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Nuclear densities and the statistics of nucleonic constituents
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In the quark model of the nucleon, the Fermi statistics of the elementary constituents can
in6uence significantly the properties of multinucleon bound systems. In the Skyrme model, on the
other hand, the basic quanta are bosons, so that qualitatively different statistics effects can be
expected a priori. In order to illustrate this point, we construct schematic one-dimensional quark
and soliton models which yield fermionic nucleons with identical baryon densities. We then compare
the baryon densities of a two-nucleon bound state in both models. Whereas in the quark model the
Pauli principle for quarks leads to a depletion of the density in the central region of the nucleus, the
soliton model predicts a slight increase of the density in that region, due to the bosonic statistics of
the meson-field quanta.

PACS number(s): 21.10.Gv, 12.39.—x, 12.60.Rc, 11.10.Lm

I. INTRODUCTION

Quantum chromodynamics (QCD) is generally ac-
cepted as the fundamental theory of strong interac-
tions [1]. In QCD, hadrons should emerge as compos-
ite systems of elementary quarks and gluons. However,
because of the difficulty in solving QCD in the nonpertur-
bative regime, hadronic structure has so far mainly been
approximated by semiphenomenological models that in-
corporate some essential properties of QCD, such as con-
finement and chiral symmetry.

The implications of nucleon structure for nuclear
physics have been intensely investigated in recent
times [2]. On the one hand, as our knowledge of the
former increases, the models developed to describe the
latter may need to be improved or revised. Conversely,
one may hope that the large body of knowledge accu-
mulated in nuclear physics could be used to distinguish
between possible pictures of nucleon structure. In view of
the rather large uncertainties in the details of the dynam-
ics of nucleon models, it seems desirable to concentrate
the attention on their main qualitative features, such as
the statistics of the building blocks.

Probably the simplest and most traditional model of
hadron structure is the nonrelativistic quark model, in
which the nucleon is described, in first approximation,
as a system of three independent quarks confined in a
central potential [3]. The Fermi statistics of quarks be-
longing to diferent nucleons has been shown to have sig-
nificant implications in nuclear structure [4], being re-
sponsible, for example, for a sizable contribution to the
so-called European Muon Collaboration (EMC) effect.

An alternative to quark models is a6orded by soliton
models of the Skyrme [6] type, in which nucleons appear
as topologically nontrivial configurations in a nonlinear
meson field theory. The possible relation of these models

to QCD, as argued by 't Hooft [7] and Witten [8], has led
to their revival during the past decade [9]. Simple ques-
tions related to statistics are challenging in such models
since, even though the elementary quanta are bosons, the
soliton must possess an overall fermionic character. Any-
way, effects associated with the bosonic statistics of the
constituents would be expected to arise, when nucleons
overlap in a nuclear bound state.

It is the purpose of the present work to explore some
of the implications of quantum statistics in a bound state
of topological solitons, performing a comparison with a
bound state of quark clusters. In view of the difBculties
mentioned in the preceding paragraph, we shall restrict
ourselves to the study of schematic "toy" models in one
spatial dimension. Only in this framework are we able
to construct a creation operator for a fermionic extended
soliton —an essential tool for studying a multisoliton
bound state. The soliton model is defined such as to
produce the same baryon density, for a single nucleon, as
a simplified quark model. We then calculate and compare
the baryon densities of a two-nucleon bound state in both
models.

It must be emphasized that the one- and two-nucleon
states used to calculate the baryon densities are not de-
rived from specific dynamical models. Rather they are
constructed in such a way as to possess the essential fea-
tures which would be expected to emerge, mutatis mu-
tondis, from similar realistic models in three spatial di-
mensions.

This paper is organized as follows. In Sec. II we define
a schematic quark model and derive the expression of the
baryon density distribution of a two-nucleon bound state
in this model. In Sec. III we construct a creation operator
for a one-dimensional fermionic soliton, with topological
charge density equal to the baryon density of the quark
model of Sec. II. We set up the formalism necessary to
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calculate the baryon density distribution of the two-body
bound state in this model also. In Sec. IV we present
numerical results obtained in both models. We display
quantum statistics effects by comparing the results with
those obtained by convolution of the baryon density for a
single nucleon with the probability density for the relative
position of the nucleons in the bound state. Section V
contains our conclusions and some speculations.

The (unnormalized) state of two nucleons centered at
y and —y, respectively, is

lw) = ~'(w) ~'(-w) Io) . (7)

ID) = dw4(w) lw)
1

(8)

A bound state of two composite nucleons can be written
as a linear superposition of such states:

II. SCHEMATIC QUARK MODEL

The influence of quark statistics on the properties of a
nuclear bound state has already been studied by several
authors [4]. Here we shall consider a schematic model
in one-dimensional space, without spin or flavor. The
idealized nucleon is described as a cluster of three inde-
pendent quarks carrying different colors. The operator
creating such a nucleon centered at y is

d ' ~( ' —
w) q.'( ) q'( ) q,'(* )

(8~O~'
((W) = 2 W exp( —3W /d )

7I d
(9)

where d is the rms value of 2y, the distance between the
cluster centers. The normalization constant appearing in

(8) is given by

where ((W) is a wave function describing the relative mo-
tion of the clusters. Since the nucleons are fermions and
do not carry spin or isospin, this wave function must be
antisymmetric. %e shall choose the form

N = dydy' * y' y y'y (10)
where qt (z) creates at z a quark of color n (o. = r, b, g)
and p(z) is the normalized single-quark wave function.

Although in this case there would be no difficulty in
working with a more realistic model, we wish to treat
both kinds of model (quark and soliton) at the same level
of sophistication in order to facilitate comparison. In a
realistic three-dimensional soliton model, the construc-
tion of anticommuting creation operators for nucleons
still represents an unsurmounted task, although attempts
can be found in the literature [5]. In the same spirit,
center-of-mass motion has not been removed in (1), since
this operation would be awkward in the soliton model.

The quark creation and destruction operators satisfy
standard anticommutation relations:

Q 2

a(u) = f ez p'(x) p(x+ ~) = exp-
8z2o

(12)

The baryon density of the "deuteron" is given by

~~(z) = (Dl~(z) ID)

The overlap between states of two localized clusters can
be calculated using (7), (1), and (2). One obtains

(w'lw) = &'(w' —
w)

—»'(w' —w)&'(w' &- w)

+»'(w' —
w) &'(w'+ w)

—&'(w'+ w),
with

(q (z), q", (z')) = h', b(z —z') . (2) dydy' 'y' y y' px y

The quark wave function will be assumed to be Gaussian:

V(z) = exp(~2*.) ~
' ')

The matrix elements of the density operator between
states of two localized nucleons are easily worked out
using (7), (1), (5), and (2). One gets

where zo is the rms size of the nucleon.
The baryon density of a nucleon centered at the origin

1S

pN ( ) = (ol e(0) p( ) e (o) lo)

where

(w'l~(z) lw) = ). ~'~&(z;~'w', ~w),
v, v'=+

&(;w', w) = v *( —w') () ( —
w) &(w' —

w)

(i4)

where Io) denotes the vacuum state and the baryon den-
sity operator is given by

~(z) =
3 ).q.'(z) q-(*)

From (1) and (2) one obtains immediately

f
~~(z) = IV(z)l'=

2vrzo I 2z() )

x [6, (w' —
w)

—2A (w' —w)E (w' + w)

+&'(w'+ w)] .

The last two terms in the square brackets in the above
expression are due to quark exchange between the nucle-
ons. Using (9)—(15), the baryon density of the "deuteron"
and the constant % can be obtained in closed form. The
final expressions are somewhat complicated and will not
be displayed here.
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III. TOPOLOGICAL SOLITON MODEL

~(*) = —&'(*) .2' (16)

We shall generalize the Mandelstam construction in order
to obtain an operator which creates an extended soliton
state in which the topological charge density is equal to
the baryon density (6) of the quark model discussed in
the preceding section. We use the ansatz [12]

t(y) = A exp[At(y)] (17)

with

A~(k) = 2ee f dg f(y —g) e (ee)

+- d(g(( —y) 4(() .
2

(18)

Here z (x) is the canonical conjugate of P(x), A is a nor-
malization constant, and f and g are complex functions
to be determined. The Mandelstam operator is regained
by substituting for f the Heaviside (I) function and for g
the Dirac b function.

A first condition to be imposed on this operator is that
it should carry unit topological charge, which requires

dz p(z), @t(y) = 4't(y) .

As already mentioned, a fermionic creation operator
for a topological soliton in a realistic three-dimensional
model, such as the Skyrme model, is not available. On
the other hand, in one-dimensional space, a soliton cre-
ation operator has been constructed by Mandelstam [10].
This opera, tor creates a pointlike soliton of unit topologi-
cal charge in a field theory possessing an Si topology [11].
In such a theory, the topological charge density is pro-
portional to the space derivative of the field P(x):

(~t(~) ~t(y)) = {1+ex1[&'(*) ~'(y)l)~'(y) ~t(~) .

(23)

A straightforward calculation of the commutator appear-
ing in this expression shows that (22) will be satisfied if

(24)

= —2m + dx exp —
z . (25)

zp ~ ( 2xpj

In order to implement this last condition, as well as
(24), it is convenient to expand the field and its conjugate
momentum in a plane wave basis, in standard fashion,
and rewrite (17) and (18) in the form

%t(y) = @exp[At+(y)] exp[At (y)],

where p is a redefined normalization constant and

(26)

This condition was also satisfied by the original Mandel-
stam operator.

The last condition, which will allow the complete deter-
mination of the functions f and g, is that the topological
charge density corresponding to a soliton centered at the
origin be given by (6). This density must be calculated
according to (4), using the soliton creation operator (17),
the density operator (16), and the usual Fock vacuum of
the scalar field theory. From (16), it is clear that this
condition specifies, up to an integration constant, the ex-
pectation value of the field in the one-soliton state. Since
the field manifold is assumed to possess an Sq topology,
this mean field must tend to a multiple of 2x at large
distance. A possible choice of the integration constant
yields the condition

(ole(o) &(*)@ (o) lo)

With the help of the canonical commutation relations of
the field operators, one easily derives from (17) and (18)
that

At (y) = f dke 'e"
/ —e(k) et(k)

At (y) = dk e*"" —y(k) a(k) .
2

(27)

«~(~) ~t(y) = [f(~) —&(-~)]~'(y) (2o)

Condition (19) can therefore be fulfilled by imposing

Here at(k) and a(k) are creation and annihilation oper-
ators for the bosonic quanta and us ——Qk + m, with
m the mass of these quanta. The functions 0 and y are
combinations of the Fourier transforms of f and g,

J'( ~) =o, —f(~) =1, (21) o(k) = -2z f(-k) + g(k),
2crJg

(29)

so that f possesses the same asymptotic behavior as the
0 function which appears in the original Mandelstam op-
erator.

A further constraint on the functions f and g follows
&om the requirement that the solitons obey Fermi statis-
tics, i.e.,

y(k) = 2' f(k) + g(—k)

The constant p i." fixed by requiring that the one-soliton
state, obtained by applying the creation operator onto
the Fock vacuum, be normalized. This gives

{4' (x), 4 (y)) = o .

Froin (17) and (18), we derive

(22)

with

p = exp [Ci(O)]
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Ci(y-y') = [&.(y') &', (y)]
1 ~ l

dke*"&~ »~„~o(k)(' .
2

The Fourier transform of (24) reads

(32)
(y'~y) = exp (C2(—2y) + C"(—2y')

+2 [Cl(y + y') + Ci(y —y') —C~(0)1) (39)

A similar procedure yields the overlap between states of
two localized solitons:

f(k) g(k) = (33)

where g is a small positive quantity which specifies how
the pole at k = 0 is to be handled. Prom (26)—(28) it
follows that

(01@(0)&(*)@'(0) I0) = dk '"*
(k) .

27r
(34)

Using this result and condition (25), the function o is
easily determined:

o. k =. exp
ik —g ( 2 )

(35)

1
y(k) =

y 2~(ug(ik+ g)

Finally, inverting (29) and (30), inserting the resulting
expressions in (33) and solving for y, we obtain

with Cq given by (32) and

C.(y —y') = [&'(y') &t+(y)1

dk e '" ~" " ~~gg(k) o (k)
2

(40)

Thus the calculation of the overlap (39) requires the eval-
uation of the Fourier transforms (32) and (40). The pro-
cedure followed to handle the singularities present in the
functions o. and y is sketched in the Appendix. Once
the overlap (39) is cast in a form suitable for computa-
tion, the baryon density of the two-body bound state can
be obtained by evaluating numerically the integrals (13)
and (10).

IV. NUMERICAL RESULTS

Since in the quark model the baryon density of the
two-body bound state depends only on the parameters
zQ and d, it can be seen easily to possess the following
scaling property:

x [
—k + k' + 4x'~'e —'*'"']e*'" ~' (36)

We observe that, from (29), (30), (35), and (36), it follows
that

&z
pa(z; zo, d) = —pa

XQ XQ XQ
= —pD

XQ XQ XQ

(41)

f(km0) = 1

2m(ik + g)

(y'IP(z)ly) = 2[pN(* —y') + p~(*+ y')

+p~(z —y) + p~(z+ y)](y'ly) (38)

which is the Fourier transform of the 0 function. There-
fore the large distance behavior of f is compatible with

(21). In fact, there exists another solution for the func-
tion y, differing &om (36) by the sign in front of the
square root, but it leads to a function f which does not
satisfy (21) and must therefore be rejected.

The construction of a creation operator satisfying the
required conditions is thus completed. However, the mass
m of the field quantum is undetermined. In the Skyrme
model, this would be the pion mass. In view of this,
noting that the pion Compton wavelength is about ~2
times the nucleon size, we have set m = (~2zo) in the
calculations discussed in the next section.

The calculation of the baryon density in the two-soliton
bound state is based on (13), (10), and (9), with the op-
erators and states of the soliton model now substituting
their quark model correspondents. The matrix elements
of the density operator (16) between states of two local-
ized solitons are easily evaluated by passing the creation
and destruction operators for the field quanta through
the soliton operators. One obtains

where the dependence in the parameters has been dis-
played and the last equality defines the adimensional
baryon density p~. In fact, once the choice m
(~2zo) is made, this is also true in the soliton model.
Therefore, it is sufBcient to study the function pD for
various values of the ratio d jzo of bound-state size to
nucleon size.

In order to evaluate the importance of quantum statis-
tics effects, it is useful to compare the baryon density
derived from the quantum-mechanical bound states to
that obtained by a simple convolution of the density for
a single nucleon with the probability distribution of the
nucleon centers in the bound state, i.e. ,

p~'(z;xo, d) = 2 dy IC(y) I' p~(* —y)

,., (
+0 &0 +0

(42)

where the scaling property has been used again to define
the adimensional density po'.

Numerical results for a few values of d jzo are shown in
Fig. 1. It is seen that the Pauli principle for quarks leads
to a strong depletion of the density in the central region
of the bound state. In contrast, for all but the smallest
value of d jxo, a small increase is observed in the soliton
model. This effect, which was expected in view of the



49 NUCLEAR DENSITIES AND THE STATISTICS OF. . . 3033

I I I i
I

I 1 I I03~ ~ 0.4

0.2

0.2

0.1

0.0
0 5

Z/Zp

0.0
10 0 4

S/Zp

0.6 I I
)

I I 0.8

pD 03
c)

04

0.0 0.0
2

Z/Sp

FIG. 1. The adimensional baryon density of the
two-nucleon bound state for various values of the ratio d/p:p

of bound-state size to nucleon size. Pull line, soliton model;
dot-dashed line, quark model; dashed line, convolution of the
single-nucleon density with the probability density for the rel-
ative position of the nucleon centers.

Bose statistics of the field quanta, is perhaps surprisingly
small. We note, however, that in a state of two localized
solitons, the baryon density would be [see (38)]

other hand, the Bose statistics of the basic quanta results
in only a small increase of the density in that region.

The smallness of the effect obtained in the soliton
model can be at least partly attributed to the fact that
the baryon (topological) density is a linear function of the
field operator. This feature is peculiar to one-dimensional
topological soliton models, so that the conclusion that
statistics effects are small may not persist in a more re-
alistic model. In any case, in three as well as in one
dimensions, a soliton is described quantum mechanically
by a coherent state, which is a superposition of many
quanta in different linear xnomentum states. This can be
contrasted with the quark model, in which only a small
number of difFerent states are relevant. On this basis,
one would expect statistics effects to be more significant
in quark models. Of course, our schematic model overes-
timates these effects since it disregards spin and isospin.

Since our purpose was to compare statistics effects,
we have constructed our models in such a way as to yield
identical baryon densities for a single nucleon. In fact, the
baryon number distribution of the nucleon in the Skyrxne
model possesses a hole at the center, whereas the stan-
dard quark model yields a maximum. In addition, we
have not considered dynamical effects, which could also
influence bound-state densities.

The mesons making up the topological soliton have
been considered here as structureless elementary quanta.
The fact that these mesons are of course themselves
quark-antiquark bound states implies further statistics
effects, which can safely be neglected only if the mesons
are sufBciently small compared to the nucleon.

The analysis of baryon densities presented here could
of course be applied to any charge density of interest, as
well as to other nuclear properties. Calculations in real-
istic models would be needed to assess the possibility of
exploiting such quantum statistics effects to distinguish
between models of the nucleon experimentally.

(~l p(*) l~)

(el~)
= piv(* —u)+(~(*+~) . (43)
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V. CONCLUSIONS

The in8uence of the statistics of nucleonic constituents
on the baryon density of a two-nucleon bound state has
been studied in schematic one-dixnensional xnodels.

In the quark model, the Pauli principle is responsible
for a significant suppression of the density in the central
region of the bound state. In the soliton model, on the

APPENDIX

Ci(u) = 2s. dIccosku e
0 k'+ q' (A1)

In order to cast the overlap between localized two-
soliton states in a form suitable for numerical evaluation,
we first consider the functions Ci and C2 defined by (32)
and (40), respectively. Using (35), we get
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7r2m
C~(u) = e nl I + C, (u (A2)

with

Separating the contribution &om the pole of the inte-
grand at k = 0, we rewrite this expression in the form

at k = 0 can again be separated. It is also necessary to
isolate the logarithmic singularity of this term at u = 0.
Performing these manipulations, we derive

.7r x m — u
2

Cz (u) ——t —[8(u) —8(—u)]—
2 rl

Cy(u) = 2rr dkc osk u( urge
*o" —m)/k

0
(A3)

where

+ ln + C2(u),u+m —' (A5)

Similarly, &om (35) and (36), we get

OO k
C2(u) = —i dksinku

0 k2+ g2

dk cos ku
0

k2 + 4~2~2 g 2xp k

(A4)+ g

The first term of this expression can be written immedi-
ately in terms of the Heaviside step function. In the sec-
ond term, the contribution from the pole of the integrand

1 OOcos t —1 cos t
t+ mlul, t+ mlul

OO

dk cos ku —( k + 4rr&furze
—»or"

(k2

1—2rrm)— k+ m)
(A6)

Inserting the expressions (A2) and (A5) in (39) and
taking the limit g ~ 0, we obtain

I

, exl [2~'m(lyl+ ly'I —ly+ y'I —
ly

—y'l)1

x exp(Cz(2y) + C2(2y') + 2[CD(y + y') + Cq(y —y') —Cq(0)]) . (A7)

It can be verified that the functions Cq and C2 are well behaved and vanish for large values of their argument. Once
these functions are obtained by performing numerically the Fourier transforms (A3) and (A6), the baryon density of
the two-body bound state in the soliton model can be computed by substituting (38), (A7), (6), and (9) in (13) and
(10).
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