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Few-nucleon forces from chiral Lagrangians
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Few-nucleon forces are considered from the point of view of effective chiral Lagrangians. It is
argued that such forces naturally arise at the same order in chiral perturbation theory as some
important features of the two-nucleon force. In particular, the leading few-nucleon forces cancel
against the leading recoil correction in the iteration of the two-body potential. The remaining three-
body potential is presented in momentum and coordinate spaces. It is dominated by contributions
of the delta isobar of (i) two-pion range, which are not new, and (ii) shorter range, which involve

an undetermined parameter.

PACS number(s): 21.30.+y, 12.39.Fe

E. ENTRODUCTEON

Getting the correct binding energy of nuclei from the
underlying dynamics has been a long-standing problem
in nuclear physics. Such remarkable progress has been
achieved on few-nucleon calculations (for a clear intro-
duction, see [1]) that nowadays they undoubtedly pro-
vide important information about their input, two- and
sometimes three-nucleon (NN and 3N) potentials. What
information, however, is still debatable.

The traditional view [1] is that there is already some
circumstantial evidence for the existence of 3N forces.
The strongest indication comes from the fact that most
realistic NN potentials underbind the triton by 0.5—1.1
MeV and the o. particle by 4—5 MeV. There are also dis-
crepancies between data and calculations with NN po-
tentials only for the Hj He rms charge radii, the asymp-
totic normalization ratio C2/Co, and the nd spin doublet
scattering length, which can all be improved by including
3N forces adjusted to reproduce H binding. Other in-

direct evidence comes from improved nuclear saturation
properties when 3N forces are considered [2].

This interpretation has been challenged recently [3).
It has been argued that certain 3N observables display
a much larger sensitivity to some NN potential parame-
ters than NN data do. As a consequence, a fine tuning
of the NN potential is possible that is of little eKect in
the NN system but improves 3N fittings considerably.
An example is the large uncertainties in the NN ei mix-

ing parameter that existed prior to the recent Nijmegen
partial-wave analysis [4]: they allowed a static, one-boson
exchange version of the Bonn potential with a particu-
}arly low deuteron D-state probability PD to yield almost
the correct triton binding without resorting to 3N forces.

Here I want to discuss what our theoretical prejudices
are from the viewpoint of chiral symmetry. Chiral sym-
metry is a spontaneously broken (approximate) symme-

try of quantum chromodynamics (/CD) that governs
much of low-energy hadronic physics, but has not yet
been incorporated systematically in the description of nu-

clear systems. Recently, following a program put forward
by Weinberg [5], a two-body potential derived to third or-
der in chiral perturbation theory was shown to reproduce
qualitatively some features of the NN interaction [6] and
quantitatively NN bound state data and phase shifts up
to laboratory energies around 100 MeV [7,8]. In the fol-
lowing I will argue that a general chiral Lagrangian natu-
rally explains many of the features of nuclear systems, so
that it could be used as a guide for what ingredients we

should expect to need in a specific problem. In particular,
it will be found that few-nucleon forces arise at the same
level as some important features of the NN f'orce (such
as the short-range tensor force and the spin-isospin inde-
pendent central attraction) and are therefore expected to
play a non-negligible role in few-nucleon systems. Clearly
this line of reasoning is no substitute for the above de-
bate concerning what data are actually telling us, but
it does suggest that its best framework is one in which
both NN and 3N forces are included simultaneously and
consistently from the start. (From this standpoint, get-
ting the correct binding from NN forces alone can only
be considered a success after 3N forces calculated with
the same assumptions —e.g. , same mesons exchanged and
same couplings and cutoffs —are shown to be irrelevant. )

After first reviewing in Sec. II some of the consequences
of chiral symmetry to nuclear forces, I derive few-body
potentials in momentum space, the leading terms (which
are shown to cancel against part of the recoil correction
of the iterated two-body potential) in Sec. III, and the
dominant remaining three-body force in Sec. IV. (Some
of these points have already been mentioned in [6] and

[9].) The corresponding coordinate space potentials are
presented in the Appendix, and Sec. V concludes the
paper.

II. GENERALITIES
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Most of traditional nuclear physics concerns processes

involving momenta up to a few hundred MeV. (Approx-
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imate) chiral symmetry is the single most important in-

gredient in an efFective theory of hadronic processes (at
such low energies) compatible with the theory of strong
interactions, /CD. The pion is the (pseudo-)Goldstone
boson of the spontaneous breaking of SU(2) I, x SU(2) R to
SU(2)v, a fact that has (literally, too) far-reaching con-
sequences. One is the lightness of the pion. It is essential
to include it in the effective Lagrangian with the nucleon
and possibly the delta isobar, while heavier mesons can
be integrated out of the theory. Not surprisingly, one
finds a dominance of pion exchange in few-nucleon sys-
tems [10]. The other consequence is that the symmetry
restricts the form of the interaction terms in the effec-
tive Lagrangian, while the details of /CD dynamics are
buried in coupling constants (not fixed by symmetry).

With the assumption of naturalness —the notion that
when expressed in the appropriate scale, these coupling
constants are of O(1)—one can show that chiral symme-
try turns a simple power counting argument into a clas-
sification scheme for the strength of interactions [5]. An
arbitrary diagram contributing to a given process can be
obtained by sewing together irreducible diagrams, which
are those that cannot be separated in two by cutting the
lines of initial or final particles in an intermediate state.
For processes where all momenta Q are of O(m ), an
irreducible diagram with 2A nucleon (and any number
of pion) external lines, L loops, C separately connected
pieces, and V; vertices of type i which contain d; deriva-

I

tives (or powers of pion mass) and n, baryon fields is of
O(Q") where

v = 4 —A + 2(L —C) + ) V;b„.

with

6; =d;+ —' —2&0 (2)

then the Lagrangian to lowest order (6; = 0) is

referred to as the index of the interaction i.
Therefore, at energies small compared to some charac-

teristic /CD scale M (of the order of a typical hadronic
energy scale, say the rho mass), the most important
interactions are those with smaller indices. Say m de-
notes the pion field of mass m and decay constant I'
( 190 MeV), N (b,) is a two-spinor (four-component
spinor) in both spin and isospin spaces that represents
the nucleon (delta) of mass mdiv (mn), 2o (t) is the gen-
erator of spin (isospin) transformations in the 2 repre-

sentation, S(T) is the transition operator that satisfies
S;S+ = si(2h;~ —is;~i, (ri, ) [T Ts+ = si(b s —ie s,t,)], t~ ~ l

is the isospin generator in the 2 representation, and D is
shorthand for
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2ggD '
F

+b,
~
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g(s) — DB„m—8-"n — mD m -+ N i80 — &. (m x k) —my-] —2
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F2 )

2i CsNNNN ——2CT Na~N ¹N—DT Nto N (NTSA + H.c.) + .

and the first order (b„= 1) terms are

m2

Q2 NN[(Vm) —+ ] — D NtoN (Vm x Vm) — D iNNm2
p'2

D NNN(t. o Vx)N — D (NtoN x NtoN) Vn

2 1'EiNNNtN. —N-tN — E2NNNtoN -NtoN — (NtoN .x NtoN). NtoN+2 2
(4)

Here g~, h~, C's, CT, DT, B~,2,3, Dq 2, and E~,2,~ are un-
determined constants to be obtained either by solving
/CD or by fitting data. Note that I (i) only show those
terms relevant for what follows and omit others that
have more isobars and (ii) have applied Fierz reordering
to terms with four and six nucleons in order to rewrite
six other possible combinations of o, t in terms of those
shown above.

Equations (1) and (2) provide the basis for a pertur-
bative expansion in powers of Q/M. For systems with
at most one nucleon (A & 1), they tell us that dominant
contributions are due to tree graphs generated by (3) and
(4), which just reproduce the time-honored current alge-
bra results. Consideration of higher-order Lagrangians

and loops allows a systematic accounting of corrections
(for a review see [11]).

For systems with several nucleons (A & 2), the same
power counting yields the main features of traditional
nuclear physics.

The first feature is that a nucleus is basically made out
of nucleons. At the level of nuclear dynamics itself that
is because the nucleon mass is large compared to M so
that reducible diagrams have small energy denominators.
This leads to a picture where nucleons interact nonper-
turbatively through a nuclear potential; it is in the po-
tential that the perturbative contributions of pions and
deltas (and, indirectly, everything else) are. When exter-
nal probes (pions and photons) are brought into play, the
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leading contributions come &om diagrams with the max-
imum number of connected pieces: the probe interacts
with each nucleon separately —that is the impulse ap-
proximation. First corrections to such an approximation,
which are of pion-exchange type, have one less connected
piece and so are expected to be of order (m /M)2 5%%uo.

Although meson exchange currents can be larger in some
situations, a systematic chiral Lagrangian analysis car-
ried out by Park, Min, and Rho [12] confirms this typical
estimate. A similar remark applies to threshold pion-
deuteron scattering [9] and pion photoproduction and
electroproduction on light nuclei [13].

The second feature is that nucleons are nonrelativis-
tic. This is again because the massive nucleon is not dis-
turbed much by the little kicks it receives &om other par-
ticles. At the level of the potential, this is why one-pion
exchange is essentially static, corrections having 6; = 2
and so being again a few percent. I will return shortly to
their energy dependence and their effect on the iteration
of the potential.

The third aspect is that nucleons interact mainly via
pairwise forces. This is again a consequence of decreas-
ing the number of connected pieces: few-body forces are
smaller than two-body forces by a factor (m /M)2. In
triton, for example, we can estimate the two-body con-
tribution per pair (V2s) to the potential-energy expecta-
tion value (V) = —50 MeV [1], as (V2&) s(V) —15
MeV; the three-body contribution is thus expected to be
(Vss) +0.5 MeV. Notice that this is a nontrivial result,
since models without chiral symmetry exist (e.g. , that in

[14]) where two-pion exchange is large and therefore that
yield large 3N forces. That pseudovector coupling of the
pion implies smaller three-body forces was noted already
in the 1950s [15] and the role of chiral symmetry was
emphasized in the late 1960s [16]. I now turn to the sys-
tematic derivation of the implications of chiral symmetry
to the multinucleon dynamics.

III. LEADING FORCES AND ENERGY
DEPENDENCE

For a nucleus with A nucleons, we see from (1) and (2)
that the smallest possible power of the small momentum

1S

v;„=6 —3A. (5)
It corresponds to tree (L = 0) diagrams constructed out
of the lowest-order Lagrangian (b„. = 0) with the maxi-
mum number of separately connected pieces (C = A —1).
To this order, then, the nuclear potential V is simply a
sum over all pairs (ij),

Vi'~(.- .-„)= ) V"(.- —.-) (6)
('i)

of two-body potentials V2 consisting of static one-pion
exchange (OPE) plus two contact terms [5].

This is obviously a very crude approximation to the
NN potential. It does allow us to see how energies of the
order of 10 MeV arise from /CD: very roughly (V2s)

(V2 ) (1/2+2) (g~/F )2ms —10 MeV, not too far
off the above triton estimate. However, a quantitative
analysis requires corrections, which have already been
calculated [6] up to

~~ = +min+3 (7)

(I =0 Q;V'&'=1, 2, 3; L =1, Q, V4, =0, 1) and
used to fit NN scattering and bound state data [7].
refer the reader to Ref. [8) for the complete expressions.
I just mention some of the results. Of particular im-
portance here is that at v;„+2, recoil has to be ac-
counted for in OPE, which leads to a dependence on
the energy 2m~ + E of the incoming nucleons. Denot-
ing by p, (J7',.) the initial (final) momentum of nucleon i,
P*, =&*+&,, I'& =— —,'(S,' P, ), q*, =S—' —S,' = p,' —s", ,

and iU;~—: q2 + m2, we get to this order (7), in mo-

mentum space,

3

) V,'"'(q;„k,, ;Z)

,
(Cs+CTa P2 —

i i
t t2 2 1+ E-

'k~. )
(&*', + 4q,', + 4&V ')

I
+ - —(8)

Here I displayed the leading piece plus OPE recoil but
hid in the dots the most interesting parts, namely, two-
pion exchange (TPE) and contact terms. They provide
the ingredients (such as short-range tensor and spin-orbit
forces and intermediate range attraction) that are neces-
sary for a reasonable 6tting of phase shifts, which we in-
deed achieve (with a cutofF at the rho mass), up to around
100 MeV laboratory energies. (To go further in energy
presumably requires even higher-order corrections. They
can be included, but involve the more complicated cal-
culation of two-loop diagrams and the introduction of
many more undetermined parameters due to a host of
new contact terms. )

Since these corrections contain such important infor-

mation in the case of the two-body system, it is just
natural to consider their effects in A & 3 nuclei. No
calculation of the triton has been carried out with our
two-body potential, so we cannot be quantitative as to
how much room it leaves for three-body forces. If the
D-state admixture can serve as a guide, one might ex-
pect not much underbinding since our P~ 5%%uo is lower
than most realistic NN potentials. In any case, and this
is the important point, consistency of the approach re-
quires that we evaluate all corrections to a certain order.
To the order given by (7), we also encounter forces in-

volving irreducibly three nucleons V3 and two pairs of
nucleons V2 q for both of which C = A —2. We then
write
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3

) V~"l (ri r"~)

3 3

=) ) V,'"'(.-;,.;)~ ) ) V,'"'(.;,.-;,.-,)
(gg) n=o (;&g) n=2

3

+ ) ) V,'",'(r; —r;;r; —r),
(.j kl) ~=2

where the second sum extends over all triplets (ijk) and
the third over all pairs of pairs (ij;kl).

I now move to touch on these few-body parts.
The largest contribution is expected to come at v =

v; + 2, being due to tree (L = 0) diagrams given by
l:~ol in (3) (P,. V,b„. = 0). If we ignore the isobar for
a while, the corresponding diagrams for the three-body
potential are given in Fig. 1. One finds [5] that the
various orderings of Fig. 1(c) add to zero, while Figs.
1(a) and l(b) yield

2

V,
'" (j;,~q~s) = 2

l i s o~s qis[t; ts(&so'+&To, ) q~s+t, . ts(&s&~+&7&') q,.s]
&+~ J

4
—4

i i

' o; q;zcr& qz&[t; t&q;& qz&
—2tz (t; x t&)o'z (q,z x q~i/)]

4 +~ ) ~sg~gi

+two cyclic permutations of (ijk). (10)

The second term is just TPE [Fig. 1(b)] and has been calculated long ago by Brueckner, Levinson, and Mahmoud

[15]. The first term comes in part &om the contact terms in (3), first considered by Weinberg [5]. (Note, however,
that I correct here the corresponding result in [5].) The double-pair potential, in turn, comes from the diagrams in
Fig. 2 and is

,(2g~l,
't,/2g~&I' o~ q'&~& q'& oi, qs«i. q~i

2,2(q" qual)=i F i
s+ Tg' os+i E i

t' t 2 tk tl 3"i.y J

+interchange of (ij) and (kt).

(The coordinate space versions of these potentials are given in the Appendix. )
What is the eH'ect of these leading few-body forces' The remarkable fact is that they are canceled by the energy

dependence of the two-body potential (8) when the latter is iterated in the Lippmann-Schwinger equation.
To see this, consider the diagrams of Fig. 3, which are all orderings where nucleon j emits or absorbs a pion (that

fiies to or from nucleon k), before getting in touch with nucleon i. According to our power counting, Figs. 3(a) and
3(b) are the most important, because they are iterations of the NN potential, which is given by (8). Their sum will
be proportional to

1 1

E(pz —
ques) + E(pi, + ques)

—E(pz) —E(p&) E(pz —
qz&) + mz& —E(pz) E(pr, + qz&) + iU&& —E(ps)

2 1 JEST1+0
i

—
i

. (12)~;.[E(p, -6')+ E(p. +4.) E(p, ) —E(p.—)l ~,'a . E~).

The 6rst term is just the iteration of the leading order
potential V2, it is large because the diH'erence in nu-
cleon energies is small, O(m /m~), while iU is O(m ).
The second term is the iteration of the recoil correction

to OPE shown in (8); the small energy denominator is
canceled by the small recoil energy. The leading 3N force
is expected to be of the same order; it is given by Fig.
3(c) [which is just Fig. 1(a)], which is proportional to
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FIC. 1. Tree graphs contributing to the 3% potential. All
other time orderings and permutations are to be considered
as long as there is at least one pion in intermediate states.
Solid lines are nucleons and dashed lines pions.

FIG. 2. Tree graphs contributing to the double-pair po-
tential. All other time orderings and permutations are to be
included as long as there is at least one pion in intermediate
states.
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(c)

FIG. 3. Diagrams representing (a) and (b) part of the iter-
ation of the NN potential whose energy dependence approxi-
mately cancels (c) the contribution from part of the 3N force.
The same cancellation applies to other time orderings.

FIC. 4. Example of the cancellation analogous to the one in

Fig. 3 for the TPE sector. In (a) and (b) recoil is considered
in the pion line to the right. The same cancellation occurs
in three other sets of four TPE diagrams corresponding to
different orderings.

~~~ + E(~' —4~) —E(~')

1

~~~ + E(p', ) + E(p,') —EP(') —E(6 )

(E)1+o
~

—
I (»)k~)

Here the first term is already the leading 3N force (10)
for which nucleons are static. The important point now
is that, because the diagrams in Fig. 3 differ only in
their energy denominators, the I/ui2 terms cancel when
we compute the T matrix or, equivalently, when we solve
the Faddeev equations.

It is not difFicult to show in the same way that a simi-
lar cancellation happens also in the 3N TPE piece (Fig.
4) and the double-pair force (Fig. 5). This cancella-
tion has been noted before (in the case of the TPE 3N
force) [17], but its model independence and generality
are particularly clear in our context. More recently, Friar
and Coon [18] have emphasized that choosing an energy-
independent potential then leads to no 3N TPE forces
(of this type) at all. In other words, in a few-body cal-

]

culation both Vs of (10) and V2 2 of (11) can be omit-
ted as long as we do the same to the recoil term in (8).
(This is nicely exemplified [19] by comparing the triton
binding energies, one &om the full Bonn potential plus
the above TPE 3N forces and the other from its energy-
independent version obtained using the folded diagram
technique. ) Conversely, it is clear that it makes no sense
to use an energy-dependent NN potential in a few-body
calculation without at the same time including 3N and
double-2N forces calculated in the respective framework.

IV. REMAINING FEW-BODY FORCES

(3)
V2, 2 (q J qual ) (14)

As for the 3N force, the same remark applies to Figs.
1(a) and l(b); there are contributions though, from Figs.
1(c) and 6, that are readily calculated,

I now go to next order, v = v;„+3, which still comes
from tree (L = 0) diagrams, but now have one vertex
from l:(iI in (4) (g,. V;6; = 1). In the case of the double-
pair force, the diagrams are still the same as in Fig. 2,
but there are no corresponding NNx or NNNN vertices
in (4), so that

(15)

Vs (q,~, q~i, ) = Eit, t/g + E20' '0/gt 'tie + Esaj ' ((T'x og)tj ' (t xtQ)'
2g~ 1

2 oq qzA, [Di(t, ti, a, + t~ . tqo~) —2D2t~ (t, x tA,.)o, x o~] q~i,

(2g~) 1
+2

~ ~ 2 2 o, q,~oi, q, i, [t, ti, (Bio,~ q, i, +Bsm ) —B2t~. (t; x ti, )a, (q;z x q~i, )].0E~)
+two cyclic permutations of (ijk)

(b) (c)

FIG. 5. Same cancellation as in Figs. 3 and 4, but for the
double-pair potential. An analogous result holds for other
orderings and for TPE diagrams.

(see the Appendix for the coordinate space version).
Hence this 3% force has eight undetermined parameters.
Of course, three of them (the B s) can be fixed once a
systematic chiral Lagrangian analysis of 7rN scattering is
carried out. Two others (the D s) can in principle be
determined by processes such as vr-deuteron scattering,
or vr production and/or absorption on NN systems, but
it is unlikely that this could be done without much more
accurate data than currently available. More important,
the three remaining parameters (the E s) can only be
determined from data involving 3N systems, so we do
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(b) (b) (c)

FIG. 6. Other tree diagrams contributing to the 3N po-
tential. Both orderings of (a) must be considered, as well as
permutations.

not have great predictive power. There are, of course,
more than three measured quantities in these systems,
and again in principle the above force is testable. The
problem is, it seems that all current data can be fitted by
appending to realistic NN potentials a "reasonable" 3N
force with just one parameter that is fixed by the triton
binding energy [1].

The situation is not completely hopeless, though, be-
cause I have been ignoring the 6 isobar. If the 4 is inte-
grated out of the theory, its contributions appear only
indirectly, in the coefficients of the general chiral La-
grangian. The mass difference to the nucleon sets both
the suppression factor of these coefficients and the limit of
applicability of the effective theory. If this difference were
of order M or larger, no changes in the power counting
arguments given above would be necessary. As it hap-
pens, though, m~ —m~ is only 2m, which is closer
to m than to M: coefficients receiving a contribution
&om the delta are anomalously large and the theory is
valid only at very low energies. It is more convenient,
then, to keep the 4 explicitly as a degree of freedom in
the Lagrangian, as we did above, and treat it as the nu-
cleon field, as far as power counting goes. That is what
was done in our study of the XN potential [7,8]; here
it implies an additional 3N force of order v = v;„+2,
obtained &om the graphs of Fig. 7 in the static limit,
where all vertices are from (3). Not surprisingly, it has
the form (15), but it is suppressed only by mn —mN.

(16)

with
Eg —+ 0,

1 DT
E2 W—

9 mg —m~

1 DT
E3 w ——

18 mg —m~
4 DT hg

Dg w ——
9 m~ —mN

Dv h~
D2 m—

9 mg —m~

4 h~~
Bg —+ ——

9 mg —m~

2 h~~
B2 -+ ——

9 m~ —m~

B3 m0.

FIG. 7. Tree graphs with isobar contributing to the 3N
potential. All other time orderings and permutations are to
be considered. A double line represents the 4 isobar.

Again, these forces (15) and (16) have some known el-

ements, corresponding to the TPE pieces, because they
are obviously related to the mN scattering amplitude.
The importance of the 4 was recognized early and the
TPE piece in (16) [h& terms, Fig. 7(c)] is simply the
old Fujita-Miyazawa force [20]. Here it appears as the
leading three-body force remaining after the cancellation
exhibited in Sec. III and it is accompanied by shorter-
range contributions depending on only one parameter
(DT). Similarly, the relevance of current algebra was
noted in the 1960s [16]. Chiral symmetry has been im-

plemented in this context by Coelho, Das, and Robilotta
[21] using a chiral Lagrangian involving the p and the
6 in conjunction with a parametrization of the isoscalar
amplitude. The TPE in (15) is the same as theirs, but
hopefully it is clear that its derivation here is as model
independent as possible (it does not involve any explicit
assumptions about /CD dynamics in the form of the
p) and comes from a perturbative expansion. A simi-
lar force was obtained by Coon and co-workers [22] by
extrapolating amplitudes off mass shell using dispersion
relations. The connection between these two approaches
was examined in [23], the main difference arising &om a
term present in the isoscalar amplitude of the latter that
generates a contact term similar to those in Fig. 6(a).
It was also pointed out that this and other short-range
terms that arise &om the TPE in (15) are responsible for
an extreme sensitivity of triton quantities on the cutoff
parameter, which is introduced to regularize the coordi-
nate space potential, but should otherwise not affect the
potential much.

This problem can now be reinterpreted. First, I note
that these troublesome short-range terms (except for the
one &om the parametrization of the isoscalar amplitude)
have exactly the same structure as our new contact terms
of Fig. 6 and so cannot be distinguished from them in
a calculation using the complete 3N potential (15) and
(16). The mentioned sensitivity is, therefore, only a de-
pendence on terms that contain bona fide parameters (the
D s and E s) of the general chiral Lagrangian. It is no
more surprising than the sensitivity to, say, the DNA
coupling h~. Such short-range terms should not be omit-
ted as suggested in [23], if a complete description is the
goal; rather, it is the more general potentials (15) and
(16) that should be used. Second, in the approach pre-
sented in this paper, the cutoff is not an independent
parameter anyway: it is the same parameter that was
used in the NN potential, the fitting of which yielded
the values of some of the other parameters appearing in
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(15) and (16) (g~, h~, and the B s). Changes of the
cutoff parameter are compensated to a certain extent by
changes in all the other parameters of the complete po-
tential.

Calculations involving the above TPE pieces have been
performed [24,25]: they tend to increase the binding of
light nuclei by approximately the correct amount, al-
though details of course depend on the NN potential and
parameters used. A short-range 3N force was suggested
on purely phenomenological grounds [24] in order to pro-
vide the necessary repulsion needed for nuclear matter
saturation. As mentioned above, the dominant short-
range terms (which have, however, a different structure
than that assumed in [24]) are given by (16).

I stop here. I have discussed all there is to the order
given by (7). As mentioned before, the inclusion of higher
orders in the NN potential involves two-loop diagrams
and lots of new contact terms. At the level of the 3N po-
tential, one is also required to consider one-loop graphs.
And then there are 4N forces. All such contributions are
smaller by powers of m /M.

V. CONCLUSION

A complete chiral Lagrangian approach to third order
would consist of calculating nuclear properties using the
NN potential of Refs. [7,8] plus the few-nucleon forces in
(10), (11), (15), and (16) [or simply, the NN chiral po-
tential without the energy-dependent term plus (15) and
(16)]. The proliferation of undetermined parameters sug-
gests an alternative, more phenomenological approach:
to take any realistic, energy-independent NN potential
(which presumably describes the essential phenomenol-
ogy of the NN system even in a multinucleon environ-
ment, as attested by the approximately equal binding
such potentials produce), to add to it only the 3N poten-
tial (16), to fit the one free parameter to triton binding,
and then to predict other A = 3 and A & 4 properties.
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In conclusion, I have argued that naturalness of @CD
implies that few-nucleon forces are generically smaller
than the dominant NN forces, but appear at the same
level as some other important features of the NN poten-
tial. In particular, the leading (static) 3N and double-

pair forces are canceled by the leading energy dependence
of the iterated NN force. The remaining 3N force has
not only terms related to AN scattering, but also shorter-
range components. It is expected to be dominated by the
Fujita-Miyazawa force plus a shorter-range term that de-
pends on only one undetermined parameter (DT ); they
should be O(m2/M2) and so some 5% of the NN contri-
bution. Finally, 4N forces are expected to be O(m /M ),
less than l%%ua, so that 4N systems should be underbound

by pure NN forces by roughly four times the triton un-

derbinding.

APPENDIX

Here I present the potentials (10), (11), (15), and (16)
in coordinate space, where I define

Tij Ti 7j pij rij)

cos ej ——r;j . rjy,

/aS„~jr&,r2) = 3'„rzo~ . r2 —rz r2a„a~.

The spin and isospin dependence of the three-body po-
tentials (10), (15), and (16) can be written as

Vs (r~j, rjg) = ti ' tg(V~ (rij & rj le) + (7i ' (7@V~) (rij & rj L) + &i 0jV~2 (rij & rjs) +'&j ' (7@V~2 (~j kt rij )

+S,s(r;j),j)V~, (;,, ",g) + S;i,(ijs, i, ) ) s, (,) . .j)
+S,j(r;j, r;j)Vs2 (rj, rj&) + S,i, (rji, , rji, )Vs2 (r, l„r,, ) + S,i, (r;, , rji, )Vs" (r;, , r, l, ))
+it, (t; x tl, )(i(Tj (o, x a), )V" (r; rj, )+i[S;,(r";~) r";,), 0, . oI,]V~ (r;j) rj), )

—[Sjl ((rjq, rj()H, . H~]Vs (r~i, rj) + [Si~(rj,rj), SjI (rj)„rj))]V&z (r~, r~I ))
+two cyclic permutations of (ijk).

For the potential (10) the radial functions Vl"l are given by

2 2

V ~ (r';y, j&) = ——
~ ~

—
~ ~

[m Is o(r;j)I2 o(rjl, ) + (3 cos Oj —1)I32(,,)I22(rjI, )]
(2) „2fg~) 2 fgz) 4'

2

3 i I" j 3 (,I'

+ &s ——
l + ~

(m ho(r;, ) —Ii0(r;, )]lao(,a)I + ("'; ~ r;t),
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2

V 2 (r;j, r~g) = ——
l l

CT [m I3 0(r;j) —Iq 0(r;~)]IQ 0(rja),(2) 2 ~gA )
K2 ~2~ 2 3 ) F )

Vs~ (r;j, r~), ) = —
I I

—
l l

(I3 2("*j)[ I2 0( jk) I2 2(rjk)](2i 2 fgA') 2 gA)
3)F) 3)F)

2 (gA)'
+Imm(rz)[rn Iso(rza) —Isa(rza) —Ilo(rza)))+ cs

I ~
Isa(rz)I oD(Pj's)I,

(2)
Vs2 ("'j ~rj&)

(2)v,.(.;, , r,,)

v.(2&(.-,...;.)
(2)

Vs (r;, , rjg)

(2)
Vss (r'j rj')

2 t'gA')'
CT I3 2(r j)Ip 'p(rjg),

3 (F )
4 &gA&'

cos 8jI32( r'j)I 22( rjl5) +( rj j++ rjQ)p
3 iF-)

4

[m I3 0(r;j) —Ii,o(r;j)][m I2,0(r ja) —Io,o(rj&)] + (r;z ~ rjg),
8 &gAI
9

4

(I2,2(r j)[m 'I3,0(rjk) I1,0(rjle)] + I3,2(rij)[m I2,0(rjie) Ip, p(rjk)])
4 &gA&

4 (gA')'
I32(r;j)I22(rja) + (r;j m rjI,).9

For the potential (15), they are instead

V."'(r"'j,~~a) = EiIQ, Q(r'j) Io,o(rj~)
2

V z (r;j, r~), ) = —
l F2 l

(Bq[m I2,0(r;j)I2,0(rjg) + (3 cos 8j —1)I2 2(r;j)I2 2(rjg)]
(3l 2 (2gA) 4 2

9
—3B3m cos 8jI2 q(r;j)I2 q(rj~))

+ D ym [I2 p(r j)IQ p(rj'le) + Ip p(r j)I 02(rj'g)] + E2Ip p(r'j)IQ p(rjg),

(3)V 2 (r;j, rjg) = 0,
2

(3) 2 (2gAI 2 2 gA
Vst (r~i, r~g) = —

I 2 I
B&I2 2(rj)[m~I20(rja) —I2 2(rjg)] + — 2D~I2 2(rj)IQQ(rja),9 ), F2) ' ' ' 3F2

where

(3)
Vs2 ("'j rj~)

(3)
Vs~ (r'j~r, I,)

V.(.'l(.;...;,)

(3)Vs. (rV rj~)

(3)
Vss (r'j rjs)

0,

2 (2gA&
(Bg cos 8jI2,2(r;q)I2 2(rjg) —Bsm I2 g(r;j)I2, g(rjg)),

2 (2gAI
9 qF. )

82m I2 0(r;j)I2,0(rjl, )

2D2m [I2 0(r;j)IQ p(rj), ) + Ip p(r;j)I2 p(rjg)] —E3IQ 0(r j)IQ 0(rjlg),

1 /2gAN 2 2gA

9) F2) ' ' 3F2, l
B2m I2,2(r', )I2,0(rjk) 2D2I2, 2(r'j)IQ, Q(rja),

1 (2gA)
9 (F2) B2I2 2(r;~)I2 2(rja),

D2 —D2 +

E' =—E

E,'=—E, —

4g~Bi

4g~B2
3E2

4gA (D 2gABg)~
3F2 g 3 F2
4 gA ~t'D 2 gAB2 (

3 F2 ( 3 F2 )
The 4 potential follows from the above V(3l and (16).
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On the other hand, the double-pair potential (11) is

2
(2) 4 (g~l

&2,2(r*~ &~~) = --
~

x(o; oz[m Is p(r;z) —I~ p(r, i)] + S;z(r;z, r,z)Is 2(r;z))(Cs + o'g o~CT)Ip p(rl~)

16 (g~l+—
~ ~

t, . t~tg t~(o; cr~[m I2 p(,~) —Ip p(r, i)] + S,~ (r;~., r;~)I2 2(r,~))

x (oy oi[m Is p(rg~) —Iy p(rg~)] + Sg~(rg(, rg])Is 2(rg()) + (ij) ~ (kl).

In the above expressions the I's are Fourier transforms
with a cutoff function F(q2; A) of parameter A ( M:

d q exp(iq r")F(q2;A)™A
(2z.)s (q 2 + m2)k/2

It p(r) = Ig p(r; m, A),

Ig t(r) = I/, o(r),

II,2(r) = II,',o(r) —-„II,o(r).

When the cutoff is removed

I, ():6()
Iy, o(r) '

2 Ky(m~r),
27r2r

I2 „(r); exp( —m r)a„(r),
—m

4vrr

Is„(r); K„(m r),
—m

27r2

where K„are the modified Bessel functions and

ap(r) = 1,
1

a, (r) = 1+
mar

3 3

mr mr2a, (r) =1i

F(q';A) = exp( —q'/A'),

In the NN potential [7,8] the cutoff function was taken
to be Gaussian,

I

in which case [26]

Io,o(r) =
~

—
I g(r),

(A ) ~sr
q4vr) 2

(
Iz,o(r) = — dA exp

l l
I2 o(r' gm + p A)

7C p
w

m"
() = [ „(,)f(,)

-b-(r)g(r)]
2 dA

Is,.(r) = — —, I,,„(r;m., A)
7t p

(—exp
~

——
~
I2 „(r;V m + p2 A)A2 ) i~ & 7f & 'I

where

g r = — exp I—
4~~~ q 4 )'

( m.') ( Ar m. b
exp

/

mr + —
/

erfc
[

——+
4vrr q A2) q 2 A )

'f(r) =

bp(r) = 0,
1

bq(r) =
mar r

b2(r) = (1+ sA r ).
m~r '

erfc(x) = 2/~sr j dt exp( —t2) is the error function, and
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