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Ground-state correlation effects in extended random phase approximation calculations
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We study normalization problems associated with the use of perturbatively correlated ground
states in extended random phase approximation schemes in the context of a speci6c but typical
example. The sensitivity of the results to the amount of toro-particle —two-hole admixtures to the
correlated ground state is also investigated in terms of a modification of the standard perturbative
approach.
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Some time ago Van Neck et al. [1] pointed out that
some annoying numerical inconsistencies result &om the
evaluation of consistently derived perturbative expres-
sions in the context of the nuclear many-body problem.
Specifically, they pointed out that an often used proce-
dure of evaluating the number of nucleons perturbatively
excited above the Fermi level (including normalization
factors expanded to the appropriate perturbative order)
leads to grossly overestimated results. This happens due
to the fact that, as the perturbation adds a very large
number of relatively small excited two-particle —two-hole

(2p2h) components to the opoh wave function, the rela-
tive weight of the former in the perturbed wave func-
tion is typically large enough numerically so that the
perturbatively expanded normalization becomes inade-
quate. This type of difficulty aH'ects also linear response
calculations done in the context of the so-called extended
second random phase approximation (ESRPA) [2], which
uses a perturbatively generated ground-state wave func-
tion with 2p2h admixtures, in addition to including two-

body operators in the structure of the phonons. In this
Brief Report we work out an example that shows that
this numerical normalization error tends in fact to in-
Hate significantly ESRPA strength distributions, as was
also pointed out in Ref. [1]. Moreover, considerable ex-
cess strength still remains over the results obtained by
using just the unperturbed ground state [second random
phase approximation (SRPA)] when one attends to the
numerical normalization problem. This excess strength
appears to be related to the relative importance of the
2p2h admixtures to the unperturbed ground state.

In order to explore this point we give also results ob-
tained for a modified ESRPA in which 2p2h ground-state
correlations are introduced by means of the Brillouin-
Wigner (BW) perturbation theory, which has the efFect
of reducing appreciably their importance. This hap-
pens through the lowering of the ground-state energy
produced by solving the appropriate dispersion equa-
tion. The resulting strength distribution, for reduced but
still non-negligible 2p2h admixtures to the unperturbed
ground state, comes out close to the simple SRPA result.

Here ~0) and ~v) are the exact ground state and excited

eigenstates of the full Hamiltonian H. The excited states
~v) can be written as

[v) = nf io), nf = ) X;"Cf —) Y,"C, , (2)

where the set (C, , Cf) constitutes a complete operator
basis. In the SRPA this set is restricted to one and two

particle-hole annihilation and creation operators out of
the Hartree-Fock (HF) ground state ~HF) and the coeffi-

cients X,". and Y; are determined from the equations of
motion [4]

(HF[ np, H, nf„[HF) = E (HFi np, nf [HF)
= E.b„„. (3)

The ESRPA hinges on the idea that the inclusion of
2p2h operators among the C; requires a modification of
the quasiboson approximation in which the HF ground
state is allowed to include perturbative 2p2h correlations.
Hence, in evaluating Eq. (3) one uses in this case a
ground state of the form

O) =« IHF)+) c,.l, )
2p

(4)

where the amplitudes c2, are evaluated in first order

We take these facts as an indication of enough sensitivity
of the calculated strengths to the correlation structure of
the ground state so as to warrant the development and
implementation in realistic situations of better controlled
extensions of the standard quasiboson random phase ap-
proximation.

We base our argument on the linear response R(E) to
an external field I", which admits the spectral represen-
tation
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Rayleigh-Schrodinger (RS) perturbation theory, i.e.,

(2olVlHF)
20

20

AZ" =E PZ"

with

(6)

Here 2o = (p~p2h&h2)o indicates 2p2h excitations with
independent-particle energy E2„V is the residual inter-
action, and co is a normalization factor. Since Eq. (4) is
a perturbatively generated expression, c0 is generally set
equal to 1.

In general Eq. (3) leach to a secular problem of the
I

t'~ Bl &X~ (N 0 ~

EY") ' 50 N'—) '

where the submatrices A, B, and N given by

A; j = (Ol C;, K, C . ]0), B; = (Ol C;, K, C, l0), N;, , = (0I C;, C, 10).

Furthermore, one can write Eq. (1) in a representation independent form as

R(E) = P'(EAf+ irlZ —A) 'P,

where the matrix T represents the operator F and is de6ned as
'
F,"= (ol C;,F lo),
F~ =F" (F ~Ft). (10)

Equation (9) can be reduced with the help of projection operators P and Q onto subspaces involving 1plh and 2p2h
excitations, respectively. One gets

R(E) =P t (E)gp(Ef)p(E) + Xqtgq(E)mq,

where

gp(E) = [Eh' + irITp —Ap —(Apq —AfpqE) gq(E) (Aqp —AfqpE)] (12)

with

gq(E) = [E&~ + i~~q - Aql

and

c20 =
E E )
(2o l

V
l
HF) (»)

0 20

where the ground-state energy E0 is the lowest solution
of the secular equation

P p(E) =~p-~pq~q+~pqgq(E)~q. (14) )- l(2o]v]HF)l'

20 0
(16)

When using the ESRPA some more complicated two-
body effects are trimmed by keeping terms up to second
order in V for the forward sector within the P space,
terms linear in V for the backward sector within the P
space and for the coupling between the P and Q spaces,
and only terms of zeroth order within the Q space. The
usual argument (see, e.g. , Ref. [2]) for this procedure
involves again the limitations stemming 6.om the pertur-
bative dressing of the ground state, Eq. (4).

Finally, we set up a modi6ed extended second RPA
(MESRPA) in which Eq. (4) is replaced by the corre-
sponding expression obtained &om the BW perturbation
theory. This in fact coincides with the ESRPA result but
the coeKcients c2, are now given as

This leads to increased energy denominators in Eq. (15)
and hence to reduced 2p2h admixtures to the HF ground
state. One obtains in this way

Nij = bij + ANij &

where i = ipih and the nonzero AN,.~ are just

ANgg ——]col ) c2, c2, (2olDgg ]2o),
20)20

A A

where Dqq ——[Cq, C~, ]
—bqq . (Note that within the

A

quasiboson approximation Dqq = 0.) The explicit result
for the matrix element (2o]Dqq ]2o) is

((PqPhzh2)olDyh p'h'l(PyPzh]h2)o) = —[1+P(hy& hz)P(h~i&h2i)]
x [by y'bh~ h'P (h, h2)P (pl, p2)bh~, hbh~ h~, bp~ p~, bp~ p~, ) + p ~ h)
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A;~ —b,~E~ + Vip + &&.g~ (20)

where V~. = (i~V~j) and the nonzero matrix elements
AA;z are

where P (i,j)—:[1 —P(i, j)], while the operator P(i,j)
exchanges the arguments i and j. The matrix elements
of A are

TABLE I. Ground-state normalization factor, summed
weights of 2p2h components [see Eq. (4)], GT integrated
strength 8+ in the resonance region ((), above it ()), and
total GT strengths 8+ and 8 . The 6rst column identifies
the approximation scheme. Strengths are given in percent of
3(N —Z).

++ii' = leo] ) (Ei E20 + Eo)cz,c2,'(2olDiiI 12o).
20 &20

(21)

Finally the matrix elements of T are

RPA
SRPA
ESRPA
NESRPA
MESRPA

1
1
1

0.38
0.69

0
0

1.60
1.60
0.45

100
70
82
80

72.8

0
30
27

23.5
28

100 0
100 0
109 9

103.5 3.5
100.8 0.8

where

fi + Q, &Nii fi
P 2 20 220

fori =1
fori = 2, (22)

fi = (1IPIHF) and f». = (2IPI2o) (23)

Note that the corresponding ESRPA quantities are ob-
tained by setting cp ——1 and Ep = 0 in the MESRPA
expressions.

We next give numerical results for the Gamow-Teller
(GT) resonance (Fy = crty) in 4 Ca using the MY3 force
[7] in the Ohu —3hu oscillator space. Four different ways
of handling the nuclear ground state will be compared.
The first one is just the plain SRPA [5] in which the equa-
tions of motion (3) are evaluated with the HF ground
state. We give also results for the ESRPA (for which
the normalization coefficient co is set equal to 1), for a
normalized version of this approxiination (NESRPA) in
which co is determined so that (0~0) = 1 with the c2, co-
efficients given by Eq. (5), and finally for the MESRPA,
which uses a normalized ground state with amplitudes
cz, evaluated using Eq. (15). In order to obtain smooth
strength functions S(E)—:——Im R(E) with R(E) given
by Eq. (11), the energy variable is taken to be com-
plex: E —+ E + iA, with 6 = 1 MeV for the 1plh and
6 = 3 MeV for the 2p2h subspace, respectively. Solv-

ing the dispersion equation (16) gives Eo = —29 MeV,
which amounts to about 8% of the experimental ground-
state binding energy. The results are shown in Fig. 1
and in Table I below. The positive branch of the GT
sum rule 8+ —8 = 3(N —Z) with 8~ = J' S~(E)dE is
divided into a low energy part 8++ (E ( 20 MeV) and a
high energy part 8++ (E ) 20 MeV). These quantities are
the relevant ones for the problem of the quenching of GT
strength. In the usual RPA the low energy part 8+ essen-
tially exhausts the sum rule. When lplh-2p2h coupling is
introduced via the SRPA, 30% of this strength is shifted
to the high energy region. This amount is somewhat re-
duced when ground-state correlations are introduced via
the ESRPA. This results &om the combined efFect of the
Q-space part of Eq. (11) and of the interference effects
generated by the last term of Eq. (14) [3]. Furthermore
one gets now also a contribution in the negative branch
8 so that 8++ increases to 82Fo (third line in Table I).
As shown in the first two columns of Table I, the ground-
state wave function involved in the derivation of the
ESRPA expressions has a serious normalization problem.
In the NESRPA this is 6xed by suitably reducing the
value of cp. This has only a relatively small eKect on 8+
and reduces both 8+~ and the negative branch contribu-
tion 8 (fourth line of Table I). When ground-state cor-
relations are introduced via the MESRPA, on the other
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FIG. 1. Folded Gamow- Teller strength
distributions in Ca for diBerent approxima-
tion schemes.
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hand, the percentage of 2p2h admixtures to the ground
state is reduced f'rom 62% to 31%%uo while the strength dis-
tribution becomes quite similar to the simple SRPA re-
sult. This last feature indicates important sensitivity to
the amount of ground-state correlations which therefore,
as stated above, deserves a more controlled treatment. It
is worth noticing that, when the interaction among the
2p2h configurations is neglected, the BW approximation
for the ground-state wave function coincides with a di-
agonalization procedure [6]. This means that the Op0h-

2p2h coupling in the ground state is treated on the same
footing as the 1plh-2p2h coupling in the excited states.
From this point of view, and in the context of the present
calculation, it appears more consistent to use BW rather
than RS perturbation theory.

Even though the above discussion has been limited to

one specific case involving the Gamow-Teller response
within the extended RPA, the observed trends should
apply also to other schemes which include ground-state
correlation effects perturbatively, both for this [7] and
for other types of response functions, notably the lon-
gitudinal and transverse inclusive responses in quasifree
electron scattering [8—10]. In all cases ground-state nor-
malization is numerically important and sensitivity to the
amount of 2p2h correlations should be high, so that a
moderate reduction of the 2p2h ground-state component
will lead to results which are not far &om those obtained
in the simple SRPA.

A.M. and F.K. acknowledge the financial support of
the CONICET &om Argentina. A.F.R.T.P. is indebted
to CCInt-USP and to the UNLP for financial help.

[1] D. Van Neck, M. Waroquier, V. Van der Sluys, and J.
Ryckebusch, Phys. Lett. B 274, 143 (1992).

[2] K. Takayanagi, K. Shimizu, and A. Arima, Nucl. Phys.
A477, 205 (1988).

[3] S. Drozdz, S. Nishizaki, J. Speth, and J. Wambach, Phys.
Rep. 197, 1 (1990).

[4] D.J. Rowe, Nuclear Collectiue Motion (Methuen, Lon-
don, 1970).

[5] S. Drozdz, V. Klemt, J. Speth, and J. Wambach, Phys.
Lett. 1BBB,253 (1986).

[6] A. Bohr and B. Mottelson, Nuclear Structure (Benjamin,
New York, 1969), Vol. I, p. 302.

[7] G.F. Bertsch and I. Hamamoto, Phys. Rev. C 2B, 1323
(1982).

[8] W.M. Alberico, M. Ericson, and A. Molinari, Ann. Phys.
(N.Y.) 154, 356 (1984).

[9 K. Takayanagi, Phys. Lett. B 2$$, 271 (1989).
[10 A. Mariano, E. Bauer, F. Krmpotic, and A.F.R de Toledo

Piza, Phys. Lett. B 2BS, 332 (1991).


