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Coulomb reacceleration as a clock for nuclear reactions: A two-dimensional model
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Reacceleration effects in the Coulomb breakup of nuclei are modeled with the two-dimensional

time-dependent Schrodinger equation, extending a previous one-dimensional study. The present
model better describes the individual contributions of longitudinal and transverse forces to the
breakup and reacceleration. Reacceleration effects are found to preserve a strong memory of the
pre-breakup phase of the reaction, as was concluded with the one-dimensional model.

PACS number(s): 25.70.De, 25.70.Ef, 25.70.Mn, 24.10.—i

When a nucleus is Coulomb excited to a resonance and
then decays by &agmentation, the fragments are acceler-
ated by the Coulomb 6eld, and 6nal velocity distribution
depends on the decay time of the resonance. In a previous
work [1],this dependence was studied to see whether the
reacceleration could be used as a clock for the resonance
lifetime. The study was motivated by a recent experi-
ment [2] in which the Coulomb breakup of the loosely
bound nucleus Li was measured. In that experiment
it was found that the sLi fragments have on average a
higher velocity than the beam velocity. This has been
interpreted as a direct transition from the ground state
of the projectile to &ee &agments in the continuum, fol-
lowed by the Coulomb reacceleration of the &agments.
Based on this argument the existence of a continuum
resonance in Li was questioned. A resonance would
live long enough to decay far out &om the target where
Coulomb reacceleration effects would be negligible [2].
Besides the above-mentioned experiment, the Coulomb
reacceleration effect is important in many other situa-
tions. The Coulomb breakup of B into p+ Be &agments
can give information about the radiative capture reaction
7Be(p, p)sB useful to the solar neutrino problem [3]. In
the Coulomb breakup process B is excited to a state in
the continuum, decaying by a proton tunneling through
the Coulomb barrier. In this case it is important to know
if the time delay for the tunneling allows the Coulomb
reacceleration to be neglected.

As has been shown in our previous work a clear separa-
tion between the two stages of the reaction, the excitation
to the continuum and the reacceleration of the &agments,
is not always possible in quantum mechanics. To show
this in a simple model we have solved the Schrodinger
equation nonperturbatively for a particle initially bound
in a potential well. Two diH'erent potentials were used:
one potential accommodated a single bound state and
with no continuum resonance, and another had a single
bound state but with a low-energy resonance as well.

In this Brief Report we extend the model of Ref. [1]
by including part of the dynamical potential which was
neglected, namely, the longitudinal Coulomb potential.
To be more precise, as in Ref. [1], we solve the time-
dependent Schrodinger equation

h dCV'@+V~(r)@+ V.„(r, t)4 =ih
2mp dt

for a proton in a spherically symmetric nuclear well,

V~(r) We .treat the dynamics in the frame of the pro-
jectile, so that the potential well VN(r) is fixed in space.
For collisions at high energies the projectile moves almost
along a straight line in the target Coulomb 6eld. We may
then separate the Coulomb 6eld into its transverse and
longitudinal components. The time-dependent interac-
tion potential of a unit charge with these fields is given

by

ZT8
„2 2)sI2 (2)

where 6 is the impact parameter, v is the projectile ve-

locity, and R—:(b, vt) is the position of the Coulomb
scatterer.

We now expand the proton wave function in polar co-
ordinates (r, 8):

Inserting this expansion in the Schrodinger equation one
gets
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FIG. 1. Transition probability for a bound particle in a
square-well to a continuum state due to a perturbing Coulomb
potential, as a function of the collision time. The solid
(dashed) curve corresponds to impact parameter 5 = 15 (50)
fm.
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ih = — (r, t)+V (r) u (r, t)+V (r, t) u &(r, t)+V+ (r, t) u +&(&,t),
Bu (7' t) 5 8 u

Bt 2mp BT2

where

V-(r) = V~(&) +
h'(m' —1/4)

2mpT

V(+ (r, t) = — E~~(t)+i E&(t),
2

Zze b
E~(t) =

b2 + v2t2

(4)

vt
Eii(t) = E~(t) —.

b (5)

We solve Eq. (4) by a finite difference method, calculating the wave function at time t + At in terms of the wave
function at time t, according to the algorithm

+ ~(2)
Z7

At At
V + S (t) u (t) .

In this equation 7 = hAt/4mo(Ez)2 and S (t)
V~ ~ u q + V~+ u +q. The second difference oper-
ator A~ ~ is de6ned as

Q(2)u(l') u(l'+1) (t) + u(2' —1)(t) 2u(2) (t)

with u = u (r ', t). '

The essential difference between the problem of solving
the above equation and the one studied in Ref. [1] is
the presence of the term S (t) which couples u with
u +q and u ~. This particular form of coupling is a
consequence of the dipole approximation. The method
of solution is the same as in Ref. [1],except that we have

now a set of coupled equations for each u( ) (t).
We next de6ne a potential V~ to have a weakly bound

ground state. It is convenient to choose a square-well po-
tential. We take depth and radius parameters to be —3.95
MeV and 3.2 fm, respectively, which produces a a single
bound state of energy E = —0.3 MeV and root-mean-
square extension of 6 fm. For the Coulomb excitation,
we assume a projectile velocity of v = c/4, correspond-
ing to a laboratory energy E~ b 30 MeV/nucleon, and
a target charge corresponding to Pb, ZT ——82. A grid
adequate for our purposes has 500 spatial mesh points
separated by 0.2 fm and 1000 time mesh points sepa-
rated by 1 fm/c. The angular expansion is limited to
values of m in the range —8, —7, ...,7,8.

In Fig. 1 we show the transition probability calculated
from the wave function overlap

e = JV e(t) —(e(t)leo) eo

where JV normalizes the continuum wave function, 4'„ to
unity. It may be seen &om the figure that as time evolves
the particle leaves the domain of the nuclear potential.
There is also a small probability that a part of the con-
tinuum wave function stays initially inside the well, due
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The transition occurs over a time interval At b/v The.
result for b = 50 fm is close to the perturbative Coulomb
excitation calculation, but the probability at b = 15 fm
approaches unity and a perturbative calculation is inac-
curate.

In Fig. 2 we plot the particle probability density as
a function of the radial position at several instants of
time. The impact parameter here is b = 15 fm. The solid
line corresponds to the ground state, normalized to unity.
The dashed lines represent the &ee particle densities and
were obtained by removing the ground-state part from
the time-dependent wave function, i.e.,

Here 4p is the ground-state wave function, and also is
taken to be the initial wave function at the start of the
numerical integration t = —200 fm/c. As time evolves
the wave function acquires components in the continuum
and the transition probability increases with time. Figure
1 shows the results for a collision with an impact param-
eter b = 15 fm (solid line) and b = 50 fm (dashed line).
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FIG. 2. Particle density distribution for the ground state
(solid line) and continuum states at several instants and as a
function of the radial position. The impact parameter in this
collision is 6 = 15 fm.
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to the reHection on the edge of the square-well potential.
As the particle moves, it gets more dispersed in position,
as expected. At t = 600 fm/c the transition probability
reaches its asymptotic value and the wave packet is far
from the well.

The above features are similar to what we have found
previously with our one-dimensional model [1]. Special

features of the higher dimension that we consider here
show up in the calculation of the momentum shift asso-
ciated with the net momentum that the particle gains by
the reacceleration in the Coulomb 6eld of the target. In
terms of the radial wave functions u, at a time t, the
longitudinal and the transverse components of its mo-
mentum are, respectively,

p~~
= ——) dr u +g(r) —u g(r)

m

' du ' 1
(r)+ —) m dr u +g(r)+u +~(r) —u (r)

dr 2 r
m

(10)

and
* du '1

p~ —— i —) —dr u~+q(r) + u~ q(r) (r) +i —) m dr u~+q(r) —u~+q(r) —u (r), (11)
2 2

m m

In Fig. 3 we show the transverse and longitudinal mo-
menta shifts calculated by using the above formulas on
the spatial grid, as a function of the impact parameter b.
The solid line is the classical momentum which would be
transferred to a free particle,

pc]ass = Ez t dt = 2ZT'e bv

in the transverse direction. The transverse momen-
tum (dashed line) obtained with our nonperturbative ap-
proach follows the trend of the classical momentum. If
the particle would be free after passing the distance of
closest approach this quantity should be half of p, ~ „.
But for small impact parameters, the quantum calcula-
tion gives a momentum transfer is closer to the full p, ~ „,
showing that the acceleration takes place over the full
trajectory, not just during the post-breakup phase.

Classically, the expected longitudinal momentum
transfer is also p, ~ „/2 for a particle emitted at t = 0.
The quantum results are smaller than this, because the
deceleration force for t & 0 is remembered in the quan-
tum amplitude. Thus, a purely classical model for the
breakup is not able to explain the correct magnitude of
the momentum shifts since an exact de6nition of the posi-
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tion of the breakup is not possible quantum mechanically.
In Fig. 4 we show the occupation probabilities of the

different m states for a collision with (a) b = 15 fm and
(b) b = 50 fm. The probability is normalized to one par-
ticle in the continuum. For collisions at small impact pa-
rameters the excitation probability is large and the par-
ticle initially jumps into the m = +1 states due to the
coupling S in Eq. (6), but as the excitation probabil-
ity increases other neighboring m values are sequentially
excited. Due to the angular momentum transfer in the
collision, positive m values are favored, resulting in a net
angular momentum for the free particle. For large im-
pact parameters the small excitation probability makes
that essentially the states with m = +1 are populated,
in agreement with the result of first-order perturbation
theory. At b = 50 fm the reacceleration effect is still ap-
preciable and the state with m = 1 is more populated
than the m = —1. The reacceleration effect causes a
depopulation of the m = —1 state which occurs via the
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FIG. 3. Momentum shift of the continuum particle ex-
cited from the square-well potential as a function of the im-
pact parameter. The solid, dashed, and dash-dotted curve
are the classical, transverse, and longitudinal momentum, re-
spectively.

FIG. 4. Occupation probability for several angular mo-
mentum states, m, in the continuum of a square-well poten-
tial. (a) [(b)j is for b=15 [50j fm.
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m = 0 state to the m = 1 state.
We now consider the case where the Hamiltonian con-

tains a resonance as well as a bound state. We use a
square well shape with rectangular barrier to produce
the resonance. The parameters that we use are Vp

——9
MeV for the depth of the well, up=4 fm for the range
of the well, Vj ——5 MeV for the height of the barrier,
and aq ——3 fm for the width of the barrier. This poten-
tial has a bound state at E = —3.7 MeV and a resonant
state, with m = 1, at 1 MeV and a width of 0.5 MeV.
These properties may be deduced &om the decomposition
of the time-dependent wave function into energy eigen-
states (see discussion in [1]). The 0.5 MeV width of the
resonance translates into a mean lifetime of 400 fm/c, al-
lowing to the projectile to travel 80 fm beyond the point
of excitation. For impact parameters of the order of 15
fm, the classical reacceleration following breakup will be
very small and we expect the momentum of the emitted
particle to be nearly zero.

The results of the quantum treatment are shown in
Fig. 5 for the transverse (dashed curve) and longitu-
dinal (dashed-dotted curve) momentum. The classical
momentum is shown by the solid line. Very different
features are observed as compared to our previous one
dimensional model. First, the transverse momentum is
smaller than what one obtains in the one-dimensional
model (Fig. 7 of [1]). Obviously, coherence effects in
the wave function are very important for this observ-
able. Second, we observe that the momentum shifts do
not decrease steadily, but have a small bump at b 50
fm. This can be understood as a resonant effect. The
time-dependent Coulomb fields given by Eq. (2) contain
Fourier components peaked around &u v/b. At b = 50
fm this corresponds to an energy approximately equal to
1 MeV, i.e., the energy of the resonant state. Thus, for
6 50 fm the action of the force is resonant with the ex-
citation energy. This feature would also be seen in Fig.
7 of Ref. [1], if it would be extended to larger values of b

This has been checked numerically. Another interesting
result is that for b greater than 40 fm the reacceleration
caused by the longitudinal field is larger than that caused
by the transverse field. The longitudinal reacceleration
is significant over the entire range of impact parameters,
despite the long lifetime of the resonance. This accords
qualitatively with the experimental finding [2] that the
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FIG. 5. Momentum shift of the continuum particle ex-
cited from the square-barrier potential as a function of the
impact parameter. The solid, dashed, and dash-dotted curve
are the classical, transverse, and longitudinal momentum, re-
spectively.

reacceleration effect is present despite an expected life-
time of the order of that in our model.

In conclusion, we have studied the effect of the reac-
celeration of a particle following a breakup in the nuclear
Coulomb field. We find that the effect is intrinsically
quantum mechanical aad the disentangling of prior- and
post-breakup phase of the reaction is not well defined.
We have seen that the longitudinal Coulomb field is very
important for the reacceleration effect and cannot be ne-
glected in the calculations. Qualitatively we find some
suppression of the reacceleration when the particle is ex-
cited to a narrow resonance. This clearly shows that the
time delay in emitting the particle can play an impor-
tant role, although one that does not seem to be easy to
estimate. Another possible sigaature of a resonant state
could be obtained by looking into the impact parameter
dependence of the momentum shift. As we have seen,
when the inverse of the collision time is approximately
equal to the energy of the state an appreciable deviation
of the momentum shift &om a monotonously decreasing
dependence on the impact parameter should be observed.
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