975+0.89 1.9 MeV and 0.975+4 5 MeV excitation
energies, respectively (0.975 MeV is the two-neutron sep-
aration energy of He). In recent' experiments [9,10] a 1
structure appeared around 6 MeV, and the well-known
2+ state at 1.8 MeV. The position of the 1 bump is
in good agreement with our prediction, while our other
structure at 1.9 MeV coincides with the position of the
2+ state. We can see in Fig. 2 of [9] that the assumption
of a mixed 2+ and 1 nature of the bump at 1.8 MeV
is not in contradiction with the measured angular distri-
bution, on the contrary, it would improve the agreement
between theory and experiment.

Let us point out that a similar situation may occur in
Li. Here the sequential decay mode leads to Li+n

final states. There are several measurements for the low-

lying resonances of ~OLi (see, e.g. , [38]), the most recent
Ref. [39], which seems to be the most reliable, gives a
1+ state at 0.42 MeV, and a 2+ state at 0.8 MeV ex-
citation energies. The most recent value of the two-
neutron separation energy of Li is 0.295+0.035 MeV
[40]. The sequential decay mode can lead to structures
around 0.42+0.29 0.7 and 0.8+0.29 1.1 MeV Li ex-
citation energies. Assuming again that the l = 0 angular
momentum between Li and n is preferred, the possi-
ble J values are 1/2+ and 3/2+ at 0.7 MeV, and 1/2+,
3/2+, and 5/2+ at 1.1 MeV. All of these J states can be
excited from the 3/2 ground state of Li without parity
transfer, which means that the experimental structure is
a coherent superposition of them. In [2,8] a bump oc-
curred in the Li excitation spectrum around 1.2 MeV
excitation energy. The position and the experimentally
observed 1/2+, 3/2+, or 5/2+ spin-parity character of
this state are again in good agreement with our result.
In [39] a state in ~ Li is also found around 4 MeV, and
in [2,8] we can see some structures in this energy region,
too.

In Ref. [41] the authors studied the Coulomb break-
up of Li on Pb target. They found that the average
velocity of the outcoming Li nuclei is larger than the
average velocity of the outcoming neutrons. They ex-
plained this by the post acceleration of the Li nuclei in
the field of the lead target nucleus. From the large veloc-
ity shift they concluded that the breakup process should
be direct, not resonant through the presumed soft dipole
mode. If the sequential decay mode causes the apparent
resonancelike structure in Li, as we assume, then the
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post acceleration is felt by the Li particle (and not by
the other neutron), thus the average neutron velocity can
be smaller than that of the Li velocity. In Fig. 14 of [41]
one can see two peaks of the velocity shift curve. The
larger shift is probably due to the direct breakup (the
three-body scattering final state), while the other peak
at much smaller shift can account for the sequential de-
cay.

The complete kinematical measurement of [41] would
allow a stringent test of our assumption that there is no
soft dipole mode in Li, only a sequential decay mode.
In the center-of-mass kame one should see a considerable
increase of the 180 ' angular correlation between Li and
neutrons around the 1.2 MeV excitation of ~ Li.

V. CONCLUSIONS

In summary, we have searched for low-energy three-
body resonances in He, Li, and Be, using the complex
scaling method in a microscopic three-cluster model. Our
model can account both for the correct nuclear physics
and the proper three-body dynamics. However, due to
the fact that our interaction is not fully adequate in the
triplet-even partial wave, our description of Li can only
be considered as a test case. We have found the exper-
imentally known resonances, except a 2+ state of Li,
which cannot be localized by our present method. How-
ever, we have not found the predicted 1 soft dipole mode

in He. We argued that this state, if it exists, should ap-
pear even in a model which is much simpler than ours.

We concluded from our result that it is possible that
the soft dipole modes of the neutron halo nuclei do not
exist, and the experiments see just the sequential decay
modes of these nuclei. We have shown, through the ex-
amples of He and Li, that there is no experimental fact
which contradicts this assumption. A test of our assump-
tion could come from the analysis of the experimental
core-neutron angular correlation in breakup reactions. If
the sequential decay mode has a significant e8'ect, then
a strong increase of the 180' correlation in the center-
of-mass kame should be found around the "resonance"
energies.

Finally, we mention that the importance of the se-
quential decay modes was pointed out in [42], claiming
that the broad part of the momentum distribution of the
projectile fragments in the neutron halo nuclei probably
comes from these modes.

ACKNOWLEDGMENTS

This work was supported by the Fulbright Foundation
and NSF Grant Nos. PHY90-13248 and PHY91-15574
(USA), and by OTKA Grant Nos. 3010 and F4348 (Hun-
gary). I wish to thank S. E. Koonin and K. Langanke for
useful comments on the manuscript.

[1] I. Tanihata, Nucl. Phys. A553, 361c (1993).
[2] T. Kobayashi, Nucl. Phys. A538, 343c (1992).
[3] T. Kobayashi, Nucl. Phys. A553, 465c (1993).
[4] P. G. Hansen, Nucl. Phys. A553, 89c (1993).
[5] Proceedings of the International Symposium on Structure

and Reactions of Unstable Nuclei, Niigata, Japan, 1991,
edited by K. Ikeda and Y. Suzuki (World Scientific, Sin-

gapore, 1991).
[6] P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409

(1987); K. Ikeda, in [5], p. 3; Y. Suzuki and K. Ikeda,
Phys. Rev. C 38, 410 (1988).

[7] N. Poppelier, L. Wood, and P. Glaudemans, Phys. Lett.
157B,120 (1985);Y. Suzuki and Y. Toshaka, Nucl. Phys.
A517, 599 (1990); A. C. Hayes and D. Strottman, Phys.
Rev. C 42, 2248 (1990).

[8] T. Kobayashi, in [5], p. 187.
[9] S. B. Sakuta, A. A. Ogloblin, O. Ya. Osadchy, Yu. A.

Glukhov, S. N. Ershov, F. A. Gareev, and J. S. Vaagen,
Europhys. Lett. 22, 511 (1993).

[10] F. Brady, G. A. Needham, J. L. Romero, C. M. Cas-
taneda, T. D. Ford, J. L. Ullmann, and M. L. Webb,
Phys. Rev. Lett. 51, 1320 (1983).

[11] Y. Suzuki, Nucl. Phys. A528, 395 (1991).
[12] A. Cs6to, Phys. Rev. C 49, 2244 (1994).
[13] A. Cs6to, Phys. Rev. C 48, 165 (1993).
[14] D. R. Thompson, M. LeMere, and Y. C. Tang, Nucl.

Phys. A288, 53 (1977); I. Reichstein and Y. C. Tang,
ibid A158, 529 (1970)..

[15] A. Csot6 and D. Baye, Phys. Rev. C 49, 818 (1994).

[16] P. Heiss and H. H. Hackenbroich, Phys. Lett. 30B, 373
(1969).

[17] A. Csot6, R. G. Lovas, and A. T. Kruppa, Phys. Rev.
Lett. 70, 1389 (1993).

[18] N. W. Schellingerhout, L. P. Kok, S. A. Coon, and R. M.
Adam, Phys. Rev. C 48, 2714 (1993).

[19] B. V. Danilin and M. V. Zhukov, Yad. Fiz. 5B, 67 (1993)
[Sov. J. Nucl. Phys. 5B, 460 (1993)].

[20] Y. Matsui, Phys. Rev. C 22, 2591 (1980).
[21] A. Eskandarian and I. R. Afnan, Phys. Rev. C 4B, 2344

(1992).
[22] V. G. Emelyanov, V. I. Klimov, and V. N. Pomerantsev,

Phys. Lett. 157B, 105 (1985).
[23] Y. K. Ho, Phys. Rep. 99, 1 (1983); N. Moiseyev, P. R.

Certain, and F. Weinhold, Mol. Phys. 3B, 1613 (1978);
Proceedings of the Sanibel Workshop Complex Scaling,
1978 [Int. J. Quantum Chem. 14, 343 (1978)]; B. R.
Junker, Adv. At. Mol. Phys. 18, 20? (1982); W. P.
Reinhardt, Annu. Rev. Phys. Chem. 33, 223 (1982);
Resonances The Unif—ying Route Towards the Formula
tion of Dynamical Processes, Foundations and Applica
tions in Nuclear, Atomic and Molecular Physics, edited
by E. Brandas and N. Elander, Lecture Notes in Physics
Vol. 325 (Springer-Verlag, Berlin, 1989).

[24] M. Reed and B. Simon, Methods of Modern Mathematical
Physics (Academic Press, New York, 1978).

[25] J. Aguilar and J. M. Combes, Commun. Math. Phys. 22,
269 (1971); E. Balslev and J. M. Combes, ibid 22, 280.
(1971);B. Simon, ibid. 27, 1 (1972).



49 THREE-BODY RESONANCES IN He, Li, AND Be, AND. . . 3041

[26] A. T. Kruppa, R. G. Lovas, and B.Gyarmati, Phys. Rev.
C 37, 383 (1988).

[27] A. T. Kruppa and K. Kato, Prog. Theor. Phys. 84, 1145
(1990).

[28] K. Kato and K. Ikeda, Prog. Theor. Phys. 89, 623 (1993).
[29] H. Kameyama, M. Kamimura, and M. Kawai, in [5], p.

203.
[30] R. Beck, F. Dickmann, and R. G. Lovas, Ann. Phys.

(N. Y.) 173, 1 (1987).
[31] A. Csoto and R. G. Lovas, Phys. Rev. C 46, 576 (1992).
[32] F. Ajzenberg-Selove, Nucl. Phys. A490, 1 (1988).
[33) A. Csoto, Phys. Rev. A 48, 3390 (1993).
[34] I. R. Afnan, Aust. J. Phys. 44, 201 (1991).
[35] B. V. Danilin, M. V. Zhukov, J. S. Vaagen, and J. M.

Bang, Phys. Lett. B 302, 129 (1993).
[36] L. S. Ferreira, E. Maglione, J. M. Bang, I. J. Thompson,

B. V. Danilin, M. V. Zhukov, and J. S. Vaagen, Phys.
Lett. B 316, 23 (1993).

[37] H. M. Hofmann and W. Zahn, Nucl. Phys. A368, 29
(1981).

[38] K. H. Wilcox, R. B. Weisenmiller, G. J. Wozniak, N. A.
Jelley, D. Ashery, and J. Cerny, Phys. Lett. 59B, 142

[39]

[40]

[41]

[42]

(1975); A. I. Amelin, M. G. Gornov, Yu. B.Gurov, A. L.
Ilin, P. V. Morokhov, V. A. Pechkurov, V. I. Savelev,
F. M. Sergeev, S. A. Smirnov, B. A. Chernyshev, R. R.
Shafigullin, and A. V. Shishkov, Yad. Fiz. 52, 1231 (1990)
[Sov. J. Nucl. Phys. 52, 782 (1990)).
H. G. Bohlen, B. Gebauer, M. von Lucke-Petsch, W.
von Oertzen, A. N. Ostrowski, M. Wilpert, Th. Wilpert,
H. Lenske, D. V. Alexandrov, A. S. Demyanova, E.
Nikolskii, A. A. Korsheninnikov, A. A. 0globlin, R.
Kalpakchieva, Y. E. Penionzhkevich, and S. Piskor, Z.
Phys. A 344, 381 (1993).
B. M. Young, W. Benenson, M. Fauerbach, J. H. Kelley,
R. Pfa6', B. M. Sherrill, M. Steiner, J. S. Win6eld, T.
Kubo, M. Hellstrom, N. A. Orr, J. Stetson, J. A. Winger,
and S. J. Yennello, Phys. Rev. Lett. 71, 4124 (1993).
D. Sackett, K. Ieki, A. Galonsky, C. A. Bertulani, H.
Esbensen, J. J. Kruse, W. G. Lynch, D. J. Morrissey,
N. A. Orr, B. M. Sherrill, H. Schulz, A. Sustich, J. A.
Winger, F. Deak, A. Horvath, A. Kiss, Z. Seres, J. J.
Kolata, R. E. Warner, and D. L. Humphrey, Phys. Rev.
C 48, 118 (1993).
I. Tanihata, in [5], p. 233.


