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Comple~ conjugate pairs in stationary Sturmian eigenstates
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Sturmian eigenstates specified by stationary scattering boundary conditions are particularly
useful in contexts such as forming simple separable two nucleon t matrices, and are determined
via solution of generalized eigenvalue equation using real and symmetric matrices. In general, the
spectrum of such an equation may contain complex eigenvalues. But to each complex eigenvalue
there is a corresponding conjugate partner. In studies using realistic nucleon-nucleon potentials, and
in certain positive energy intervals, these complex conjugated pairs indeed appear in the Sturmian
spectrum. However, as we demonstrate herein, it is possible to recombine the complex conjugate
pairs and corresponding states into a new, sign-definite pair of real quantities with which to effect
separable expansions of the (real) nucleon-nucleon reactance matrices.

PACS number(s): 24.10.—i, 03.65.Nk

Sturmian states are solutions of Schrodinger-like equa-
tions in which the energy is treated as a continuous pa-
rameter and the strength of the potential plays the role
of the spectral variable [1]. Although at positive energies
often one solves [2] the Sturmian equations with outgo-
ing boundary conditions (thereby obtaining eigenvalues
and states which are complex), it is convenient some-
times to evaluate the Sturmian eigenstates under sta-
tionary boundary conditions [3]. Those states are par-
ticularly useful in forming separable expansions of the
nucleon-nucleon (KN) reactance (K) matrices, and the
process of so doing defines the Sturmian splitting method
(SSM) [4]. Therein, the stationary Sturmian expansion
was used to separate those K matrices into two groups.
Each group is a sign-definite separable representation in
itself, one set having attractive and the other having re-
pulsive character. In fact, a set of separable K matrices
was generated and the Heitler equation used to specify
the t matrices thereafter. The process however allows us
to avoid any pathology in the related t matrices due to
vanishing on-shell phase shifts (or the equivalent coupled
channel relation). Such pathologies do occur 5,6] when

other similar separable expansion methods [7 are used

]

with realistic (NN) interactions.
To evaluate stationary Sturmian eigenstates, we solve

a generalized eigenvalue equation with purely real, sym-
metric matrices. Naively one might believe that the cor-
responding (stationary) eigenvalues and states would also
be real. But that is not necessarily the case. If the poten-
tial term in the eigenvalue equation has both an attrac-
tive and repulsive character, as with realistic NN inter-
actions, degeneracies in the eigenvalues lead to some of
them becoming complex. However, those eigenvalues al-
ways occur in complex conjugate pairs (CCP's) and, with
a simple recombination of such eigenvalues and states,
equivalent pairs can be defined that are purely real and
have opposite signs. With them, all contributions to the
resultant sum in the K-matrix expansion are real and
sign definite.

We give now a basic outline of how the Sturmian eigen-
values are determined, and describe why and where these
CCP's occur.

To evaluate Sturmian eigenstates, [PI, (q; E)], under
stationary boundary conditions, in momentum space one
must solve the generalized eigenvalue problem [8],

) Ul, (p, q;E)P, , (q;E)q dq = rll i(E)) Vl, i(p, q)P, . (q;E)q dq,
0 0

where Vti~ (p, q) is the momentum space interaction, and Ul I, (p, q; E) is given by the principal value of the second-order
Born term, i.e.

Ul. l., (p, p', E) = ) P Vl.((p, q)V(1. (q, p')q dq. (2)
0 E —g

The superscript (P) denotes use of the stationary boundary conditions. It is convenient to define the Sturmian

expansion via

xl. ..(p', E) = ). Vl.i(p', q)4i,.(q; E)q'dq,
0
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in terms of which the (real) K matrices are specified by [4]

(&) 1 (&)Kl, l,'(p, p; E) = —) yl. , (p ) E) (~) (~) &1.. .(p; E).
~. (E)(1-~. (E))

(4)

As the K matrices are real, one might expect the eigen-
values (i)) and states (y) to be real also. But that is not
always the case. Indeed for positive energies, eigenvalues
that are CCP's occur whenever the interaction produces
degenerate eigenvalues. Further development is needed
to ensure that when such occur, the separable expansions
of the K matrices remain real.

We consider first a special interaction studied previ-
ously [5], and with which the stationary Sturmian eigen-
states are analytic. In this case the states y, (p; E) may
be written as G(E)VG(E) iy, ) = i), (E)G(E) ig,), (9)

inite and therefore the generalized spectrum of Eq. (7)
may then contain CCP's of eigenvalues (and associated
eigenvectors), in agreement with the general theorem for
generalized eigenvalue problems [9).

The same equation holds for negative energies where
stationary Sturmian eigenstates now coincide with Wein-
berg's states. These eigenvalues are known to be real in
spite of the fact that V is not sign definite since it can
be shown that the states ~)() satisfy an equivalent gener-
alized equation of the type

& (p'E) = ii i,~( )"i(p)+ 22

where the two components, t,; [5], have differing signs,
and the two energy dependent coefBcients a;, are solu-
tions of the real nonsymmetric standard 2 x 2 eigenvalue
problem

0(» -1 . (&) .t . ajs=g, a
j=1,2

(6)

Here G, = t;;b;~ —P;~, where P;~ is given by Eq. (3.2)
of Ref. [5].

The result is that a complex conjugated pair appears
in the spectrum when the on-shell momentum (k) is in
the range (0.26—0.29) fm i. Outside of that range, and,
for E & 0, the two eigenvalues are real. In this problem,
the two eigenvalues are the roots of a binomial equation,
and one finds that at the extremities of this interval, the
two real eigenvalues are degenerate. From this, one may
observe that CCP's result only if the potential has both
an attractive and a repulsive character.

We now consider just how the generalized eigenvalue
equations can be solved numerically. The integrals in the
semi-infinite interval [0, oo] of Eq. (1) are found [8] using
a standard Gauss-Laguerre N-point quadrature formula
with which this equation is transformed into a generalized
2N x 2N matrix eigenvalue problem

2N 2N
(&) (~)) U, , a, , =r), ) V;,.a~, ,

j=1 j=1
(7) where

and in which, for E ( 0, no singularity occurs. Both
matrices are real and symmetric and for E ( 0, G(E)
is clearly negative definite. Therefore the eigenvalues are
real.

As a second example we considered the positive energy,
generalized stationary spectrum for the So Reid soft core
potential [10]. At 100 and 200 MeV all the eigenvalues are
real. But at 140 MeV, a CCP appears having the value

(—0.33+F0.02) fm i. It is a quite stable result, changing
little in value with variation either of the set of grid points
or of the energy (around 140 MeV). That CCP disappears
between 189 and 190 MeV being replaced (at 190 MeV)
by two real eigenvalues. Those two real eigenvalues are
almost degenerate and are comparable with the real part
of the 189 MeV CCP. Thus the CCP has not originated
&om round oK errors due to numerical approximations.
Rather it is an actual characteristic of the spectrum.

As indicated previously, we seek a technique to elimi-
nate use of these CCP's in, for example, the specification
of separable representations of NN operators using the
SSM scheme. This is achieved by first grouping those
CCP's into an attractive (+) and a repulsive (—) sub-
space according to the following criteria. Given that we
can define the total contribution of a CCP in the K-
matrix expansion as

KL,I', (p p; ~) = —[XL„(p)u'XL, ,
';(p )

+&x' „'(p)s 'x', ', (p'))*] (»)

where

az, ——k m~P&(,)(k~. , E) if j & N,
2 (&) ~ ~

az, ——k( ~)m(z m)42 (k(z ~), E) if g & N, (8)

and kj and mj are the points and weights of the quadra-
ture forxnula.

The xnatrices U( ) and V are real and syxnmetric and
so if V is nonsingular and positive (or negative) definite,
the generalized eigenvalues are real and finite. But for
realistic NN interactions, the matrix V is not sign def-

(&) (&)
[n, (1-~. )]

We can also define the eigenvalue as

Pg —0~ + X7~

and the eigenstate as

&i,;(p) —= fi;(p) + ~us„;(p) .(P)
(13)

p- = + (~)(1 —~; ) I

(14)

Now defining a new pair of eigenvalues with opposite sign
via
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we obtain two purely real quantities, namely,

p+ = 2 o-,'+ T,-',

p, = —2 0,- +w,- (i5)

It is possible then to redefine Eq. (10) ss

&I.T (» p' i) = —(x~,;(p)t,+x~,, (p')

a+ = 1
1

7i
a~+ =

g~,'+ r,'+ ~,

4/~2 + r2

/or; + r —0~

4g 2+ &2

/~2 + ~2

4/&2 + r2

go,. +~, +0,
4/~2 + r2 (i7)

Similarly, defining the attractive and repulsive eigen-
states as

Xl, ;(p) = n,+f1,(p) + n2 gl.„(p),

Xi,'(p) =
gati fr. ,*'(p) + n2 gl„*(p) (16)

the a coefBcients are also purely real and are specified by

+&1.„(p)t, xl, „(J')},
where the term It&'~&, (p, p';i) splits into two contribu-
tions in which each element of the CCP contributes an
equal amount to the attractive and the repulsive quanti-
ties.

In summary, we have shown that CCP's may appear
in the stationary Sturmian spectrum for certain energy
range. When this is the case, the Sturmian eigenstates
become degenerate at the edge of these intervals leading
to the transition &om a real to a complex eigenspectrum.
The occurrence of such CCP's and corresponding eigen-
states leads to terms in the Sturmian expansion which are
neither real nor sign definite; a coincidence which does
not allow straightforward application of the SSM. How-

ever, a proper recombination of the two complex con-
jugate states leads to new ones which are real and sign
definite and with which application of the SSM in the
presence of CCP's can be made.
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