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The p spectrum following the a decay of Pu has been reinvestigated with a high-resolution
HPGe detector. Accurate energies and intensities are reported for 26 p transitions, of which 20 were
observed for the first time. A decay scheme is constructed using the Ritz combination principle, pp
coincidence data, and previously known data from nuclear reactions and from Pa P decay. We
observe feeding of the ground-state rotational band up to spin 8, the P vibrational band to spin 4,
the K = 0 octupole vibrational band to spin 5, and the bandhead of the p vibrational band. New
states of U at 927.3 and 967.7 keV, populated with low a-decay hindrance factors, are assigned
as members of a second-excited K = 0+ band. The ratio of El/E2 transitions in the decay of
these states suggests that the E1 transitions to members of the K = 0 octupole band may be rather
fast ( 10 Weisskopf units). Systematics of hindrance factors for a decay to vibrational states
are presented.

PACS number(s): 21.10.Hw, 23.20.Lv, 23.60.+e, 27.90.+b

I. INTRODUCTION

U is a nuclide at the borderline of the mass region
(220 & A & 230), in which stable reflection-asymmetric
octupole deformations occur [1]. Its neighbor 2s4U is a
typical quadrupole-deformed nucleus [2], whereas 22sTh

has a much lower lying K = 0 band, suggestive of
reHection asymmetry [3]. Excited states of 2s2U have
been studied in 2s2Pa P decay [4—6], 2s~Np electron
capture decay [7], and the reactions 2soTh(a, 2') [8,9]
and 2s2Th(a, 4np) [10—12]. There have been few mea-
surements of ~36Pu o, decay, due to the weakness of the
sources available. The main studies are those of Hummel,
who investigated the o.-particle spectrum and coincident
low-energy p rays [13], and Lederer, who measured ap
and ne coincidences [14].

II. EXPERIMENTAL DETAILS

A. Radiochemical separation of ~ Pu

Pu was produced by 34-MeV proton irradiation of 3-
mm-thick, 38-g depleted uranium targets () 99.8% 2 sU)
at the Isochronous Cyclotron (CERI Orleans). With a
view to obtaining a very strong source needed for our
investigation on exotic ( Mg) emission of Pu, we per-
formed ten irradiations over a period of 15 months, of

Author to whom correspondence should be addressed.

duration between 60 and 90 h, with a beam current of
approximately 20 pA.

The proton energy and target thickness were chosen
to optimize the production of Np by the reaction

U(p, 3n); 22.5-h Np decays to Pu by a 50% P
branch. Other activities produced under conditions of
the irradiation include 396-d 2ssNp, 2.12-d 2MNp, its
87.7-yr Pu daughter, and Gssion products, which con-
stitute most of the total activity prior to chemical purifi-
cation.

After a cooling time of about 2 months, the uranium
targets were dissolved in hot, concentrated HNO3. The
resulting solution, adjusted to 7M HNO3 and a UO2
concentration of about 150 g/1, was loaded onto a col-
umn (height 20 cm, diameter 1 cm) containing Dowex
1 x 8 anion-exchange resin, on which Pu4+, Np4+, and
Th4+ adsorb while UO2 2+ passes through. Thorium was
eluted with a 10M HC1 solution, and neptunium and
plutonium were eluted together with a 2M HC1 solu-
tion. Plutonium was separated kom neptunium on a
small anion-exchange column (height 6 cm, diameter 0.3
cm) thermostatted at 60'C. After adsorption from a 7M
HNO3 solution, which eliminated last traces of uranium,
a reducing solution consisting of 0.05M HI in 8M HC1
eluted the plutonium as Pu +. 6Pu isolated &om the
ten targets was combined to make the 6nal source.

Although the U daughter and 22s Th granddaughter
of 2ssPu have relatively long half-lives (71.7 and 1.9 yr,
respectively), the short-lived descendants 2~2Bi, 2~2Pb,

and Tl, which emit intense p rays, appear quickly in
the spectrum with intensities comparable to the inten-
sities of the weak Pu p rays. In order to minimize
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this interference, the daughters were removed just be-
fore the final source preparation. The plutonium frac-
tion was evaporated to near dryness, redissolved in 10M
HCl with 2 drops of concentrated HNO3, and loaded onto
a small anion-exchange column. Th was eluted with
10M HCl, fo11owed by 8M HNO3 to remove 3 U and
iron impurities. Finally, plutonium was recovered in less
than 1 cm of 2M HCl. Only traces of the tetravalent
and pentavalent fission products ( Zr, Nb, and Sb)
remained in the final source, their activity amounting to
less than 10 4% of the plutonium activity.

A Pu source of 1 cm area was prepared on a plat-
inum disk (0.01 mm thickness) by electrodeposition from
an NH4C1 medium. A more detailed account of the sepa-

ration scheme will be published elsewhere [15]. The final
activity, measured by 0-spectrometric assay of aliquots
with a Si(Au) detector and a 21r ionization chamber, was
74+ 8 MBq.

B. Spectrometers

The spectrometer for p-ray singles measurements was
a 40% relative efficiency coaxial n-type HPGe detec-
tor (Canberra) with an energy resolution (FWHM) of
1.75 keV for the 1333-keV p ray of Co. Spectra were
recorded with an 8192-channel multichannel analyzer
(EGkG Ortec). To reduce background contributions the
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detector head was inserted in a lead shield of 5 cm thick-
ness internally covered with 2-mm-thick copper foils. The
spectrometer was calibrated in energy and efBciency with
multigamma standard sources such as Eu, Ba, and
207Bi

pp coincidences were measured with three n-type coax-
ial HPGe detectors of 20% relative eKciency, placed at
angles of 90', 180, and 270 with respect to a planar
HP Ge LEPS detector of 20 cm area. The energy res-
olution was 1.8-1.9 keV (FWHM) at 1333 keV for the
coaxial detectors, 0.50 keV at 122 keV for the LEPS de-
tector. The electrodeposited source was located 5 cm
&om each detector. Events coincident between any pair
of the four detectors were selected by a standard hard-
ware circuitry (MIPRE system) and the information from
TAC and ADC converters was stored event-by-event on

magnetic tape.

III. MEASUREMENTS AND RESULTS

p spectra were measured within 10 days after source
preparation to reduce the contribution &om Pu de-
scendants. To reduce the contribution of 47.57 and
108.95 keV p rays, we inserted an absorber consisting of
a 1.5-mm-thick lead sheet covered with a 1-mm copper
sheet between the source and the detector when measur-
ing the spectrum above 300 keV. Several counting runs
of about 15 h duration were carried with this con6guraer
tion and a source-to-detector distance of 10 cm. In this
geometry the counting rate is low and summing eff'ects
are negligible. The spectrum recorded under these con-
ditions is shown in Fig. 1.

The spectrum includes a broad peak (FWHM=7. 6
keV) around 870 keV. When the electrodeposited source
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is replaced with a Pu solution, the broad peak dis-
appears, revealing three well-resolved photopeaks. The
870-keV peak is caused by the ~4N(a, p) reaction on the
nitrogen of the air surrounding the source, which popu-
lates the first excited state of ~rO at 870.8 keV [16]. The
Doppler-broadened p ray that de-excites this state masks
the p rays from the source.

Table I summarizes the data obtained from our analy-
sis of the spectrum and compares them to previous work.
p rays &om activities other than Pu—descendants of

Pu and traces of the Gssion products Zr, Nb, and
Sb—are omitted from the table. Their well-known p

spectra are easily distinguished from the p rays of 6Pu.
Our intensity normalization is based on a ground-state
(g.s.) a branching of (69.14+0.33)% [17]. We assign 26
p-ray transitions to the decay of Pu, including 20 not

previously seen in this decay scheme.
Coincidences were measured during a four-day count-

ing period. A total of 6.3 x 10 ppt events were collected.
Spectra were analyzed oK-line by setting gates on sev-
eral p-ray lines. Typical coincidence spectra are shown
in Fig. 2, and Table II summarizes the results obtained
with diferent gates.

IV. DISCUSSION

The revised Pu decay scheme shown in Fig. 3 was
constructed using data from the present work and previ-
ous data on 23 Pu decay, 3 Pa decay, Np decay, and
(n, xnan) reactions. The observed p rays, with the excep-
tion of the 927.69-eV transition as discussed below, are

TABLE I. Energies and intensities of p rays following Pu o. decay.

Present work Previous work

E~ (keV)
47.57 (2)

108.95 (2)
166.09 (5)
218.0 {1)
338.5 (1)
364.00 (10)
404.46 (10)
423.85 (20)
472.34 (10)
515.58 (2)
563.19 (2)
577.95 (10)
581.41 (10)
590.28 (10)
643.87 (3)
677.0 (2)
687.04 (10)

710.1 (3)
734.55 (10)
811.26 (20)
819.27 (10)
866.88 (10)
879.90 (10)
920.23 (20)
927.69 (20)
967.9 (3)'

3.2 (1)
3.08 (13)
9.4 (1)
6.0 (2)
4.9 (3)
2.1 (1)
9.6 (1)
3.6 (4)
3.5 (8)

x10
x10
x10
x10
x10
x10
x10
x10
x10

I. (%)
0.065
0.0225
7.35 (2) x10
8.4 (1) x10
7.2 (1) x10
1.09 (15) x10
5.5 (1) x 10
6.3 (1) x10
2.5 (2) x10
1.63 (5) x10
1.14 (4) x10
1.2 (2) x10
4.1 (2) x10
1.8 (1) x 10
2.25 (9) x10-'
9.5 (4) x10
2.3 (1) x10-'

F~ (keV)
47.65 (5)
108.96 (5)
166.3 (2)'
218.4 (1)

424.3 (5)'
472.390 (6)
515.607 (9)
563.197 (7)

581.398 {8)
590.4 (5)'

645"
676.5 (2)'
687.0 (1)'
691.3 (1)' (EO)
710.1 (1)'

819.187 (13)
866.760 (19)

1~ (%)
0.031
0.012b
6.6 x10

1.7
1.0

x10 ''
x10 4'

3.5 (10)x10

2.4 (3) x 10 s

Pa P decay [6].
Reference [13].

Th(o. , 4np) [12].' 'Th(o. , 4np) [11].
'"oTh(cr, 2np) [8,24].

Pa P decay [25].
sReference [14].

Pa P decay [4].
Th(n, 2np) [9].
Pa P decay [5].

"Not placed in the level scheme (see text).
'Distinct from the well-known 968.97-keV p ray from Ac decay [3], present in the background of
the measurement room.
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placed in the level scheme on the basis of their energies
and the coincidence results.

The n-transition intensities in Fig. 3 were calculated
from the p-ray intensities, converted to transition in-
tensities with the use of theoretical internal conversion
coefficients (ICC) of Rosel et al. [18]. Multipolarities
adopted for this purpose are based on measured ICCs
and the adopted spins of the initial and 6nal states. Ad-
ditional multipolarity assignments are derived from the
p-ray branching ratios. The derivation of these multipo-
larities and the calculation of intensities for unobserved

Gate energy
(keV)

47
109
166
338
364
404
472
515
563

Coincident p-ray energy
(keV)

108,166,515,643,811
47,166,472,590
109,218,423
472,581
515,563
515,563
109,338
364
364,404

TABLE II. Summary of the pp coincidences following
"'Pu n decay.

p rays and EO transitions are described below. o,-decay
hindrance factors (HF) were calculated from the one-
body spin-independent model of Preston [19].

The ground-8tate rotational band. Levels of the g.s.
band through spin 20 are known from the Th(n, 4np)
reaction [10]. Levels through spin 6 have previously
been observed in 2ssPu u decay [13]. Observation of the
8+ ~ 6+ transition establishes the o, decay to the spin-8
member of the band at 540.70+0.12 keV with an inten-
sity of (1.3 + 0.2) x 10 %%uo.

The K = 0 octupole vibrational band. This band is well
established from the decay of 2s2Pa [4]. States through
spin 13 have been observed in the 2s Th(a, 4np) reac-
tion [8]. Our measurements yield an improved energy for
the spin-5 member: 746.79+0.13 keV. Lederer showed
that o, decay populates the bandhead with an intensity
of (2.7+ 0.3) x 10 '%%uo and set a limit of 1.5x10 '%%uo on
the population of the spin-3 member [14]. We observe p
rays deexciting spin-1, -3, and -5 members of the band.
The o. feeding of the spin-1 state is (2.6 6 O. l) x 10 4%%uo,

in agreement with the previous value. The 3 state ap-
pears to be fed only by a transition from the 967.66-keV
state; direct o. feeding, as estimated from the intensity
balance, is ( 1 x 10 %. a decay feeds the 5 state with
an intensity (2.5 +0.l) x 10 s. Thus, the l = 5 n tran-
sition is less hindered than the l = 3. Inversion of the n
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population of the 3 and 5 states also occurs in ~ U
decay to 2 Th [20].

The P vibrational band (states at 691 $$+0 05., .
78$ 56+0 06,. and .888.58+0.20 ke V). Lederer observed
n decay to the 0+ P vibrational state with an inten-
sity 5.9 x 10 4% and set a limit of 2 x 10 % on a
possible o. branch to the spin-2 member of the band
[14]. Our data confirm these results and provide evi-
dence of o. decay to the spin-2 and spin-4 members of
the band. The o. branching to the 691.44-keV 0+ state,
(5.8+ 1.0) x 10 %, is calculated from our p-ray intensi-
ties and the EO intensity deduced from the o,-e coinci-
dence measurement [14]. p-ray branching from the spin-2
member of the P vibrational band yields a mixing param-
eter zp~ ———0.016+0.004 and a pure E2 multipolarity for
the 687.04-keV p ray (b & 10). n feeding of this state,
(1.3+0.1) x 10 %, is calculated from the measured p-ray
intensities and an EO(687.04 keV, 02+ ~ 02+) intensity
of (6.8 + 2.0) x 10 s%, which we estimate by assuming
that the ratio of EO/E2 strength is the same as for the
00+ state.

a decay to the 04+ state is inferred from the 677.0-
keV (04+ ~ 04+) p ray. Transitions from the 04+
state to the 02+ and 06+ states are masked by the
785.5-keV Bi p ray and annihilation radiation, respec-
tively. From I~(677.0 keV) and the value of zps calcu-

lated for the 02+ state, the expected p-ray intensities are
(3.2+0.3) x 10 "% (04+ —+ 02+) and (1.7+0.2) x 10
(04+ ~ 06+). The calculated (04+ ~ 02+) intensity is
higher than the experimental limit of ( 1.6 x 10 7% on
the intensity of a possible Pu p ray at 786 keV. For
estimation of the o. feeding of the 833.5-keV 04+ state,
we adopt an intensity of 1.6x10 % for this transition,
= 2.7 x 10 ~% for the total intensity of the p rays (pho-
tons) deexciting the 04+ state. The calculated EO inten-

sity of the 04+ m 04+ transition is (3.2 + 0.9) x 10
based on the assumption that the EO/E2 strength ratio
the same as for the 00+ state. Thus the calculated o.
feeding of the 04+ state is 6 x 10

The p vibrational band. This band and its mixing with
the P vibrational band have been characterized in detail
in the decay of 2szPa [4]. The 2+ bandhead is popu-
lated with an n intensity of (1.21 +0.06) x 10 '%%up. (The
calculated feeding is corrected for the presence of weak
transitions observed to deexcite the state in Pa decay
[4].) There is no evidence for population of the spin-4
member of the band at 970 keV; absence of an 814-keV
p ray (24+ ~ 04+, I~ ( 4 x 10 %) sets a limit of
5 x 10 % on the n feeding of this state.

States at 927.8+0.2 and 967.7+0.2 keV. These states
are observed here for the Grst time. Their existence is

firmly established by the p-ray energies and the coinci-
dence results. Although we lack multipolarities on which
to base firm J assignments, there is strong evidence that
these states are the spin-0 and -2 members of a K = 0+
band: (1) Their deexcitation pattern suggests that they
are members of the same band, and the 40-keV separa-
tion between the states favors the assignments 0+-2+. (If
the states belong to the same band and are both popu-
lated directly by o. decay, possible combinations of J
values are limited to 0+-2+, 1 -3, 2+-4+, etc.) (2) The
deexcitation pattern limits the choice of spin values. If
the p-ray transitions &om the 967.66-keV state to spin-0,
-2, and -4 members of the g.s. band are correctly placed,
a 2+ assignment for this state is nearly certain. (3) The
o.-decay hindrance factors are very low. For nuclei in this
region, only the favored o. transition and transitions to
excited K = 0+ states (and their analogs in odd-mass
nuclei) have hindrance factors under 10. Low hindrance
for the o. transition to the 0+ state and an even less
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hindered n transition to the spin-2 member of the band
appear to be characteristic of second-excited K = 0+
bands, based on two other cases in which analogous o,

transitions have been observed (the decay of 2ssPu and
242Cm). However, the occurrence of a 927.7-keV p ray is
tentative evidence against the proposed assignments. If
this is a ground-state transition from the 927.3-keV state,
a 0+ assignment for the state must be ruled out. Because
other evidence strongly favors the proposed assignments,
we leave this transition unplaced; its assignment to the
decay of 2 6pu needs to be verified and its placement
determined.

Decay of the 927.3- and 967.7-keV states to members
of the K = 0 octupole band suggests an interpretation of
the band as a two-phonon octupole vibration. The ratio
of the E1 intensities to the intensities of E2 transitions
to the g.s. band, each expressed in Weisskopf single-
particle units (W.u.), is 1.5 x 10 . If the E2 transitions
have strengths of about one single-particle unit, then the
E1 strengths are 10 W.u. This is comparable to
the rates of the one-phonon —+zero-phonon octupole-band
transitions in lighter thorium nuclei and faster than the
rates in nuclei heavier than 2~ Th [8,21]. Interpretation

II
of the K = 0+ band as a two-phonon octupole exci-
tation is in agreement with the calculations of Ivanova
et al. , which predict that this configuration will be the
main component (80% squared amplitude) of the second-
excited K = 0+ band in U, whereas the first-excited
K = 0+ band is predicted to be mainly a one-phonon

P vibration (84%), with only 3% of the two-phonon oc-
tupole configuration [22].

Two-band mixing analysis of the p-ray branching ra-
tios &om the 967.7-keV state to members of the g.s. band
yields a mixing parameter zp~~ ——+0.025 6 0.007 and an
E2/Ml mixing ratio b2 = 1.3 6 0.4 for the 920.23-keV

tl
02+ + 02+ transition.
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broad, deep minimum in the energy of the band around
N = 136. This minimum, the low hindrance factors, and
even lower hindrance factors for analogous transitions in
odd-mass and odd-odd nuclei have been interpreted as
evidence of a tendency toward stable reflection asymme-
try [1]. It would be of interest to know whether the trend
toward higher hindrance factors for l = 5 transitions con-
tinues below N = 136 and, if so, how the interpretation
of these states might be affected.
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/ = 4 transitions are quite hindered and also appear to
have a maximum near N = 140.

Figure 4(c) summarizes the known hindrance factors
for o. decay to p vibrational bands and second-excited
K = 0+ bands. HFs for the p vibrational bandhead
(four cases) are nearly constant and rather large com-
pared to t = 2 transitions to the g.s. band. As noted
above, HFs for the second-excited K = 0+ bands are
low, and in all three cases the l = 2 transition is less
hindered than the l = 0 transition.

Over 20 years ago Sandulescu and co-workers at-
tempted to estimate the strengths of o.-decay transitions

to vibrational states with the use of Nilsson wave func-
tions, pairing and quadrupole-quadrupole residual inter-
actions, and the random phase approximation [23]. The
growing body of data warrants a renewed efFort to un-
derstand the systematics. In particular, the constancy
of the hindrance factors for the 00+, 00+, 02+, and
22+ states, the surprisingly low HFs for the 02+ states,
and the large increase in the HFs for the spin-2 mem-
ber and perhaps the spin-4 member of the P vibrational
(K = 0+ ) band around N = 140 have not been satis-
factorily explained.
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