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The relativistic nuclear mean-6eld model with derivative scalar coupling suggested by Zimanyi
and Moszkowski is extended to asymmetric nuclear matter by including the p meson degree of
freedom in the Lagrangian. The extended model is then used to study the Coulomb instability of
asymmetric nuclear matter at 6nite temperature. The critical temperature for the liquid-gas phase
transition in nuclear matter and its dependence on the asymmetry parameter are calculated. The
limiting temperature T&;, which reBects Coulomb instability of hot nuclei is studied. The calculated
results are compared with those given by quantum hadrodynamics (QHD) models.
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I. INTRODUCTION

Although the mean-field theory (MFT) of the quan-
tum hadrodynamics (QHD) model is very successful in
describing the properties of both nuclear matter and fi-
nite nuclei [1], it has two major shortcomings. First,
the effective nucleon mass becomes very small for nuclear
matter at moderately high density and temperature [2].
This strong change in the effective mass has serious ef-
fects in the calculation of the production of new particles
in heavy-ion collisions. Second, the QHD model gives
a compression modulus K = 540 MeV, which is much
larger than its empirical value [3,4]. Recently, Zimanyi
and Moszkowski suggested a new model with derivative
scalar coupling [5] (referred to as the ZM-I model in the
rest of this paper). In the mean-field approximation, Zi-

rnanyi and Moszkowski obtained a nuclear equation of
state for infinite symmetric nuclear matter at zero tern-
perature, which is much softer than that in the Walecka
model. It yields much more reasonable values for two
key properties of nuclear matter, namely, the compres-
sion modulus (225 MeV) and the effective nucleon mass
(0.85) at the saturation point.

A successful model should describe well not only the
properties of infinite symmetric nuclear matter at zero
temperature, but also those of nuclear systems of finite
size, asymmetric quantities, and at finite temperature. In
a recent paper [6] we derived an equation of state for in-
finite nuclear matter at finite temperature by means of a
real time Green's function method, starting from the ZM-
I model. It is found that the equation of state obtained at
finite temperature is much softer than that given by the
Walecka model and is quite similar to that given by the
nonrelativistic theory with the Skyrme effective nucleon-
nucleon interaction (SkM*). As a result, the ZM-I model
gives us a more reasonable critical temperature for the
liquid-gas phase transition in infinite symmetric nuclear
matter than the Walecka model. The next step is to in-
vestigate if the ZM-I model is still good for describing the

properties of asymmetric and/or finite nuclear systems.
This is the main purpose of this paper.

We would like to extend the formalism for symmetric
nuclear matter [6] to the asymmetric case. The equa-
tion of state obtained is then used to study the liquid-
gas phase transition in infinite asymmetric nuclear mat-
ter, where the critical temperature T~ for the liquid-gas
phase transition in nuclear matter and its dependence on
asymmetry are calculated.

Most of the existing calculations of the critical temper-
ature for the liquid-gas phase transition in nuclear matter
are based on nonrelativistic theories starting from effec-
tive nucleon-nucleon interactions, such as the Skyrme in-
teraction [7—9], the Gogny interaction [10,11] etc. [12,13].
In a recent paper [14] we have discussed the asymmetry
dependence of the critical temperature for the liquid-gas
phase transition, starting &om a quantum hadrodynam-
ics model. It was found that in order to describe well the
dependence of the properties of nuclear matter on asym-
metry, we have to use the QHD-II model, where the p
meson degree of freedom is taken into account. As a re-
sult, the main feature obtained in nonrelativistic theories
with effective nucleon-nucleon interactions remains in the
QHD-II model. It is, therefore, of interest to adopt the
ZM model to study such a phase transition to see what
role the p meson plays in the ZM model and compare the
obtained results with those in the QHD-II model.

Furthermore, we shall also study the finite nuclear sys-
tem at finite temperature. As pointed out by I evit and
Bonche [15], another temperature, namely, the limiting
temperature T~;, is important for a 6nite nuclear system
with a Coulomb interaction. Below the limiting temper-
ature T~;, the nucleus can exist in equilibrium with the
surrounding vapor. But above Tj;m the nucleus is unsta-
ble and shall fragment. This is the so-called Coulomb
instability of hot nuclei. Recently, much effort [16,17]
has been devoted to studying the Coulomb instability of
asymmetric nuclear matter. But most of such studies are
also based on a nonrelativistic treatment with effective
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nucleon-nucleon interactions. It is therefore of interest to
investigate such an instability of hot nuclei in a relativis-

tic approach. In Ref. [14] we also discussed the Coulomb

instability of hot nuclei, starting from QHD models. It
is found again that the QHD-I model (without the p me-

son) cannot describe well hot nuclei with two phases in

equilibrium. For a sufBciently large asymmetry eEect, it
is necessary to include the p meson degree of freedom
in the Lagrangian. How about the situation in the ZM

model? This is also a problem we would like to investi-

gate in this paper.
In Sec. II we will describe brieQy the MFT of the ZM

model for bulk nuclear matter. A two-phase model and
the coexistence equations are described in Sec. III. The
numerical results and some discussions are presented in

Sec. IV. We then give some concluding remarks in Sec.
V.

II. BULK MATTER IN THE ZM MODEL

The degrees of freedom in the ZM model are baryons,
scalar mesons, and vector mesons. The outstanding fea-
ture of this model is that the coupling between baryon
and scalar meson is of derivative form. As mentioned in
the last section we would like to extend the ZM-I model
to the asymmetric nuclear system by including the p me-
son degree of freedom in the Lagrangian of the nuclear
system. Following the prescription for the QHD-II model

[1], we take into account the coupling term between the
nucleon and p meson fields besides the terms for the p
meson 6eld. The Lagrangian density for the extended
ZM model (referred to as the ZM-II model) [5] is then

&—[I' —'&p~" + g Vp~" + gp 'V-p~. ~"]0

+2(B„oB"o—m o. ) —1F„F""+-'m2(u„~& (5)

(6)

where the effective mass M* is de6ned as
- —1

M' = m*M, m* = 1+
M

This gradient or derivative coupled Lagrangian is
Lorentz invariant. The Lagrangian also contains cou-
plings between scalar meson and vector mesons. Zimanyi
and Moszkowski [5] derived the equation of state for sym-
metric nuclear rnatter at zero temperature in a mean-6eld
approximation. In Ref. [4] we have derived the equation
of state for nuclear matter at finite temperature by using
a real time Green's function method with a first-order
pair cutofF approximation. It is not dificult to extend
the formalism to the case with a p meson field. Since the
details can be found in Ref [6) .we will just give the main
results here.

The single nucleon spectrum E'(k) in nuclear matter
is given by

E'(k) = Qk2+ M'2,

where k and M* are, respectively, the momentum and
the effective mass of the nucleon. The eH'ective mass M'
of the nucleon in nuclear matter is given by the relation

M* = 1+ M,0 - —1

M

where the mean 6eld era of the scalar meson o is expressed
as

drp =,m'z " dsk [n„(k) + n„(k)]m.' 2~ '
+ 1+ z/d[zp„B" —g p„(u" —

gp 27„7b"]g--
+ ~

~ /d~k . [a~(k) +k~(k))l

where

and

—-L„L""+ -m b„b",

+gv = gv v~p (2)

(10)

In Eq. (10), pp = p„ = 2 is the spin degeneracy n~(k).
and n~(k) are nucleon and antinucleon distributions, re-
spectively, expressed as

nq(k) = (exp[(E (k) —vq)/k~T] + 1) '

Lgv =—Bpbv —Bvbp . (3) and

In Eq. (1), M is the rest mass of nucleon and 7 is the
Pauli operator. o, ~„, and b„are the neutral scalar
meson, neutral vector meson, and isovector vector rne-
son 6elds, with parameters m, g, m, g, m~, and gz,
respectively. By rescaling the fermion wave function

nq(k) = (exp[(E (k) + vq)/k~T) + 1) (q = n, p)

(12)

where T is the temperature of the system studied, k~
the Boltzmann constant, and the quantity vq is related
to the usual chemical potential pq by the equations

vn = pn —g~cuo+ 2gpbo
1

the Lagrangian given by Eq. (1) can be written in the
following form which is more familiar to us:
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1
V& = P&

—g~(dO —2g&bo (14) p, and proton chemical potential p,„of the liquid and
vapor phases:

In above equations, uo and bo are the time components
of the mean fields for the ~ and p mesons, with the ex-
pressions

p(T~ PL, ~ ni, ) + I)coul(PL, ) + psurf(T, pI ) = p(T, pv, nv),
(2O)

g~
(do = pm.' (15)

( -(T, m, nL, ) = V-(T, pv, nv), (21)

and
V~(T, pL„nI. ) + pcou&(pi. ) = p,„(T,pv, nv), (22)

gp
bo —— ,p3,2m' (16)

where p3 ——p„—p„. The neutron density p„and pro-
ton density p„determine the chemical potentials by the
subsidiary conditions

(17)

The neutron density p„and proton density p„are also
related to the total density p and asymmetry parameter
o. by the relations

p„= (1+n) p/2, p„= (1 —n) p/2 .

p = —,'(T.")+ —,
' (T.")+ —,

' (T,")+ s (TN')

1 2 2 1 2 2 1 2g2
2m (do —2m Oo + 2m 6O

3 (2~)3 gk2 + M/2 [ (19)

where the subscript N stands for the nucleon field.

Equations (8)—(18) form a closed set of equations for
calculating the single nucleon spectrum E'(k), effective
mass M', and chemical potentials p~ (q = n, p) self-
consistently.

Having obtained the single nucleon spectrum E*(k)
and the chemical potentials pq, one can easily calculate
the thermodynamical potential 0 and then calculate all
other thermodynamical quantities of the system. For ex-
ample, the pressure of nuclear matter at a given tem-
perature can be found by the ensemble average of the
energy-momentum tensor T":

where the subscripts I and V stand for liquid and vapor,
respectively. In the liquid phase, Coulomb and surface
effects have been included.

In the MFT of the ZM model for infinite nuclear mat-
ter, the Coulomb interaction. is switched off and the sur-
face effect is not considered. When the Coulomb interac-
tion is added, the single nucleon spectrum given by Eq.
(8) should be added by an additional Coulomb potential
energy. For simplicity, we will use an average Coulomb
potential per proton in a uniformly charged sphere:

6Ze
&c. ((p) = —

~5 R

where Z and R are the charge number and radius of the
liquid droplet. The exchange term of the Coulomb inter-
action has been neglected. When the Coulomb interac-
tion is switched on, the chemical potential for protons has
also an additional term pg „I ——Vg „~. The contribution
of the Coulomb interaction to the presssure is expressed
as

Z2 e2
pc..((p) = p, (24)

p(T) = (1.14 MeV fm ) 1 +-2 3T
2Tc

T
- 3/2

1—,(25)
TQ

where T~ is the critical temperature for infinite symmet-
ric nuclear matter. The additional pressure given by the
surface tension of the liquid droplet is then

where A = N+ Z is the number of nucleons in the liquid
droplet.

For the liquid droplet with a surface we should
also consider the surface effect on pressure. Follow-
ing Refs. [15] and [16], the formula for the temperature
dependence of the pressure tension p(T) suggested by
Goodman, Kapusta, and Mekjian [18] is used:

III. TWO-PHASE EQUILIBRIUM MODEL &-.~(» p) = 2~(T)/&— (26)

Since the main purpose of this paper is to investigate
the change in the Coulomb instability of hot nuclei when
the ZM model is used in describing the bulk nuclear mat-
ter instead of the QHD model, we will adopt the same
model as used in Refs. [14—17]. We consider the hot nu-
cleus as a uniformly charged drop of nuclear liquid at
a given temperature T, with a sharp edge, and in both
thermal mechanical and chemical equilibrium with the
surrounding vapor. A set of two-phase coexistence equa-
tions is, therefore, obtained by requiring the equality of
temperature T, pressure p, neutron chemical potential

where the nuclear density p is related to the nuclear ra-
dius R by the relation A = 3mR p for a given nucleon
number A [19].

IV. RESULTS AND DISCUSSIONS

By using the formalism given in Secs. II and III, we

can discuss the properties of nuclear matter at finite
temperature. In the numerical calculation, we choose
the coupling parameters C = (M /m )g = 169.2,
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C2:—(M2/m2)g2 = 59.1, which have been taken in
the ZM-I model to reproduce the equilibrium properties
of nuclear matter at zero temperature [5]. The coupling
constant gz between the p meson and nucleon fields in
the present ZM-II model is diferent from that used in
the QHD-II model. In the QHD-II model, the coupling
term is given between the p meson field and the original
nucleon 6eld. But in the ZM-II model, the coupling term
is given between the p meson Geld and rescaling nucleon
6eld. So the coupling constant g~ in the ZM-II model is
related to the coupling constant gs in the QHD-II model

by equation g~m* = g . Then we have the parameter

C2m'2 = (M' /m )g = (M /m )(g~) = 54.71,

which is determined from p ~ 2z decay [1].

A. Infinite nuclear matter

When discussing the liquid-gas phase transition in in-
finite symmetric nuclear matter, the equation of state
(EOS) given by pressure-density (p- p) isotherms is
equivalent to the one given by chemical-density (p,-p)
isotherms, as pointed out by Jaqaman, Mekjian, and Za-
mick [7]. Therefore either of them can be used to calcu-
late the critical temperature T~ for the liquid-gas phase
transition. The critical temperature T~ can be deter-
mined either by the condition of the inflection point of
p- p isotherms,

and p is only a constant I= 938 MeV, the p-p isotherm
has the same behavior as the corresponding p-p isotherm.
Instead of p, we will discuss the reduced chemical poten-
tial p in the following. For convenience, we will denote
the chemical potential by p, . In Fig. 1 we present the p,—

p isotherms for in6nite asymmetric nuclear matter with
asymmetry parameter o. = 0.4 and at various temper-
atures. In the case of asymmetric nuclear matter, the
proton chemical potential p„and the neutron chemical
potential p,„separate, with p,„moving up and pz moving
down compared to the chemical potential for symmetric
nuclear matter (also see Fig. 2). At lower temperatures,
both p,„-p and p„-p isotherms exhibit the form of two-
phase coexistence, with an unphysical region for each.
When the temperature T increases, the unphysical re-
gions in the two kinds of isotherms get smaller. We can
then Gnd a critical temperature T& for neutrons and a
critical temperature T& for protons. The result for the
asymmetry parameter o. = 0.4 is T& ——14.45 MeV and
T& ——18.55 MeV. As mentioned in the beginning of this
subsection, we should choose the lower of the two critical
temperatures TP, as the correct critical temperature for
asymmetric nuclear matter.

In Fig. 2 we present the pq-p isotherms for infinite nu-
clear matter with various asymmetry parameters o, and
at a temperature T = 12 MeV. For symmetric nuclear
matter (n = 0), the chemical potential for protons is
equal to the one for neutrons, as expected. For asyxnmet-
ric nuclear matter (a g 0), the proton chemical potential

(27)
P ( fiick )

or by the condition of the inflection point of p- p
isotherms,

82

E~p'r &
(28)

—10

In the case of asymmetric nuclear matter, the situation
changes. As mentioned by Jaqaman, Mekjian, and Za-
mick [7] and Song and Su [17], protons and neutrons
are not in chemical equilibrium, although they may be
in thermal equilibrium. So their chemical potentials are
not related to each other. Since the proton and neutron
have diH'erent chemical potentials, they shall also appear
to have di6erent critical temperatures T& and T&, re-
spectively. But we cannot imagine that the kind of nu-
cleons with high critical temperature can stick together
after all other nucleons with lower critical temperature
have boiled oK We therefore must choose the lesser of
T& and T& as the correct critical temperature. Because
of the definition of the single-particle spectrum E'(k) in
relativistic theories such as the QHD and ZM models,
the resultant chemical potential p, has also included the
nucleon rest mass M. For convenience in the compari-
son between the present results and those given by the
nonrelativistic theories, we de6ne a reduced chemical po-
tential p, as p, = p —M. We shall show p,-p isotherms
instead of p,-p isotherms. Since the diKekence between p

—40

FIG. 1. p, -p and p,„-p isotherms of in6nite asymmetric nu-
clear matter with asymmetry parameter o. = 0.4 and at vari-
ous temperature.
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FIG. 2. p, -p and p,„-p isotherms of infinite asymmetric nu-

clear matter with various asymmetry parameters and at a
fixed temperature T = 12 MeV.

FIG. 3. Phase diagram of the critical temperature T~ ver-

sus the critical asymmetry parameter az for infinite nuclear
matter. The solid curve is calculated with the ZM-II model,
the dot-dashed curve with the ZM-I model, the dashed curve
with the QHD-II model, and the dotted curve with the QHD-I
model.

p,„and neutron chemical potential p,„separate, forming
a gap between two curves. When the asymmetry param-
eter o. increases, the gap between these two curves also
increases. It can also be seen that for not too large asym-
metry parameters n (( 0.84), each isotherm exhibits a
typical two-phase coexistence form, with an unphysical
region. When the asymmetry parameter o. increases, the
unphysical region becomes smaller for p,„-p isotherms and
becomes larger for p~-p isotherms. It is implicated that
the critical temperature of neutron T& decreases and the
critical temperature of proton T& increases as the asym-
metry parameter o. increases. At o. = 0.84, the unphys-
ical region in the p„-p isotherm disappears and there
appears an inHection point. We may call this asymmetry
parameter the critical asymmetry n~ for the liquid-gas
phase transition in infinite nuclear matter at the fixed
temperature T [9]. We can obtain a critical asymmetry
parameter o.~ for each given temperature T. The re-
sulting T~-n~ diagram is shown in Fig. 3, with a solid
curve (denoted by ZM-II). The phase diagram separates
the T-n space into two regions. In the exterior region,
nuclear matter can exist in the gaseous phase only, while
in the interior region both liquid and gaseous phases are
allowed. For example, the critical asymmetry at T = 12
MeV is o. = 0.84, above which only the gaseous phase
can exist in nuclear matter. For comparison, we have also
shown in Pig. 3 the T~-a~ phase diagrams calculated, re-
spectively, from the ZM-I model with a dot-dashed curve,
from the QHD-II model with a dashed curve, and from
the QHD-I model with a dotted curve.

It is seen that the critical temperature T~ decreases
monotonically as the asymmetry parameter o. increases.
This general trend is consistent with the results predicted
by nonrelativistic theories [11,17] and the QHD-I models
[14]. Compared to the curve given by the QHD-I model,
the Tc;-a~ curve calculated with the ZM-I model has
small decreasing rate, although it has a lower T~ value
than the QHD-I model for nuclear matter in the region

of a small and moderate asymmetry parameter. Con-
sequently, the two curves have a crossing point around
o. = 0.7 and the critical temperature given by the ZM-
I model becomes higher than that calculated with the
QHD-I model in the region of the large asymmetry pa-
rameter. This result comes directly from the fact that the
ZM-I model gives a larger effective mass than the QHD-I
model, especially for higher density. As a result, the gap
between p„and p& calculated with the ZM-I model is
smaller than that calculated with the QHD-I model in
the same conditions. It is this gap that causes the de-
crease of the critical temperature in asymmetric nuclear
matter, as pointed out in the text where the Fig. 2 is dis-
cussed. The small gap given by the ZM-I model results
in a small decreasing rate, compared to the situations in
the QHD-I model.

Now let us discuss the eKect of including the p meson
degree of freedom. It is seen &om Eqs. (13), (14), and
(19) that the inclusion of the p meson degree of freedom
gives an additional asymmetry eR'ect on the chemical po-
tentials p& and pressure p. As a result, the chemical
potential of neutrons shifts up further and the chemical
potential of protons shifts down further &om the ZM-I
results. As discussed in the last paragraph, the increase
in the gap between p„and p„shall decrease the critical
temperature in asymmetric nuclear matter. This result
is explicitly shown in Fig. 3. The curve for the ZM-II
model drops more quickly than that for the ZM-I model.
There is a similar situation for the QHD models.

B. Finite nuclear matter

Now let us discuss the Coulomb instability of hot nuclei

by calculating the limiting temperature Th, above which
the set of coexistence equations (20)—(22) has no solution.

We show in Fig. 4 by a solid curve the mass number de-
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FIG. 4. Mass number dependence of limiting temperature
Tj; calculated with the ZM-II model (solid curve) compared
to those given, respectively, by the ZM-I model (dot-dsshed
curve), by the QHD-II model (dsshed curve), snd by the
QHD-I model (dotted curve).

pendence of the limiting temperature T~; for the nuclei
along the P-stability line:

g = Q.5A —Q.3 x 1Q (29)

For a comparison we have also drawn the curves calcu-
lated, respectively, &om the ZM-I model with a dot-
dashed curve, from the QHD-II model with a dashed
curve, and from the QHD-I model with a dotted curve.
It is seen that the four curves have a similar trend:
The limiting temperature decreases monotonically as the
mass number A increases, but the rate of the decrease is
smaller for larger A. It is also seen that the two curves
with the ZM models are always lower than those given
by the QHD models for the nuclei along the P stabil-
ity. This result indicates that the hot nuclei described by
QHD models are more stable than that described by the
ZM model. This conclusion is consistent with the calcu-
lated critical temperatures of asymmetric nuclear matter
(see Fig. 3), where the critical temperatures calculated
with QHD models are higher than those given by the
ZM models for asymmetry parameters of nuclei along the
p-stability line (a ( 0.3). These results come from the
same fact that the nuclear matter described by the ZM
models is much softer than that described by the QHD
models. Compared to those with the ZM-I model, the
lizniting temperature calculated with the ZM-II model

has higher values and exhibits explicitly an additional
asymmetry effect. As a result, the heavier hot nucleus
becomes more stable when the p meson degree of &ee-
dom is included in the Lagrangian of the system. We
present the solution of the coexistence equations (20)—
(22) and the equilibrium values of p„, P„, and p at the
limiting temperature in Table I. It is seen that the same
feature as in the QHD-I model remains; i.e. , the neutron
chemical potential p,„ is always lower than the proton
chemical potential pz, which results in a negative asym-
metry parameter a~ for the vapor phase. This feature
is very different from that of the results in nonrelativis-
tic theories, where the asymmetry parameter of vapor is
always positive. The result that p,„& p,„and av & 0
comes &om the fact that the gap between p„and pz
calculated with these relativistic models (say, about 30
MeV for n = 0.4, p = 0.17, and T = 10 MeV in the
QHD-I model and about 25 MeV under the same condi-
tions as above in the ZM-I model) is much smaller than
that calculated with nonrelativistic theories &om the ef-
fective nucleon-nucleon interaction (about 50 MeV in the
same condition as above). After adding the contribution
&om Coulomb interaction, we then have the opposite re-
sults: p,„(pz in these relativistic models and p,„)p,„in
the nonrelativistic theories. Tracing back to the starting
point of the ZM-I or QHD-I model, the unusual result
comes from the fact the nucleon-nucleon interaction in
the ZM-I or QHD-I model is independent of isospin. A
model with isospin dependence shall give a quite differ-
ent result. As mentioned above, the inclusion of the p
meson degree of &eedom gives an additional asymmetry
effect. We present in Table II the solution of the coexis-
tence equations (20)—(22) and the equilibrium values of
p„, pz, and p at the limiting temperature in the ZM-
II model. It is seen that after the p meson degree of
&eedom is included in the Lagrangian, the results are
improved somewhat compared to those with the ZM-I
model. The asymmetry parameters for the vapor phase
become positive in the A = 150, 208 cases, while they
are still negative in the A = 10,50, 109 cases. The re-
sults are not desired, becuase the negative asymmetry
parameter o.~ in the vapor phase is not reasonable. Let
us explain why we have these undesirable results in the
ZM-II model. In order to make the points more clear, we
show in Fig. 5 the P~-p (q = n, p) isotherms for nuclear
matter with an asymmetry parameter a = 0.2 and at
temperature T = 6 MeV calculated with the ZM-I model
(dot-dashed curves) and the ZM-II model (solid curves).
As a comparison, the results in the same conditions as
above but with the QHD-I (dot-dashed curve) and QHD-

TABLE I. Equilibrium values of densities (in fm ), pressure (in MeV fm ), reduced chemical
potentials (in MeV fm ), snd ssymmetry psrsmeter for the nuclei along the P-stsbility line at the
limiting temperature, with the ZM-I model.

A
10
50

109
150
208

Tlim

9.2
7.7
5.8
4.8
3.6

Pl.
0.159
0.155
0.157
0.157
0.157

pv
0.0151
0.0108
0.0079
0.0069
0.0053

av
—0.080
—0.258
—0.481
—0.616
—0.784

—15.4
—13.2
—12.1
—10.9

Pp
—15.1
—10.7
—6.0
—3.8
—1.7

p
0.063
0.043
0.025
0.018
0.011
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TABLE II. Same quantities as in Table I, but with the ZM-II model.

A
10
50

109
150
208

Tlim

9.2
8.1
6.7
6.0
5.3

pI.
0.159
0.152
0.152
0.151
0.149

pv
0.0151
0.0120
0.0095
0.0077
0.0063

Ay
—0.013
—0.032
—0.022

0.004
0.076

Pn
—16.1
—14.0
—10.9
—9.2
—7.4

Pp
—15.8
—13.3
—10.5
—9.3
—8.5

p
0.062
0.047
0.032
0.025
0.019

II (solid curve) models are presented in Fig. 6. It can be
seen from these two figures that the gap between p,„and
p„ in the ZM-I model is smaller than that in the QHD-I
model, especially in the high density region. For exam-
ple, for p = 0.17 fm, the difference p„—p~ is 11.7
MeV in the ZM-I model, compared to 15.5 MeV in the
QHD-I model. This result comes from the fact that the
effective nucleon mass in the ZM-I model is larger than
that in the QHD-I model, especially in the higher density
region. It is this point that makes the ZM-I model more
reasonable in some aspects than the Walecka model. Af-
ter including the p meson degree of freedom, the ZM-II
model gives a larger asymmetry effect than the QHD-II
model because of the different coupling constants used
in the two models. As a result, the gap between p,„and
p„ in the ZM-II model is comparable with that in the
QHD-II model. For example, the gap in the above con-
ditions is 23.1 MeV in the ZM-II model and 23.6 MeV
in the QHD-II model. Now we should note the second
point that the equilibrium densities of the liquid phase
in the two models are quite different. Taking Pb as
example, pL, = 0.181 fm in the QHD-II model, while

pL, ——0.149 fm in the ZM-II model. It is this difference
that makes the chemical potential gap p,„—p„at the
equilibrium point in the ZM-II model (20.5 MeV) much
smaller than that in the QHD-II (25.0 MeV) model. But
the Coulomb potentials in these two cases are quite close
to each other (Vc „i = 20.4 MeV at p = 0.149 fm s in
the ZM-II model and Vc „( ——21.9 MeV at p = 0.181
fm in the QHD-II model). After adding the Coulomb
potential, the neutron chemical potential is only slightly
higher than the proton chemical potential in the ZM-II

model, while the former is about 3 MeV higher than the
latter in the QHD-II model. As a result, the equilibrium
asymmetry parameter of the vapor phase in the ZM-II
model is rather small (0.076), although it is still posi-
tive, compared to that in the QHD-II model (0.255). It
is the same reason that cuases some lighter hot nuclei to
have negative equilibrium asymmetry parameters for the
vapor phase.

V. CONCLUDING REMARKS

We have studied the liquid-gas phase transition in
asymmetric nuclear matter and the Coulomb instabil-
ity of hot nuclei by means of the mean-field theories of
the ZM-I and ZM-II models. We have also compared the
calculated results with those given by the QHD models.
From the results and discussions in the preceding sections
we can arrive at the following conclusions.

(1) The critical temperature for the liquid-gas phase
transition in nuclear matter decreases as the asymmetry
parameter of nuclear matter increases. Such an asymme-
try effect in the ZM-II model is much larger than in the
ZM-I model, due to the inclusion of p mesons.

(2) Both critical and limiting temperatures in the ZM
models are lower than those in the QHD models, which
re8ect the fact that nuclear matter described by the ZM
model is softer than that by the QHD models.

(3) It is necessary to include the p meson degree of free-
dom in the Lagrangian of the nuclear system to account

v
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FIG. 5. p,-p and p„-p isotherms of in6nite asymmetric nu-

clear matter with asymmetry parameter o. = 0.2 and at
temperature T = 6 MeV calculated with the ZM-I model
(dot-dashed curves) aud the ZM-II model (solid curves).

FIG. 6. Same as Fig. 5 but calculated with the QHD-I
model (dot-dashed curve) and the QHD-II model (solid
curve .
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for the asymmetry effect. But it seems that the p meson
&eedom alone cannot give enough of an asymmetry effect
in such a simple mean-field approximation. Some more
elegant model is desired.
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