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Microscopic description of the anisotropy in alpha decay
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A microscopic description of alpha decay of odd mass nuclei is given for axially deformed nuclei.
Realistic mean field+pairing residual interaction in a very large single particle basis is used. Sys-
tematics for At and Rn isotopes, as well as for Fr, are given. A pronounced anisotropic emission
of alpha particles at low temperatures is predicted as function of deformation for the At and Rn
isotopes. This shows that alpha decay is an excellent tool to probe intrinsic deformations in nuclei.

PACS number(s): 23.60.+e, 21.60.Gx, 21.10.Gv, 27.90.+b

It has been shown a long time ago that in odd-mass ac-
tinides at very low temperature alpha particles are emit-
ted preferentially with respect to the direction of the
total nuclear spin [1—5]. Recently new experiments [6]
have renewed the interest in this problem by reporting
anisotropic emission in some near spherical At isotopes,
in connection with several theoretical descriptions of this
effect.

An isotropic emission of alpha particles kom deformed
nuclei was first explained by Hill and Wheeler [7] and
later by Bohr, Froman, and Mottelson [8] in terms of the
penetration of the alpha through a deformed Coulomb
barrier. It was thus found that since for a prolate nucleus
the barrier at the poles is narrower than at the equator,
the probability to penetrate the barrier is larger along
the nuclear symmetry axis. More recently, in order to
explain the observed anisotropies for near spherical At
isotopes, Berggren [9] proposed on alpha+core model.
A quadrupole-quadrupole interaction between the al-
ready existing structureless alpha cluster and an odd-
mass core was diagonalized in a weak coupling scheme.
The strength of the interaction was adjusted to obtain the
energy of the emitted alpha particle. Using this model
several solutions with pronounced anisotropy were ob-
tained [10]. Buck et al. [11] describe alpha decay from
odd-mass nuclei in a similar model, in which the depth
of the alpha-core potential (taken as a square well), the
alpha formation probability, and the number of nodes in
the radial wave function are 6tted to the experimental
data. Rowley et al. [12] followed the same philosophy,
diagonalizing the quadrupole-quadrupole interaction in
an extreme cluster model basis.

In a recent series of papers [13,14] we used a re-
alistic deformed xnean field with a large con6guration
space+pairing residual interaction in computing the pre-
formation aDiplitude of the alpha cluster inside the nu-
cleus. %'e estimated the penetration through the de-
formed Coulomb barrier within the &amework of the
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FIG. 1. Upper part: total alpha decay width versus
quadrupole deformation for the odd-proton nucleus At.
Lower part: total alpha decay width versus quadrupole de-
formation for the odd-neutron nucleus Rn.

Wentzel-Kramers-Brillouin (WKB) approximation. The
anisotropy was explained mainly by the eKect of the
deformed barrier. By comparing the complete calcu-
lation with the one containing only a spherical L=O
component in the formation amplitude it was con-
cluded that the anisotropy for the case of the transition
2si Amm2srNp+a was changed by only 10%. Finally, the
total width as well as the measured anisotropy were well
reproduced in this transition.

The aim of the present paper is to continue our pre-
vious paper [14], where details of our formalism can be
found, giving a systematic analysis of anisotropic alpha
particle emission &om odd-mass nuclei at low tempera-
ture. %e also give some predictions concerning a recent
proposal of experiments on anisotropy in At and Rn iso-
topes [15].
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TABLE I. Total widths (in MeV) in the case of At isotopes for difFerent quadrupole deformations. Experimental widths (m
MeV) from the compilation of Ref. [11].

p2 =
85 At
203At
205At

85 At,

85209'
"'At

—0.3
1.4(-23)
1.3(—24)
1.4(—2S)
1.6(—26)
s.7(-27)
1.6(—26)

—0.2
8.8(—24)
7.9(-25)
8.5(—26)
9.5(—27)
3.3(—27)
9.3(—27)

—0.1
6.1(—24)
5.4(—25)
5.8(—26)
6.4(—27)
2.2(—27)
6.3(—27)

0.0
5.2(—24)
4.6(-25)
4.9(—26)
s.s(-27)
1.9(—27)
5.4(-27)

0.1
6.3(—24)
5.6(—25)
6.0(-26)
6.6(—27)
2.3(—27)
6.6(-27)

0.2
1.1(—23)
1.0(—24)
1.1(—25)
1.2(—26)
4.3(-27)
1.2(—26)

0.3
2.7(—23)
2.5(—24)
2.8(—2S)
3.1(—26)
1.1(—26)
3.1(-26)

~exp

3.5(—24)
3.3(—2S)
2.8(—25)
6.2(—27)
0.9(—27)
7.4(—27)

In order to reproduce correctly the behavior of the for-
mation amplitude in a region outside the nuclear sur-
face (the asymptotic region) one needs to include very
high lying single-particle states in the basis because in
that region the wave functions corresponding to low-

lying states are negligibly small [13]. We therefore use
a harmonic oscillator basis that contains 18 major shells.
The parameters of the deformed Woods-Saxon potential
used in the calculations, are given in Ref. [16]. The nu-

clear wave functions were calculated using the Bardeen-
Cooper-SchriefFer (BCS) approximation with a pairing
residual interaction [13,14].

With the basis and the residual interaction thus cho-
sen we proceed to evaluate the absolute decay width and
the W-coefficients [14] as a function of the deformation
parameters. It is known that, in even-even nuclei, de-
formations play an important role in alpha decay [13],
although only the quadrupole and the hexadecapole de-
formations determine the absolute decay width. In the
case of odd-mass nuclei that we study here a similar be-
havior is found for allowed transitions. For instance, one
observes in Fig. 1 that the total width for the case of the
odd-proton nucleus At is strongly dependent upon the
quadrupole deformation P2. The total width increases by
about one order of magnitude by changing P2 from 0 to
+0.3 (i.e., for prolate deformations). A similar behav-
ior is seen in this figure for negative quadrupole (oblate)
deformations. However, as it was the case for even-even
nuclei, the role of larger multipolarities on the total width
is practically negligible. The inQuence of the deformation
for the other At isotopes is very similar, as can be seen
in Table I.

An even more pronounced efFect of deformation on al-
pha decay can be seen for the nucleus Rn, also pre-
sented in Fig. 1. The interesting feature of this case is
that the mass number is the same as in the nucleus At.
It is only the odd neutron in Rn that produces the diHer-
ences between the two cases. The calculated total decay
widths as a function of P2 for the other Rn isotopes are

reported in Table II.
The angular dependence of the emitted alpha parti-

cle is given by the corresponding emission probability.
This is determined by the W-coefBcients which, as seen
in Ref. [14], are a superposition of all L-deformations
through the coefBcient AL, . In Fig. 2 we present the
dependence of the coefficient AL, as a function of the
quadrupole deformation for the odd-proton case of 207At

with I; = Iy ——2. The coefBcient A2 has positive values

(in phase with As=1) for prolate deformations and neg-
ative values (opposite phase) for oblate ones. The other
coefFicients AL, with I g2 are virtually negligible. For
instance, the values of A4 are one order of magnitude
smaller than A2. In spite of this, it is interesting to note
that A4 is positive and symmetric with respect to the de-
formation parameter P2. A similar qualitative and even
quantitative behavior is found for the other At isotopes,
as can be seen in Table III. Actually even for the odd-
neutron case of Rn (I; = Iy ——2) and the other Rn
isotopes all the features discussed above are essentially
the same, as can be seen in Table IV.

The dependence of AL, versus deformation determines
the corresponding behavior of the S'-coeScients. Thus,
one sees in Fig. 2 that the values of W(8 = 0') (solid
line) and W(8 = 90') (dashed line) in the case of 7At
are strongly dependent upon quadrupole deformations,
as was the case for the corresponding coefBcient A2. The
coefBcient W(8 = 0') increases while W(8 = 90') de-
creases as a function of P2. Therefore our calculation
predicts that the ratio R = W(0 )/W(90') should be
R ( 1 for oblate and R ) 1 for prolate deformations.
It is worthwhile to point out that R $1 even for small
deformations.

Practically identical results are found for other At iso-
topes, as can be seen in Table V, as well as for all Rn
isotopes, as seen in Fig. 2 and Table VI.

We have so far analyzed the in8uence of quadrupole
deformation on anisotropy. The corresponding defor-
mation parameter P2 is usually extracted from the elec-

TABLE II. Total widths (in MeV) in the case of Ru isotopes for different quadrupole deformatious. Experimental widths
(in MeV) from the compilation of Ref. [11].

p2 =
205R
86
207'
86
209R
86
219R
86

—0.3
1.8(-24)
2.3(—25)
1.2(-2S)
4.?(—22)

—0.2
1.1(—24)
1.4(—25)
7.4(—26)
3.0(—22)

—0.1
7.8(—25)
9.8(—26)
5.1(—26)
2.1(—22)

0.0
6.7(—2S)
8.5(—26)
4.4(—26)
1.8(—22)

0.1
8.0(—25)
1.0(—25)
5.3(—26)
2.2(—22)

0.2
1.4(—24)
1.8(—25)
9.2(-26)
3.6(-22)

0.3
3.3(-24)
4.2(—2S)
2.2(—2S)
8.1(—22)

~exp

6.2(—25)
1.9(—25)
4.6(—26)
8.6(—24)
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TABLE III. The coef6cient A2 in the case of At isotopes for several values of the deformation.

P2 =
2o1At
85

85203At

,",'At
85"'At
2o9At85

85211At

—0.3
—1.048
—1.054
—1.057
—1.061
—1.063
—1.059

—0.2
—0.882
—0.889
—0.893
—0.897
—0.900
—0.895

—0.1
—0.566
—0.573
-0.578
—0.582
—0.585
—0.579

0.0
0.000
0.000
0.000
0.000
0.000
0.000

0.1
0.776
0.790
0.799
0.806
0.812
0.801

0.2
1.479
1.498
1.510
1.520
1.528
1.514

0.3
1.912
1.92?
1.93?
1.945
1.951
1.940

TABLE IV. The coefBcient A2 in the case of Rn isotopes for several values of the deformation.

P2 =
205R
86
206R
87
209R
86
219R
86

—0.3
—0.750
—0.753
-0.754
—0.741

—0.2
—0.620
—0.630
—0.625
—0.609

—0.1
—0.388
—0.391
—0.392
—0.378

0.0
0.000
0.000
0.000
0.000

0.1
0.512
0.515
0.518
0.493

0.2
0.978
0.985
0.989
0.953

0.3
1.279
1.285
1.290
1.258

TABLE V. The coefffcients W(t9) for 8 = 0' and 8 = 90' for At isotopes.

—0.3 —0.2 —0.1
W(0')

0.0 0.1 0.2 0.3

201A
85

85
203At

85205At

85
207At
209At85

85211At

201At
203At

85 At
207At85
209At

85 At

0.134
0.131
0.130
0.128
0.127
0.129

1.593
1.596
1.599
1.601
1.603
1.600

0.235
0.230
0.227
0.225
0.223
0.226

1.485
1.489
1.492
1.494
1.496
1.493

0.476
0.470
0.466
0.463
0.460
0.465

W(90')
1.299
1.303
1.305
1.308
1.309
1.306

1.000
1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
]..000
1.000
1.000

1.839
1.854
1.865
1.873
1.880
1.867

0.635
0.629
0.625
0.622
0.620
0.624

2.705
2.730
2.747
2.760
2.771
2.752

0.346
0.339
0.334
0.330
0.327
0.333

3.311
3.334
3.348
3.360
3.370
3.353

0.194
0.189
0.186
0.183
0.181
0.185

TABLE VI. The coefficients W(8) for 8 = 0' and tt = 90' for Rn isotopes.

205R
86
207R
86
209R
86
2198
86

2058
207R
86
209R86
219R
86

—0.3

0.294
0.292
0.291
0.302

1.392
1.393
1.394
1.387

—0.2

0.408
0.405
0.403
0.417

1.320
1.322
1.323
1.314

—0.1

0.622
0.619
0.618
0.631

1.197
1.199
1.200
1.193

0.0
W(0')

1.000
1.000
1.000
1.000

W(90')
1.000
1.000
1.000
1.000

0.1

1.524
1.529
1.532
1.506

0.750
0.748
0.?46
0.758

0.2

2.026
2.034
2.039
1.998

0.529
0.526
0.524
0.541

0.3

2.365
2.372
2.376
2.340

0.393
0.390
0.388
0.402

TABLE VII. Deformations, experimental, and computed total widths, the coefBcients
AL„L =2,4, the coefficient W(8) for 8 = 0' and 90' and their ratios for realistic values of defor-
mation within the chain of Rn isotopes.

205R
86
2078
86
209R
86
219R
86
221F87

0.005
0.016
0.023
0.081
0.069

I exp

6.16(—25)
1.90(—25)
4.56(—26)
8.61(—24)
2.40(—25)

6.76(—25)
8.50(—26)
4.27(—26)
2.05(—22)
1.08(—24)

0.022
0.076
0.111
0.398

—0.288

0.000
0.000
0.001
0.008
0.005

W(0')
1.022
1.076
1.112
1.406
0.717

W(90')
0.989
0.962
0.944
0.804
1.146

w(oo)
%'(90 )

1.034
1.118
1.177
1.749
0.626
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FIG. 2. The coefficients AL, for L=2 (solid line) snd I=4
(dashed line) for the nuclei At snd Rn as s function
of the deformation. On the right side the coefffcients W(0')
(solid line) snd W(90') (dsshed line) versus deformation for

At and Rn are also given.

tric quadrupole moment, which is a measurable quantity.
This quantity has been measured for zos sod sos z~sRn as
well as for zz~Fr. In connecting quadrupole moments with

P2 we use the standard relation [17]

3K2 —I(I + 1)
(2I + 3)(I + 1)

'

with Qo denotes the intrinsic quadrupole moment.

3
Qo = &'p2.

5z
(2)

In our case we use for the parent nucleus K = I = I;
The computed deformatjons for s~ o~» sRn and

for Fr are given in Table VII. In Fig. 3 we plotted the
ratios R for 2os 2o~ 2os 2~@Rn as a function of the deforma-
tion parameters extracted &om experiment. One can see
that even for small deforrnations there is an observable
anisotropy. In the case of ~sRn this effect is large, as
expected. In this range of deformation the dependence
of that ratio on the deformation is linear. In the same
6gure we plotted R as a function of the same number.
Corresponding numerical values are given in the Table
VII.

Experimental values of the function W(8) are affected
by several experimental corrections [15]:

W(8) = 1+ ) QI, BL,UgAgPI, (cos8).
L=2,4

Here Ar, are the theoretical A-coefBcients [14], QL, sre
coeKcients that take into account the dimensions of the
source and detectors, BL describe the orientations of the
nuclei, and UL correct BL for unobserved intermediate
transitions.

In the decay [14]

FIG. 3. The ratio R = W(0')/W(90') for Rn isotopes as s
function of the deformation. In the lower part the same ratio
for Rn isotopes as a function of the mass number is reported.

Am -+ Np + o.

the overall correcting coefficient was found to be
Qz82U2 ——0.50 for 8 = 0' and 0.52 for 8 = 90' for
quadrupole deformations while the contribution of hex-
adecapole and higher deformations is negligible. One can
expect the same experimental corrections in the cases an-
alyzed in this paper.

In conclusion, we have presented, in the present pa-
per, a systematic microscopic calculation of quantities
related to alpha particle emission from oriented odd-mass
At and Rn isotopes at low temperature. We emphasized
in this study the importance of anisotropies in alpha de-

cay processes as a tool to extract intrinsic deformation
parameters in nuclei. In order to describe correctly the
asymptotic behavior of the formation amplitude we used
a large single-particle basis. We found that the proba-
bility of emitting an alpha particle in the polar direction
with respect to the corresponding probability in the equa-
torial direction is strongly dependent on the emission an-
gle. For prolate deformations that ratio is greater than
one, while for oblate deformations it is less than one. We
also found that deformations higher than quadrupole do
not play any signi6cant role in the emission probability.
Even for near spherical nuclei the anisotropy was found
to be measurable. The importance of this result is that
it can shed some light on the problem of determining
deformation parameters &om experimentally extracted
quantities. We did this by using measured quadrupole
moments, as usual. We adopted for the corresponding
calculation the Bohr-Mottelson liquid drop model. But
the value of the deformation parameter P2 may be dif-
ferent if one uses other models. For instance, within the
alpha-core coupling used in Ref. [10] the relation be-
tween quadrupole moment and P2 is different from the
relation given in Eq. (1). Therefore, the experimental
determination of anisotropies in alpha particle emission
is important to clarify this old but still timely problem.
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