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We present an updated version (Nijm93) of the Nijmegen soft-core potential, which gives a much
better description of the np data than the older version (Nijm78). The y per datum is 1.87. The
configuration-space and momentum-space versions of this potential are exactly equivalent, a unique
feature among meson-theoretical potentials. We also present three new NN potential models: a
nonlocal Reid-like Nijmegen potential (Nijm I), a local version (Nijm II), and an updated regularized
version (Reid93) of the Reid soft-core potential. These three potentials all have a nearly optimal

per datum and can therefore be considered as alternative partial-wave analyses. All potentials
contain the proper charge-dependent one-pion-exchange tail.

PACS number(s): 13.75.Cs, 12.39.Pn, 21.30.+y

I. INTRODUCTION

In the past many nucleon-nucleon (NN) potentials
were constructed, which were supposed to fit the NN
scattering data available at the time of construction. The
older models, from the 1950s and 1960s, are no longer
suitable for describing the present set of more numer-
ous and much more accurate data without refitting the
parameters. Out of the various potential models con-
structed in the 1970s, the better ones fitted the data with
y2/Ns t of about 2, where N~ t denotes the number of
NN scattering data available at that time in the 0—350
MeV energy range. The potentials constructed in the
1980s have only slightly improved on this in the sense
that, although they have been fitted to try to describe
the newer and much more accurate data, these models
still have gz/Nq t = 2. This number should be com-
pared with y;„/Ns t,

——0.99, obtained in the recently
finished Nijmegen NN multienergy partial-wave analy-
sis [1] (PWA93) of all pp and np scattering data below 350
MeV. On statistical grounds, y; /Ns t = 1 is about the
best one can expect to get in partial-wave analyses or for
potential models.

In a recent paper [2], we investigated the quality with
respect to the pp scattering data below 350 MeV of a
number of NN potentials that had appeared in the litera-
ture. We found that only a few of the potential models we
investigated are of a satisfactory quality. These models
are the Reid soft-core potential [3] Reid68, the Nijmegen
soft-core potential [4] Nijm78, and the new Bonn pp po-
tential [5] Bonn89. The latter is a readjustment of the
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momentum-space full Bonn potential [6], in order to fit
the pp data. If we do not consider the very low-energy
(0—2 MeV) pp data, also the parametrized Paris poten-
tial [7] Paris80 gives a satisfactory description of the data.
The results of Ref. [2] indicate that, at present, the best
potential models have yz/N„~ ) 1.9, where N„„denotes
the number of pp scattering data. Moreover, only models
which have explicitly included the pp data in their fit be-
long to this category. Potential models which have been
fitted only to the np data often give a poor description
of the pp data, even after applying the necessary correc-
tions for the Coulomb interaction. In Ref. [2] we have
demonstrated that most np potentials unfortunately do
not automatically fit the pp data, a fact which has been
generally overlooked. Any NN potential should be fitted
to the pp data as well as to the np data in order to be
able to describe all NN scattering data.

Over the last decade the quality of the np data has in-
creased considerably. Consequently, the older potentials
(Reid68, Nijm78, Paris80) do not fit these data very well.
Also, the much newer Bonn potentials already needed re-
visions and updates [5,8]. In this paper we present up-
dates of the Nijm78 and Reid68 potentials, denoted by
Nijm93 and Reid93, respectively. Because our analysis
of the np data (and hence our careful scrutiny of the np
data) has only recently been finished [1], we originally
constructed an update (Nijm92pp) of the Nijm78 poten-
tial for the pp data only. This pp potential was used in
our earlier preliminary np analyses [9—11] to parametrize
the isovector partial waves. It has y /N~„= 1.4, which
is not as good as the Nijmegen PWA93. One can won-

der whether it is at all possible to construct a new class
of potential models which fit the NN data with the al-
most perfect y /N~«~ —1. The answer turns out to be
afhrmative. This could already be surmised &om the
Nijmegen PWA93, because this analysis is in essence
an energy-dependent potential fitted to the scattering
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data. (The reason for us using an energy-dependent po-
tential is nothing more than just convenience. ) In the
partial-wave analysis we need 39 parameters to reach
y2/Nq t = 0.99, whereas a conventional potential model
typically has only 10—15 &ee paraxneters. It is there-
fore perhaps not surprising that the 15-parameter up-
date (Nijm93) of the Nijm78 potential, which fits the
NN data with y2/Ns t ——1.87, cannot compete in qual-
ity with the Nijmegen PWA93. To obtain a high-quality
potential we decided some years ago to follow a different
approach.

Because the Nijm92pp potential already gives a reason-
able description of the pp data, this model forms the basis
for the construction of a high-quality potential, which can
compete with the Nijmegen PWA93. We adjust in each
partial wave separately only a few of the parameters of
this potential [12]. This way we will be able to construct
a potential model which fits the data with g /Ns t = 1.
The resulting Reid-like potential Nijm I gives a very good
fit to the data with y /Ns q

——1.03.
The Nijm I potential contains momentum-dependent

terms (as do the Nijm78 and Nijm93 potentials), which
in configuration space give rise to a nonlocal structure
[b,rp(r) + p(r)A] to the potential. We also constructed a
purely local Nijm II potential, where these momentum-
dependent terms were intentionally omitted. This local
potential Nijm II gives an equally good fit to the data
as the nonlocal potential Nijm I. Finally, we constructed
a regularized update of the Reid68 potential [3], called
Reid93. This Reid93 model is also a local potential and
fits the scattering data very well. These latter three po-
tential xnodels are in a sense also alternative partial-wave
analyses, because they have roughly the same number of
fit parameters as our Nijmegen PWA93, these parameters
were fitted to the same database, and the potential mod-
els achieve nearly the same values of y;„asthe Nijmegen
PWA93 (i.e., close to the expectation value). Hence, the
differences between, e.g. , the phase parameters of these
models provide an indication for the systematic error in
the Nijmegen partial-wave analyses.

In Sec. II we briefly discuss some general features of
NN potentials. In Sec. III we give more details regard-
ing the explicit form of the potentials used in this work.
Two of these potentials are based on the original Nijm78
potential, whereas the third is a regularized update of the
Reid68 potential in the sense that also in this new model
each partial wave is parametrized by a number of Yukawa
functions. In Sec. IV we discuss the fitting procedure and
the potentials are presented in more detail.

II. GENERAL OUTLINE

The NN potential can be described in momentum
space and in configuration space. Since it is dif6cult to
solve the full four-dimensional scattering equation, it has
become coxnmon practice first to make a reduction to
a three-dimensional scattering equation. Various choices
are possible, and it is important to note that the potential
derived within the chosen reduction scheme should only

be used in the scattering equation corresponding to that
particular reduction scheme. These three-dimensional
scattering equations can always be written in the form of
the momentum-space version of the Lippmann-Schwinger
equation. If the kinematics is treated relativistically, this
is called the relativistic Lippmann-Schwinger equation.
In configuration space, the differential form of this inte-
gral equation is the Schrodinger equation.

The configuration-space potentials are to be used ei-
ther in the nonrelativistic or the relativistic Schrodinger
equation:

(b, + k')g = 2M„Vg,
where b, is the Laplacian, and where (non)relativistic
refers to the kinematics. For nonrelativistic kinemat-
ics the relation between the center-of-mass energy E
and the center-of-mass momentum squared k2 reads
E = k /2M„, whereas for relativistic kinematics it reads

E = Qk2+ M2+ Qk2+ M2 —M1 —M2.
The earliest potential models were configuration-space

potentials to be used in the nonrelativistic Schrodinger
equation. They were phenomenological or semiphe-
nomenological parametrizations, based on a general form
for the potential. The potential must be invariant un-
der rotations, reflections, and tixne reversal, and can
be written [13] as the sum of six independent terms,
V = g,. 1 V;P;. A common choice for the six operators
P, in configuration space is

Pg ——1,

P2 = &] &2)

P3 = S12 = 3(crl r)(cr2 r) —(crl cr2),

P4 ——L S,

Ps ——Q12 ——2[(cr1 L)(cr2 L) + (cr2 L)(cr1 L)],

Ps ——
2 (cr1 —cr2) L.

(2)

These operators are also &equently referred to as the
central, spin-spin, tensor, spin-orbit, quadratic spin-
orbit, and antisyxnmetric spin-orbit operators, respec-
tively. For identical-particle scattering, the antisymxnet-
ric spin-orbit operator P6 cannot contribute, whereas V6
vanishes when charge independence is assumed (which
is usually the case for NN potential models). In gen-
eral [13],each potential form V; in configuration space is
a function of r, and of the operators p and I . In most
approaches one only keeps the dependence on r, while
the p2 dependence (when included) is often only present
in a linear way in the central potential Vj. The inclusion
of the Q12 operator was found to be necessary, because
otherwise it was impossible to describe simultaneously
the So and D2 phase shifts using the same static po-
tential. The presence of the operator Q12 in the potential
can to a certain extent be simulated by introducing non-
local potentials [14].

In the expansion g,. 1 V,P, , the potential forms V, are
generally assumed to be the same in all partial waves.
The potential difFerences between the partial waves are
dictated by the differences in the expectation values of
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the operators P,. in these partial waves. The Reid68
potential [3], however, is based on a quite different ap-
proach. Rather than having six potential forms V, which
are the same for all partial waves, now each partial wave
is parametrized separately. The potential forms U,. there-
fore not only depend on r and L, but also on S and J .
In this paper we present some potentials based on this
approach that each partial wave is parametrized indepen-
dently. We refer to these models as Reid-like models.

With the discovery of the heavy mesons in the 1960s,
it became common practice to write the potential as a
sum over one-boson-exchange (OBE) potentials. The ex-
pressions for these OBE potentials are usually derived in
momentum space. Introducing momentum vectors

k=py —p;, q=-,'(pf+p), n=qxk,
in terms of initial (p, ) and final (pf ) momenta, the equiv-
alent in momentum space to Eq. (2) reads

P, =1,
P2 = ~]. ~2)

1 2Ps ——(oi k)(o'2 k) ——k (o i o2),
3

P4 ———(oi+ o2) n,
2

P5 = (oi n)(o2 n),
Z

Ps = —(cri —o 2) n.
2

The potential forms V,. in momentum space are functions
of k, q, n, and the energy. Although Eq. (3) provides
an adequate set of six linearly independent operators,
the Qi2 operator in configuration space is not the exact
Fourier transform of the (o'i n)(o2 n) operator in mo-
mentum space. This is of importance if we want both the
momentum-space and the configuration-space versions to
produce exactly the same phase shifts and bound states,
which is only possible when the configuration-space ver-
sion is the exact Fourier transform of the momentum-
space version, and vice versa. This implies [15] that we
have to use the inverse Fourier transform of the Qi2 oper-
ator; i.e. , the potential contribution (o'i n)(o 2 n) Vs(k )
is to be replaced by

tered in transforming the momentum-space potential to
configuration space, then reads

g3y eik. r

( )sk2 2(k) F(k)=
4

(-m')"&c(r)

( V ) (g(r) . (6)

The results for various &equently used choices are the
following.

(i) No form factor at all, F(k2) = 1. This yields the
familiar Yukawa function

Pc(r) = e "/mr, (7)

(iii) Dipole form factor, F(k ) = (A —m ) /(A +
k ), yielding

A2 —m'
g(r)= e ' —e "~ 1+ Ar

~2A'
mr . (9)

—k A(iv) Exponential form factor, F(k ) = e " ~~, yield-

ing

2r
fm Ar)—e "erfc

~

—+ —
~

qA 2r 2mr, (10)

where erfc(x) is the complementary error function

2
erfc(z) = dte

We follow the normalization of Ref. [4]. This means that
for the exponential form factor F(0) = l.

Because k can be written as (k + m2) —m, we find

that in the absence of a form factor

4c(r) = &c(r) —«~'(mr) .

and the singularities at the origin are still present.
(ii) Monopole form factor, F(k ) = (A —m )/(A +

k ), normalized such that at the pole F(—m2) = 1. This
yields

Pc(r) = [e —e " /mr .

where

PsVs(k )
—P5 dk' Vs(k' ),

P' = [(~i q)(~'q) —q'(~i o2)1

—4[(oi.k)(o2 k) —k (oi.o2)] . (5)

When there is a form factor, this relation still holds, but
the b-function contribution is smeared out.

Using our definition (6), the Fourier transforms for the
tensor and spin-orbit potentials can be simply expressed
in terms of derivatives of the central function, i.e.,

Other restrictions imposed on the momentum-space po-
tential forms V; in that case are that they should not
depend on the energy, while the g dependence should be
of second order at most (see also below).

When the potentials are evaluated in momentum space
and then Fourier transformed to configuration space,
they are usually erst regularized to remove the singulari-
ties at the origin. This can be achieved by introducing a
form factor F(k ). A typical Fourier transform, encoun-

3m2 "dr gr dr) I &c(r)

, -„d„&c(r)-&so(r) =—

In order to ensure regularity at the origin for the tensor
and spin-orbit functions, one must choose at least the
dipole or exponential form factor. In that case, the tensor
function also vanishes at the origin, as it should.
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The presence of explicit momentum-dependent terms
in the momentum-space potential gives rise to nonlocal
structures in the potential in configuration space. The

terms pose no difBculties for the configuration-space
potential as long as they are linear in g . The typical
Fourier transform of such a term is given by

and pp OPE potentials are different, and so charge inde-
pendence is broken. In our present models we assume,
however, that the pion-nucleon coupling constants obey
charge independence.

B. Nijmegen potential

m y(r) y(r)
2M„2M„

where y(r) = M„g&~(r). It is well known how to handle
such a (Ay + y6) term [16]. The absence of 412 terms
in the momentum-space potential will result in a radially
local configuration-space potential.

The three new potential models (Nijm93, Nijm I, and
Nijm II) presented in this paper are based on the orig-
inal Nijm78 potential with the exponential form factor,
whereas the update of the Reid68 potential (Reid93) is
regularized using a dipole form factor.

III. STRUCTURE OF THE POTENTIALS

A. One-pion-exchange potential

An important feature of the potential models pre-
sented in this paper is that in the one-pion-exchange
(OPE) part of the potential, we explicitly distinguish
between neutral-pion and charged-pion exchange. The
pion masses are [17] m o = 134.9739 MeV and m ~ =
139.5675 MeV. Almost all other potentials that have ap-
peared in the literature use a mean pion mass. In these
other models the isovector np phase parameters are larger
in magnitude than the corresponding pp phase parame-
ters. By explicitly including the pion-mass differences
exactly the opposite occurs: the isovector np phase pa-
rameters are smaller than the corresponding pp phase
parameters. This is a unique feature of the potentials
presented here.

Defining

V(m) =
~ ~

m PT(m, r)Si2+ &P&(m, r)(cri cr2)
(m~+ )

(14)

the OPE potential for pp scattering is given by

VopE(pp) = f V(m 0),
whereas for np scattering it reads

VopE(np) = —f V(m o) + 2f V(m +), (16)

where the plus (minus) sign corresponds to total isospin
I = 1 (0). The scaling mass m + in V(m) is introduced
in order to make the pseudovector coupling constant f
dimensionless. It is conventionally chosen to be equal to
the charged-pion mass. The explicit distinction between
neutral and charged pions implies that the isovector np

In this section we brieBy discuss the structure of
the Nijmegen potential. More details can be found in
Refs. [4,18]. The basic functions are the one-boson-
exchange (OBE) potential functions with momentum-
dependent central terms and exponential form factors.
The meson exchanges we include are those due to pseu-
doscalar mesons (ir, il, il'), vector mesons (p, ur, p), and
scalar mesons (ap, fp, e). Here we use the modern nomen-
clature for the scalar mesons, i.e. , ap(983) corresponds to
the h of Ref. [4], and fp(975) to the S*. The e meson
would correspond to an fp(760). No such meson is listed
by the Particle Data Group [17];however, a recent analy-
sis of the 7rN -+ 7r+vr N reaction [19) provides evidence
for a scalar-isoscalar resonant state 0++(750). In the
Nijmegen potentials the e meson corresponds to a broad
meson (see below) where the pole in its propagator is
chosen to correspond to the pole position in the complex
energy plane of the isoscalar air S wave [20). Here we
will retain the name of e meson. The aforementioned me-
son exchanges can be identified with the dominant parts
of the lowest-lying meson trajectories in the complex J
plane. We furthermore include the dominant J = 0 parts
of the Pomeron, and of the f2, f2, and a2 tensor-meson
trajectories. They give rise to Gaussian potentials.

The meson propagators including the exponential form
factor read

D(k2, m2 A2) = e "~
k2+ m

(17)

For the Pomeron-type exchanges we have

g (k2 2)
I k /4rn-

M2 (18)

where m„has the dimension of a mass and will be
called the Pomeron mass, and M„is a scaling mass,
chosen to be the proton mass. The different potential
forms are evaluated in momentum space and the re-
sulting expressions are essentially those of Ref. [4] (save
some misprints [21]) with the following differences: (i)
We explicitly account for the proton and neutron mass
difference; (ii) the differences between the neutral and
charged pion (see Sec. IIIA), and between the neutral
and charged p meson are explicitly included; (iii) we have
adjusted the quadratic spin-orbit operator of the poten-
tial in momentum space to include the I'5 contribution
as in EiI. (4). The effect of the first modification is ob-
viously rather small. The second modification (as well
as the first) implies that charge independence is broken
in the non-OPE part of the potential as well. For pp
scattering the potential consists of only neutral-meson
exchange, V„~ = V(neutral), whereas for np scatter-
ing it consists of neutral-meson and charged-meson ex-
change, depending on the total isospin as in Eq. (16),
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p(m's) dm"b(k)=
t

(19)

with mass distribution

so V„„=—V(neutral) 6 2V(charged). This distinction
replaces the factor (vt vz) used in the old Nijm78 po-
tential. Finally, the third modification means that we
have constructed a potential which is exactly equiva-
lent in both momentum space and configuration space, a
unique feature of these Nijmegen potentials. For exam-
ple, for the parametrized Paris potential [7] this is not
true since it uses the same parameters in combination
with the Qqz operator in configuration space as it does
with the (at n)(mrs n) operator in momentum space.

Next we briefly discuss the coupling constants. For def-
initions and references we again refer to Refs. [4,18]. The
coupling constants of the pseudoscalar mesons are related
via SU(3) and singlet-octet mixing. The octet coupling
f„,is calculated using o.J ——0.355 for the I"/(I" + 0) ra-
tio. For the singlet-octet mixing angle we use 8~ ———23'
to define the physical coupling constants f„andf„.This
leaves the singlet coupling f„,and the pion coupling f„
as kee input parameters. However, in our partial-wave
analysis of the pp scattering data [22], we found for the
ppx coupling constant fz = 0.0749(7). This value was
later confirmed in a combined partial-wave analysis of all

pp and np scattering data, assuming charge independence
for the pion-nucleon coupling constants [9,11].There the
value f = 0.075 is recommended for the pion-nucleon
coupling constant at the pion pole. This is the value we
adopt in our construction of the new Nijmegen potentials,
and so it is not included as a &ee parameter.

For the vector mesons we assume that the p meson
is universally coupled to the isospin current (nv ——1)
to define the octet coupling gy, . For the singlet-octet
mixing angle we take 8~ ——37.5, which fixes the physical
coupling constants g and g4, in terms of g~ and g~, . The
P meson is assumed to have fy = 0. The free parameters
are now g~, gv, , f~, and f

For the scalar mesons we do not apply any constraints
for the coupling constants, since the singlet-octet mixing
angle for the scalar mesons is still an unsettled problem
(see also Ref. [18]). The free parameters are the ap, fo,
and c coupling constants.

For simplicity we take a single mass parameter m„for
the Pomeron, and for the J = 0 parts of the fz, f&,
and a~ tensor-meson trajectories. We use two coupling
constants: g, for the isovector aq meson and g„for the
isoscalar and Pomeron exchanges.

For each type of exchange we use an independent cutofI'
mass, so we have three cutoK parameters A~, Av, and
Ag. This brings us to a total of 14 free parameters.

We conclude this section with a discussion of the treat-
ment of the broad p and e mesons. The width of a broad
meson can be accounted for [23—25] by replacing the prop-
agator A(kz) = 1/(kz + mz) of a stable meson by a dis-
persion integral

TABLE I. Values for the parameters of Eq. (22) of the
two-pole approximation. for the broad e meson and the broad
neutral and charged p mesons. Masses m and widths I' are in
MeV.

m
r
pi
ml
p~
m2

0
760.0
640.0
0.16900
487.818
0.61302
1021.14

1
768.7
152.4
0.26552
645.377
0.56075
878.367

1
768.3
149.1
0.38755
674.152
0.45083
929.974

and where

2 2)
—(n+ 1/2)

Here I' denotes the width and n = 0, 1 for spin-0 and spin-
1 mesons, respectively [23]. The charged p meson decays
into a neutral and a charged pion and the threshold mass
is m& ——m 0 + m ~. The neutral p meson cannot decay
into two neutral pions and it decays into two charged pi-
ons, and so now the threshold mass is mq ——2m ~. The
~ meson is an isoscalar meson which decays into both
two neutral or two charged pions in the ratio 1:2. In our
present models these distinctions have been explicitly ac-
counted for, which is another extension of the old Nijm78
model.

The configuration-space potential due to the exchange
of a broad meson is calculated exactly. This exact poten-
tial is then approximated by the sum of two potentials of
stable mesons [24]

dm'2m'p(m' )m'@(m', r)
T7L t

Plml'g(ml r) + P2m24'c (m2 r) (22)

Fitting from 0—2 fm yields the values as given in Table I.

C. Regularized Reid potential

A disadvantage of the original Reid68 potential is that,
at the time of its construction, the quality of the np data
was very poor. As a consequence, the Reid68 potential
can no longer properly describe the numerous new and
much more accurate np data. Another disadvantage is
that the Reid68 potential has an r singularity in all
partial waves. Here we present an updated version of
the Reid potential, where these singularities have been
removed via the inclusion of a dipole form factor. With
this choice, the tensor potential now also vanishes at the

origin, as it should.
As is the case for the original Reid68 potential, the

/ 1 p(m/2 m2)n+1/2
p(m'~) =-

x (ml2 m2)2 + p2 (™) (ml2 m2)2n+1

(20)
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OPE potential is explicitly included, while we now ac-
count for the neutral-pion and charged-pion mass differ-
ences as in Eqs. (14)—(16). For the pion-nucleon coupling
constant at the pion pole we take [9,11] f2 = 0.075, and
for the dipole cutoff parameter we choose A = 8m . In
the OPE potential (14) we use Pc~ only for the S waves.
For all other partial waves, we found it more convenient
to use Poc instead of Pc~. Note that Pc~ equals g, up to a
modified b function [see Eq. (11)],and that this modified
b function is screened by the centrifugal barrier for all
these other partial waves, except the S waves.

Starting with this OPE potential, the potential in each
partial wave can now be extended by choosing a conve-
nient combination of central, tensor, and spin-orbit func-
tions with arbitrary masses and cutoff parameters. In the
construction presented in the following we (more or less
arbitrarily) settled for integer multiples of a mean pion
mass m = (m 0 + 2m +)/3, while the cutoff mass in the
dipole form factor is chosen to be A = 8m everywhere.
For notational reasons we next define

Y(p) = p &c(p )

Z(p) = pm/0 (pm, r),

W(p) = pmgoso(pm, r),

with p an integer and P~& given by Eqs. (9) and (12). For
the coefBcients multiplying these functions, we use A,

„

for the isovector potentials, whereas the coefficients B;„
are for the isoscalar and np So potentials. The index i
subsequently labels the different partial waves. For the
total potential in a particular partial wave one should, of
course, add the appropriate OPE potential as given by
Eqs. (14)—(16).

For the non-OPE parts in the isovector singlet partial
waves (I = 1, S = 0, L = J) we use

V~( SQ) = A]2Y(2) + A]sY'(3) + A/4 Y(4)
+Ass Y(5) + Ags Y(6),

V„~(So) = BgsY(3) + Bg4Y(4) + Bg5Y(5) + BgsY(6) )

V( Dz) = A24 Y(4) + Azs Y(5) + Azs Y(6), (23)
V( G4) = A33Y(3),
V( Jg) = V~( So) for J & 6,

For the isovector triplet uncoupled partial waves (I = 1,
S=1,L= J) weuse

V( Po) = A4s Y(3) + A4s Y(5) + A4 sZ(3)
V( P~) = A53 Y(3) + Ass Y(5) +. Asg3Z(3),
V( Es) = Ass Y(3),

(25)

and the isoscalar triplet uncoupled partial waves (I = 0,
S = 1, L = J) are parametrized as

V( D2) = B43Y(3) + B45Y(5) + B4 3Z(3) )

V( G4) = B53Y(3) . (26)

Following the parametrization of the original Reid68 po-
tential, the non-OPE potential in the triplet coupled par-
tial waves (S = 1, L = J + 1) is parametrized as

V = V~+ VTSg2+ VSQL S,
where the isovector (I = 1) potentials are given by

(27)

Vc —A73Y (3) + Ar4 Y(4) + A75 Y(5) + Are Y(6)
VT = Ar, 4Z(4) + Ar, sZ(6),

Vso —A$~3W(3) + A7 5W(5) for J = 2,
Vso —AsmsW(3) for J = 4,

(28)

and the isoscalar (I = 0) potentials read

Vc = Bs2Y(2) + BssY(3) + Bs4Y(4)
+BssY(5) + BssY(6),

VT ——Bs,4Z(4) + Bs,sZ(6),
Vso ——Bs sW(3) + Bs sW(5) for J = 1,
VsQ —B7 3W(3) + B& sW(5) for J = 3 .

(29)

Finally, for the triplet isovector partial waves (I = 1,
S = 1) with J & 5 we use Eq. (27) with the central and
tensor potentials of Eq. (28), and the spin-orbit potential
equal to zero. Similarly, for the triplet isoscalar partial
waves (I = Q, S = 1) with J & 5 we use the central and
tensor potentials of Eq. (29). This choice is analogous
to the extension of the Reid68 potential to the higher
partial waves as given by Day [26].

V( Pg) = B2sY(3) + B24Y (4) + Bzs1 (5) + B2sY(6),

V(~ F3) —B33Y(3) + B35Y(5),

V('Jz) = V('P&) for J & 5 .

(24)

where the distinction between the pp and np So poten-
tials is necessary because of the well-known breaking of
charge independence in the pp and np So partial waves.
The coeKcients A,.z and B;z are to be fitted. The pres-
ence of the two-pion range piece Aq2Y(2) in the pp So
potential is purely coincidental, and was only included to
improve the quality of the fit. A similar term in the np
So was much less effective, and so we decided to leave

it out.
For the non-OPE parts in the isoscalar singlet partial

waves(I=O, S=O, L= J) weuse

IV. RESULTS

The parameters of the potential models are optimized
by minimizing the y in a direct fit to the data. Since
the scattering data are spread over a large number of en-
ergies (about 20Q different energies for the pp data and
almost 400 different energies for the np data in the 0—350
MeV energy range) and the phase parameters need to be
calculated up to at least J 6, the Schrodinger equation
then has to be solved a very large number of times. This
approach, therefore, is not very practical when the model
parameters do not yet have reasonable values and, con-
sequently, the y~ is still very high. A more convenient
approach is to start with the Nijmegen representation [1]
of the y hypersurface of the scattering data. It is ob-
tained kom the 10 single-energy analyses and consists of
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10 sets of phase parameters and the error matrix, each
at a difFerent energy. The error matrix is the inverse of
half the second-derivative matrix of the y hypersurface
with respect to the phase parameters up to J = 4 within
the energy bin of the single-energy analysis. This g hy-
persurface is, in principle, independent of the particular
partial-wave analysis. In practice the representation we
use is somewhat dependent on the Nijmegen multienergy
analysis. The crucial point is, however, that it provides
a very good and concise representation of the scattering
data. For each change in the model parameters we need
to solve the Schrodinger equation for all partial waves up
to J = 4 at only 10 different energies, which allows for
a much quicker optimization for the parameters of the
potential model.

In the last stage of the Gtting procedure the potential
parameters have been further optimized in a very time-
consuming direct fit to the data. In this case we use the
potential model in all partial waves with J & 6, whereas
in the higher partial waves we include OPE only. The
Anal y~j„ofthe potential should be obtained &om this
direct comparison with the experimental data.

A. Nijm92pp

Our first improvement of the Nijm78 potential [4] was
already started several years ago, when we constructed
an update to the pp data of the Nijm78 potential. This
potential has been used in the Nijmegen analyses [9—11]
to parametrize the np isovector lower partial waves (ex-
cept the np iSo). In our latest analysis [1] (PWA93) we
refer to it as the Nijm92pp potential. We found that a
good 6t to the pp data could be obtained using one cutoR'

parameter A = 827.53 MeV for all three types of meson
exchanges. Some of the coupling constants were not re-
Gtted, but were kept at the values of the original Nijm78
potential. The reason is that, when we only fit to the
pp data, we cannot incorporate the isospin dependence
of the isovector exchanges (there are only I = 1 partial
waves). A direct comparison of this Nijm92pp potential
with the pp data yields y2 = 2487.1 for 1787 data, which
means y2/N~„= 1.4.

B. Nijm93

Now that the Nijmegen analysis of the np data is
also finished [1] and we have carefully scrutinized the
np database, we can extend the update of the Nijm78
potential to include the fit to the np scattering data as
well. This model we refer to as Nijm93.

As already mentioned in Sec. IIIC, the np So par-
tial wave has to be parametrized separately. The reason
is that there is clear evidence for breaking of charge in-
dependence in the So scattering lengths a„~and a„„.
This difFerence in scattering lengths carries over into an
approximately 2 phase-shift difference between the pp
and np So phase shifts at higher energies. This differ-
ence cannot be explained as being only due to the differ-
ence between the pp and np OPE potentials. Allowing
for a different value for the neutral-pion and charged-

TABLE II. Masses and meson-nucleon coupling constants
at k = 0 for the Nijm93 potential. For the np So partial
wave the coupling constants of the charged-rho meson are
increased by 4.371% (see text). P in the last line denotes the
Porneron. Note that (f/g)p ——4.094.

rl

9'
Ag

m (MeV)
139.5675
134.9?39
548.8
957.5

1177.11

0.07395
0.07402
0.01514
0.01466

P
P

Av

768.3, I' = 149.1
768.7, I' = 152.4

781.95
1019.412
904.50

0.8481
0.8481
9.1765
0.0985

14.217
14.217
0.3383

0

0

fo
As

983.3
760.0, r = 640.0

975.6
554.40

1.9174
28.196
12.142

CX2

P, f., f'
208.16
208.16

0.0486
27.339

pion coupling constants does not help either, because the
scattering lengths are very insensitive to these kind of
changes. To accommodate the pp and np So differences,
we therefore introduce a purely phenomenological break-
ing of charge independence between the p and p+ cou-
pling constants. This breaking of charge independence is
only assumed in the So partial wave; for all other partial
waves the p and p+ coupling constants are taken to be
the same.

The parameters for the Nijm93 potential, rounded to
four or 6ve signi6cant 6gures, can be found in Table II,
where the meson masses are the masses as listed by the
1990 Particle Data Group [17]. The coupling constants
are the values at k2 = 0. The pion coupling constants
are fixed at f2 = 0.075 at the corresponding pion pole
k2 = —m, or k2 = —m +, hence the different entries for
neutral- and charged-pion exchange at k2 = 0. The e and
Pomeron coupling constants are rather large, whereas the
u coupling constant is reasonably small. For the p cou-
pling constants we find (f/g)~ = 4.094, which is close to
the value 3.7 from naive vector-meson dominance of the
isovector electromagnetic form factors of the nucleon.

For the Nijm93 potential we find y (pp) = 3175.6
for 1787 pp data and g2(np) = 4848.4 for 2514 np
data. So for the pp data y2/N„„=1.8, for the np data
y /N„z ——1.9, and for all NN data y2/Ng~t~ ——1.87. We
6nd that this 15-parameter conventional meson-exchange
potential cannot do better than g2/N~ t —1.87, a result
which is also found for similar potential models such as
the Paris80 and all the Bonn potentials. Apparently, the
conventional meson-exchange potentials cannot compete
in quality with the Nijmegen PWA93. This indicates that
these models lack some important physics.
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C. Num I and Nijm II

In order to be able to construct a potential model
which is of almost the same quality as the Nijmegen
PWA93 (y /Ns t 1), we follow a different approach
and take advantage of the success of the Reid68 poten-
tial. We expect that, when we start with the Nijmegen
potential (which already has a reasonable y on the pp
data), we can construct a Reid-like potential where in
each partial wave we probably need to adjust only a few
parameters in order to arrive at y2/Ns ~ = 1. The
potential forms are then given by a set of slightly ad-
justed Nijmegen potentials, each representing one par-
ticular partial wave. Starting with the parameters of the
Nijm92pp potential [12], we find that for most partial
waves an adjustment of the f~ and g, coupling constants
already gives very good results. Counting all parameters
which have been adjusted in the fit of each partial wave,
we arrive at a total of 41 parameters. This should be
compared with the 39 parameters used in the Nijmegen
PWA93.

In the last stage, the parameters of this Reid-like po-
tential are optimized in a direct fit to the data. The
potential is then used in all partial waves up to J = 6
simultaneously. This model we refer to as Nijm I. It
has y2(pp) = 1795.8 and y2(np) = 2627.3, and so

y /Ng~t~ ——1.03 on all pp and np scattering data.
We have also constructed a local Reid-like Nijmegen

potential, where we leave out the explicit momentum-
dependent terms which give rise to nonlocal contribu-
tions to the configuration-space potential as expressed in
Eq. (13). We follow the same procedure as for the non-
local Nijm I potential. First, the parameters are adjusted
in a fit to the representation of the y2 hypersurface, and
then further optimized in a direct fit to the data. For
this local potential, denoted by Nijm II, we use a to-
tal of 47 parameters and we find y2(pp) = 1795.8 and

y (np) = 2625.7, and so y /Ns t ——1.03.
Although these potentials are purely phenomenologi-

cal (except for the correct OPE tail) and the coupling
constants have no physical meaning, these potentials are
the first to give an excellent description of the NN scat-
tering data. They have already been used successfully in
three- and many-body calculations [27,28].

TABLE III. y for the new potential models in comparison
with the Nijmegen multienergy analysis [1] PWA93. We also
show the number of parameters (N~, ) for each model.

pp
np
Total
Npar
y'/&sacs

PWA93
1787.0
2489.2
4276.2

39
0.99

Nijm I
1795.8
2627.3
4423.1

41
1.03

Nijm II
1795.8
2625.7
4421.5

47
1.03

acid 93
1795.1
2624.6
4419.7

50
1.03

Nijm93
3175.6
4848.4
8023.9

15
1.87

summarized in Table III. The results of the Nijmegen
PWA93 are shown for comparison. Although y /Ns q

for these three potentials is already very good, their de-
scription of the np data is still not as good as the descrip-
tion of these np data in the partial-wave analysis. Here
we should also mention that we did not do a thorough
investigation into the minimum number of parameters re-
quired to get these results (as we did for the partial-wave
analysis). The reason is that in order to do this properly,
all potential parameters have to be fitted simultaneously
to all NN data. But we found it more successful to do
a large number of fits where in each separate run only
a (completely arbitrary) subset of the potential param-
eters was optimized. Therefore, we cannot rule out the
possibility that an equally good fit can be obtained with
a few parameters less.

As already mentioned in the Introduction, these new
potentials (except Nijm93) are in a sense alternative
partial-wave analyses. The differences between the phase
parameters of the potentials and the phase parameters
of the Nijmegen PWA93 are shown in Tables IV and V.
These differences provide an indication for the system-
atic error on the results of the Nijmegen PWA93. For
the np phase parameters the differences at some ener-
gies (especially with the Reid93 potential) are relatively
large. However, one has to bear in mind that g2(np)
of the potential models is still substantially higher than
that of the multienergy partial-wave analysis. On the

D. Reid93

Finally, we have constructed an updated Reid potential
based on the original Reid68 potential. This regularized
version, denoted by Reid93 and discussed in Sec. IIIC,
gives an equally good description of the data as do the
Nijm I and Nijm II potentials. The 50 phenomenological
potential parameters A;„andB;„werefitted to the data,
resulting in y (pp) = 1795.1 and y~(np) = 2624.6, and
so also for this potential y /Ng t ——1.03. This Reid93
potential has been used in a triton calculation as well [27].

100 200 300
Tlab(MBV)

E. Comparison of the potentials

The results of the nonlocal Nijm I potential, the lo-
cal Nijm II potential, and the local Reid93 potential are

FIG. 1. The mixing parameter ~~ of the various poten-
tials and of the Nijmegen PWA93. The shaded band denotes
the statistical error on ez as obtained in the Nijmegen par-
tial-wave analysis.
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other hand, the variation in the mixing parameter ~q is
small. It has often been claimed that this mixing param-
eter is ill determined and a wide range of values from po-
tential models seemed acceptable (see, e.g. , Refs. [6,8]).
However, in our publication of the Nijmegen PWA93 we
already argued that e~ is in fact known very accurately.
This is con6rmed in Fig. 1, where we note that the results
of the Nijm I and Nijm II models lie essentially within
the statistical uncertainty as obtained in the Nijmegen
PWA93. Above 150 MeV, the result of the Reid93 model
rises too strongly but is still within 2.5 standard devia-
tions of the Nijmegen PWA93.

The potentials between 0 and 2 fm for the singlet,
triplet uncoupled, and triplet coupled np partial waves
are shown in Figs. 2, 3, and 4, respectively. For the non-
local potential Nijm I we plot V/(I + 2p), which more
or less represents the effective potential when nonlocal
terms are present (see Refs. [16,4]). For coupled chan-
nels, the potential is a 2 x 2 matrix and the cq and c2
plots in Fig. 4 represent the off-diagonal elements of the
potential. The main differences between the potentials
show up in the inner region, i.e., for r ( 1 fm. In gen-
eral, the nonlocal Nijm I potential is much softer than
the local Nijm II and Reid93 potentials, while the Nijm II

TABLE IV. pp phase shifts in degrees. For each energy the rows give the values from the
Nijmegen multienergy partial-wave analysis [1], the nonlocal Nijm I potential, the local Nijm II
potential, and the Reid93 potential, respectively.

Tlab
1

10

25

50

100

150

200

250

300

350

'Sp
32.77
32.79
32.80
32.79
54.85
54.88
54.91
54.85
55.22
55.25
55.28
55.22
48.66
48.68
48.72
48.71
38.92
38.91
38.92
39.03
24.98
24.96
24.91
25.09
14.77
14.79
14.70
14.83
6.57
6.66
6.56
6.62

—0.30
—0.20
—0.25
—0.23
—6.14
—6.18
—6.12
—6.10

—11.11
—11.51
-11.28
—11.22

1D
0.00
0.00
0.00
0.00
0.04
0.04
0.04
0.04
0.17
0.17
0.17
0.16
0.70
0.70
0.70
0.69
1.71
1.71
1.70
1.68
3.79
3.73
3.75
3.71
5.61
5.60
5.61
5.55
7.06
7.20
7.15
7.08
8.27
8.50
8.41
8.35
9.42
9.52
9.42
9.40

10.69
10.28
10.24
10.30

Pp

0.13
0.13
0.13
0.13
1.58
1.58
1.57
1.57
3.?3
3.73
3.70
3.71
8.58
8.60
8.52
8.60

11.47
11.55
11.48
11.67
9.45
9.50
9.55
9.79
4.74
4.63
4.77
4.97

—0.37
—0.63
—0.47
—0.32
—5.43
—5.72
—5.61
—5.45

—10.39
-10.49
—10.49
-10.29
—15.30
-14.94
-15.08
—14.80

Pg
—0.08
—0.08
—0.08
—0.08
—0.90
—0.90
—0.89
—0.90
—2.06
—2.05
—2.04
-2.05
—4.93
—4.91
—4.89
—4.90
—8.32
—8.31
—8.30
—8.30

-13.26
-13.30
-13.33
-13.30
-17.43
—17.51
—17.54
—17.49
-21.25
-21.32
—21.29
-21.26
—24.77
-24.81
—24.6?
—24.71
—27.99
—28.02
—27.71
—2?.86
-30.89
-30.98
-30.45
-30.77

P
0.01
0.01
0.01
0.01
0.21
0.22
0.22
0.21
0.65
0.66
0.65
0.65
2.49
2.50
2.49
2.49
5.85
5.85
5.84
5.83

11.01
10.96
10.97
10.97
13.98
13.94
13.95
13.96
15.63
15.65
15.63
15.63
16.59
16.65
16.61
16.59
17.17
17.26
17.21
17.15
17.54
17.63
17.61
17.49

E'2

—0.00
—0.00
—0.00
—0.00
—0.05
—0.05
—0.05
—0.05
—0.20
—0.20
—0.20
—0.20
—0.81
—0.81
—0.81
—0.80
—1.71
—1.70
—1.?0
—1.69
—2.66
—2.63
—2.64
—2.61
—2.87
—2.87
—2.87
—2.85
—2.76
—2.80
—2.79
—2.7?
—2.54
—2.62
—2.61
—2.55
—2.34
—2.41
—2.41
—2.26
—2.21
—2.23
—2.23
—1.95

3p
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.10
0.11
0.11
0.10
0.34
0.34
0.34
0.34
0.82
0.82
0.83
0.81
1.20
1.19
1.20
1.16
1.42
1.39
1.42
1.36
1.47
1.39
1.44
1.39
1.34
1.20
1.29
1.25
1.04
0.86
0.98
0.95
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TABLE V. np phase shifts in degrees. For each energy the rows give the values from the Nijmegen multienergy partial-wave
analysis [1), the nonlocal Nijm I potential, the local Nijm II potential, and the Reid93 potential, respectively.

+lab
1

10

25

50

100

150

200

250

300

350

1S
62.07
62.11
62.09
61.89
63.63
63.74
63.66
63.23
59.95
60.10
59.99
59.46
50.90
51.04
50.88
50.41
40.54
40.56
40.35
40.18
26.78
26.44
26.18
26.32
16.93
16.33
16.02
16.11
8.94
8.27
7.92
7.83
1.96
1.48
1.10
0.86

—4.46
—4.43
—4.84
—5.17

-10.58
—9.70

-10.10
-10.47

sP
0.18
0.18
0.18
0.18
1.63
1.62
1.60
1.61
3.65
3.64
3.61
3.64
8.13
8.16
8.09
8.24

10.70
10.81
10.76
11.13
8.46
8.57
8.65
9.22
3.69
3.67
3.83
4.47

—1.44
—1.60
—1.42
—0.74
—6.51
—6.69
—6.55
—5.80

—11.47
-11.46
-11.43
—10.57
—16.39
-15.90
-16.01
—15.02

1P
—0.19
—0.19
—0.19
—0.19
—1.49
—1.50
—1.52
—1.48
—3.04
—3.08
—3.11
—3.04
—6.31
-6.42
—6.51
—6.37
-9.67
—9.80
—9.96
—9.89

—14.52
-14.42
-14.59
-14.91
-18.65
-18.23
—18.32
—18.91
-22.18
-21.51
-21.52
-22.15
-25.14
-24.28
-24.22
-24.71
—27.58
-26.52
-26.43
-26.69
—29.66
-28.25
-28.17
-28.15

P1
—0.11
—0.11
—0.11
—0.11
—0.94
—0.93
—0.93
—0.93
—2.06
—2.05
—2.04
—2.05
—4.88
—4.86
—4.84
—4.85
—8.25
—8.25
—8.24
—8 ~ 26

-13.24
-13.30
-13.33
—13.38
—17.46
—17.56
—17.59
—17.68
-21.30
-21.41
-21.38
-21.55
-24.84
—24.93
—24.78
-25.08
—28.07
—28.17
—27.85
-28.31
—30.97
—31.14
—30.60
-31.27

S1
147.75
147.76
147.75
147.73
118.18
118.19
118.17
118.15
102.61
102.62
102.59
102.59
80.63
80.59
80.56
80.63
62.77
62.64
62.62
62.78
43.23
42.98
42.95
43.18
30.72
30.47
30.40
30.67
21.22
21.08
20.98
21.31
13.39
13.46
13.35
13.81
6.60
7.00
6.90
7.55
0.50
1.36
1.30
2.20

0.11
0.10
0.10
0.10
0.67
0.67
0.66
0.66
1.16
1.15
1.13
1.14
1.79
1.77
1.73
1.74
2.11
2.09
2.00
2.03
2.42
2.44
2.25
2.36
2.75
2 ~ 83
2.59
2.82
3.13
3.27
3.03
3.40
3.56
3.70
3.55
4.05
4.03
4.10
4.12
4.74
4.57
4.47
4.74
5.45

D1
—0.01
—0.01
—0.01
—0.01
—0.18
—0.18
—0.18
—0.18
—0.68
—0.68
—0.67
—0.67
-2.80
—2.80
—2.80
—2.75
—6.43
—6.45
—6.45
—6.31

-12.24
-12.26
-12.31
—12.07
-16.49
-16.45
—16.61
—16.30
-19.71
—19.62
—19.85
—19.46
-22.21
-22.13
—22.34
-21.84
-24.14
-24.21
-24.26
—23.64
-25.57
-26.00
-25.74
-25.00

1D
0.00
0.00
0.00
0.00
0.04
0.04
0.04
0.04
0.16
0.16
0.16
0.16
0.68
0.69
0.68
0.67
1.73
1.72
1.72
1.69
3.90
3.83
3.85
3 ~ 79
5.79
5.77
5.78
5.68
7.29
7.43
7.38
7.26
8.53
8.78
8.68
8.55
9.69
9.82
9.73
9.63

10.96
10.60
10.59
10~ 55

Dg
0.01
0.01
0.01
0.01
0.22
0.22
0.22
0.22
0.85
0.85
0.85
0.85
3.71
3.72
3.72
3.73
8.97
8.98
8.97
9.00

17.27
17.26
17.22
17.12
22.12
22.15
22.05
21.72
24.50
24.61
24.49
23.96
25.40
25.48
25.46
24.81
25.45
25.32
25.52
24.84
25.08
24.48
25.02
24.40

sP
0.02
0.02
0.02
0.02
0.25
0.25
0.25
0.26
0.71
0.71
0.71
0.72
2 ~ 56
2.57
2.56
2.61
5.89
5.88
5.87
6.00

10.94
10.89
10.88
11.21
13.84
13.80
13.78
14.27
15.46
15.48
15.42
16.01
16.39
16.47
16.39
17.02
16.95
17.08
16.99
17.64
17.31
17.44
17.40
18.03

&2
—0.00
—0.00
—0.00
—0.00
—0.05
—0.05
—0.05
—0.05
—0.18
—0.18
—0.18
—0.18
—0.76
—0.75
—0.75
—0.75
—1.63
—1.61
—1.62
—1.60
—2.58
—2.54
—2.54
—2.54
—2.80
—2.79
—2.78
—2.82
—2.70
—2.73
—2.71
—2.79
—2.49
—2.56
—2.54
—2.61
—2.30
—2.36
—2.35
—2.36
—2.18
—2.19
—2.18
—2.09

Sps

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.09
0.09
0.09
0.09
0.30
0.31
0.31
0.30
0.76
0.76
0.77
0.74
1.12
1.11
1.12
1.08
1.33
1.28
1.31
1 ~ 27
1.35
1.26
1.32
1.28
1.19
1.06
1.14
1.12
0.87
0.69
0.81
0.82

potential is again much softer than the Reid93 potential.
The reason for this softness of the Nijmegen potentials is
the exponential form factor.

Finally, all potential models have been fitted to the
deuteron binding energy B = 2.224575(9) MeV [29] us-
ing relativistic kinematics, i.e. ,

M2 ~2 M2 ~2

rather than B = ez/2M„. We also constructed ver-
sions of the Nijm I and Nijm II potentials to accom-
modate the latter nonrelativistic form. In any case the
value B = 2.224575 MeV is exactly reproduced to this
accuracy. Some of the other deuteron parameters are
listed in Table VI. The difFerent potential models all
give very similar results. Because we consider the poten-
tials Nijm I, Nijm II, and Reid93 as alternative partial-
wave analyses, the values of the deuteron parameter g,
As, and N given by these potentials are new experi-
mental determinations of these quantities. For the D/S
state ratio il we find g = 0.0252(1) in good agreement
with the recent determination by Rodning and Knut-
son [30] of il = 0.0256(4). For the asymptotic S-state

normalization As we obtain As = 0.8843(10) fm
which is in agreement with the determination by Ker-
mode et al. [31] of As = 0.8883(44) fm ~ . This re-
sults in Nz = A2s(1+ ri ) = 0.7825(20) fm i. How-
ever, there have been other experimental determinations
of these quantities which are not always in agreement
with the values quoted above. For a more complete list
of these experimental determinations and a discussion
of the differences between them, we refer to Ref. [32],
and references cited therein. A direct comparison of our
value qg = 0.271(1) fm2 of the deuteron quadrupole mo-

rl

As
N
Pg
Q~

Nijm I
0.0253
0.8841
0.7821
5.664
0.2719

Nijm II
0.0252
0.8845
0.7828
5.635
0.2707

Reid93
0.0251
0.8853
0.7843
5.699
0.2703

Nijm93
0.0252
0.8842
0.7823
5.755
0.2706

TABLE VI. Deuteron properties of the potential models:
D/S-ratio il, asymptotic S-state normalization As in fm
wave-function normalization N in fm, D-state probability
Pz in %, and quadrupole moment Qz in fm .
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ment with the experimental value 0.2859(3) fm2 of [33]
is only possible after all possible corrections have been
accounted for, which is outside the scope of this paper.
However, we would like to turn the argument around and
suggest that these corrections xnust obviously be about
0.015 fm . It is quite interesting to see that for our best
potentials the D-state probability is Pd = 5.665(30)%.
The deuteron parameters as well as the results for the
scattering lengths for both the potential models and the
Nijmegen PWA93 will be discussed in more detail else-
where [34]. These potentials were used [27] in calcula-
tions of the triton binding energy. It turned out that
all these potentials underbind the triton by roughly 800
keV, a result which can be expected Rom their Pg values.

V. CONCLUSIONS

In this paper we presented an update Nijm93 of the
old Nijm78 NN potential. It contains the correct OPE
tail and has y /Nq t ——1.87. Although it cannot com-
pete in quality with the Nijmegen partial-wave analysis (a
feature apparently all conventional meson-exchange po-
tentials suffer from), the description of the np data of
the new Nijm93 model is substantially better than that
of the original Nijm78 potential, which was fitted to the
old 1969 Livermore database [35]. Here we would also
like to point out that in the Nijm93 model we do not in-
clude two-meson-exchange contributions such as xx and
xp exchange, and we still get a reasonable description
of the Pq and D2 phase shifts. This is in contrast to
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claims made in the literature [6,8] that this is impossible.
However, this result is obtained at the cost of having a
rather large value for the pseudoscalar (pion) cutoff mass
of A~ ——1177.11 MeV.

We have also presented three new high-quality NN po-
tentials. The Nijm I potential is a nonlocal Reid-like po-
tential where each of the lower partial waves up to J = 4
is parametrized separately. For the higher partial waves
we use the parameters of the Nijm92pp potential, which
is an update to the pp data of the original Nijm78 poten-
tial. The Nijm II potential is a local Reid-like potential,
and does not contain any explicit momentum-dependent
terms. Both potentials fit the NN scattering data with a
nearly optimal y,„/Ns t ——1.03. A regularized update
of the Reid potential, denoted by Reid93, gives the same
excellent y;„/Ng t ——1.03.

Computer codes for these Nijmegen potentials Nijm I,

Nijm II, and Nijm93, and for the regularized Reid93 po-
tential, in configuration space as well as in momentum
space, can be readily obtained via anonymous FTP from
thef-nym. sci.kun. nl.
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