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Ideal quarks and mesons in the relativistic quark model
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Vfe propose a microscopic theory for interacting mesons and ideal quarks in the relativistic

quark model using the time-dependent mean-field theory technique. For simplicity we examined the
Nambu —Jona-Lasinio model. The dynamical chiral-symmetry breaking leads to a zero-&equency

mode (pion) due to the restoration of chiral symmetry. The ideal quarks are represented as dressed

particles independent of mean fields, and do not have the conventional properties of fermions. This
is due to the constraints of eliminating the double counting of degrees of &eedom between the
mean fields and quarks. The small nuctuation around the static solution is then investigated. The
pseudoscalar and scalar mesons are represented as the collective modes of the mean fields.

PACS number(s): 12.39.—x, 11.30.Na

The fundamental theory of hadrons is believed to
be quantum chromodynamics (/CD), which is a non-
Abelian gauge field theory. A technique for calculat-
ing /CD is the Monte Carlo estimation of the func-
tional integral, which is called lattice /CD. On the other
hand, there are various phenomenological models for the
hadrons. One of them is a relativistic quark model [1]
given by the Lagrangian density

I,,~(x) = g(2)i sg(x) + f d y jb(z)A p"Q(z)iv'(z —ii)

xW(y)~ ~.4(y), (1)

where the A are the Gell-Mann SU(3) matrices. This
model might be derived from /CD [2]. Equation (1)
is a nonlocal version of the Nambu —Jona-Lasinio (NJL)
model [3]. The NJL model has recently received increas-
ing attention in connection with the low-energy proper-
ties of the hadrons. The model spontaneously breaks the
chiral symmetry, and the dynamics generate a mass for
quarks. Nambu and Jona-Lasinio showed how to con-
struct the various low-lying (gg) bound states of the
model by solving the Bethe-Salpeter equation. The chi-
ral symmetry then requires the appearance of the Gold-
stone bosons (massless pions) as the collective (vga) of
massless quarks. As is well known, the NJL model does
not include any confinement mechanism due to contact
four-fermion interaction. In this paper, however, we will
consider the NJL model instead of the relativistic quark
model (1) for simplicity.

As is shown by Eguchi [4], the NJL Lagrangian den-
sity is approximately the same as the effective Lagrangian
density obtained from the linear o model [5] w'ith radia-
tive corrections. However, Eguchi's method includes the
double counting of degrees of freedom between the quarks
and mesons due to the introduction of the auxiliary fields
(meson fields) cr and 7r. Therefore, his argument is not a
rigorous derivation.

Recently, Providencia et al. [6] have investigated the
dynamical chiral-symmetry breaking, the light-meson
spectrum, and the properties of the pion in the NJL
model using the time-dependent Hartree-Fock (TDHF)
formalism. The light-meson spectrum corresponds to the
collective excitations of the Dirac sea of massive particles.

Z= D D ~exp i Lzd z (2a)

where the Lagrangian density with the scalar and pseu-
doscalar interaction is given as

I (*) = 4i PV + g[(A')'+ (Nits@)'] . (2b)

For the sake of simplifying the notations, we consider only
one quark flavor UR(l) x UL, (1). The generalization to the
realistic case of two massless Bavors is straightforward.

We first perform the plane wave expansion of the orig-
inal quark fields:

However, the TDHF method is limited only to systems
having an even nuniber of valence quarks. Therefore, to
treat systems (nucleon or 4) having an odd number of
valence quarks, an extension of the conventional TDHF
method is needed. The author [7] has recently proposed
such an extension using the path-integral technique in the
field of nuclear physics. The result obtained is identical
to the boson-fermion expansion given by several other au-
thors [8]. In this paper, we will apply our method to the
NJL model, and propose a quantum-mechanical treat-
ment for the description of the meson fields, the ideal
quark fields, and the mutual interplay from the view-

point of the mean-field theory. Constraints eliminating
the double counting of degrees of freedom between the
mean fields and quark fields are automatically derived.
The ideal quarks are represented as dressed particles in-
dependent of the mean fields, and are considered to be
constituent quarks. Thus, we can derive the mean-field
Hamiltonian coupled with the ideal quarks. Furthermore,
we will examine the small fluctuation around the static
solution. Then we will find two kinds of collective modes.
One is the pseudoscalar Goldstone boson (zero-frequency
mode) identified with pion, and another is the scalar bo-
son with twice the ideal-quark mass.

Let us start Rom the functional integral in the NJL
model [3]
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where bp, and dp, are the Grassmann variables of the
I

quark and antiquark with momentum p and helicity 8 =
1, 2, respectively. Following the standard procedure we
introduce auxiliary fields (Spp~, Pppi) in such a way that
the Lagrangian becomes bilinear in the quark Gelds. This
eliminates the quadratic interactions among the quark
fields. Then the functional integral (2a) is rewritten as

DbDb'DdDd*DSDP exp
~

i L' dt
~ (4)

where the Lagrangian I' is redefined as

L' = i ) (b', bp, + dp, d', )
—) o p(b', d*, + d p, bp, )

P8 PS

+2g) ) [Spp (b* bq d —q d ) + iPpp (b d* d —q bq )]8p—p+q —q
pq8 p/ ql

g) .) .[ pp'Sqq' + pp' qq'l~p —p'+q —q'
p~ p'a'

Here the dot denotes a time derivative and o is the Pauli
spin matrix. In the connection with the mean-Geld the-
ory, it is now convenient to introduce a decomposition of
the Hermitian matrix (Spp, Ppp ) in the following form

The functional integral Z can then be written as

Z = DaDa" DcDc'DPDP*DmDw exp
~

i L'dt
~

S = 2 Tr(p p ), P = 2' Tr(pop p ).

Here ppp is the Hermitian matrix as follows:

ppp: (U MU )pp

From the stationary phase approximation about m and
iv in the functional integral (11), for the arbitrary (u, v)
the following conditions should hold:

where U and M are the unitary and Hermitian matrices,
respectively:

(8)

1
happ = — a* ap „PS

1
lOpp' = CPSCp'8 ~

2
(i2)

The matrices u and v are given by the elements

uppI —— 1— vpp ——Ppp

(10)

where Ppp is a complex variable. They autoinatically
satisfy the normalization conditions: (utu + vtv)pp

happ and m and 6 are the Hermitian matrices.
I et us now go to the body-fixed kame of the quark

fields by means of the unitary transformation (8). To do
this, we introduce "ideal-quark" fields (ap„cp, ) by the
unitary transformation:

As mentioned before, there is the double counting of de-
grees of freedom due to the introduction of the auxiliary
fields. The double counting is eliminated by the above
constraints (12) and (13). Then the Lagrangian in the
functional integral (11) is written by

L' =i ) [vtv+ uut]pp+i ) (a*,ap, + c",cp, ) —H',
PS

{i4)

where the Hamiltonian H' is given by

II = t) [v v+uv ]pp ——Qv p[uv+v v ]pp
P8 P8

—g ) ) ([vtv —uut]pp[vtv —uut]p p
—[vtut —uv]pp[vtut —uv]p p )

PP 88

+terms about a, a*, c, and c* . (15)



BRIEF REPORTS 2807

From the variation hl' = 0 about P, P', a, a', c, and
c* under the constraints (13), the equations of motion

are then given by

&ap, = [ap»H']ii, ia', = [a'„H']ii,

xcp, ——[cp„H']D, xc', = [c'„H']Li,

(16b)

(16c)

'4p = [4p H']Li '&pp = [~pp H]Li (16a)

I

where [A, B]~ denotes the Dirac bracket [9]:

[A, B]D = [A, B]p+ ) ([A,P,]p[Q,)$,]p [Q „B]p+[A, @,]p[$ „@,]p [P „B]y) .

The bracket [A, B]p is the Poisson bracket involving the
Grassmann variables defined by Casalbuoni [10]. The
canonical quantization can be performed by the replace-
ments:

A
fQm=4g)

P

(20)

pp l ppI 'l ps) ps1 ps' ps

where A is the cutoK parameter, and the ideal-quark mass
m and the energy E are defined as

()9pp Ppp, ap„ap„cp cp ) (18a)

[A, B)D -+ [A, B]g, (18b)

[ap, ap, ]+ = bpp 8 + ) c',[2S], , cp
qq

[cp cp ]+:lapp 8 + ) a', [2S], , ap

(19a)

[ap» ap, ]+ ——[ap„ap...]+
= [cp, cp' ']+ ——[cp„cp...]+ ——0,

PP' ~ qq' ——

(19b)

(19c)

(19d)

A A

where [A, B]y means the commutation and anticommu-
tation relations. Then, the commutation relations are
expressed as

2 V2
m= P Po- p, E=

2tcp vp

which satisfies the relationship

E —m +p

0 ~ p
)

2Gpvp
(21)

(22)

From Eq. (21) and the normalization condition up+ vp ——

1, the static solutions u and v are obtained as follows:

- X/2
0 1 ( 77K 0' p

2I. E E+m
(23)

These static solutions spontaneously break the chiral
symmetry.

We will next examine the small fluctuation around the
static solution. To do this, we decompose the inverse of
the unitary matrix into the static part and the fluctuation
part:

lP.. P..] =[@;,, P.*.-] =o,
where S is defined by

'll —V V —V tC —V
I

= l(„o „o (24)

[2~]x p' «' = [&pq) &p~~q'] p (19e)
where upp and vpp are the matrices given by the ele-
ments

The above relations imply that the ideal quarks (ap„cp, )
do not satisfy the anticommutation relations of fermions.
This is due to the constraints (13) eliminating the double
counting of degrees of freedom between the mean fields
and the quarks.

Let us present the description of the mechanism of
chiral symmetry breaking by obtaining the static solu-

tion from the above Hamiltonian (15) without the ideal
quark fields. We assume that the static solution is real
value and (upp, vpp ) is diagonal, i.e. , upp = hpp up
and v» ——b» up. Then the minimization of the static
energy leads to the gap equation

(
1 O'P l, v, -

ipp
(25)

Substituting (24) into (16a), we obtain the linear equa-
tions by making the so-called random phase approxima-
tion (RPA):

'~pp = 2E~pp —'6gupvp ) u~vp(~«+ ~«)
q

—4g). (P P;,), — (26)

Then the RPA Hamiltonian becomes

') . - ';&,*,4 — ):) .[(,')' —( ')'][(,' )' —(,' )'l&;
ps pp' ss'

—4g).) "pvpup "p(4p+&p )(4p +~pp)+g). ).(kp —~p )(4p —
&p ) .

pp ss PP
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Let us next examine the eigenmodes and the eigenfunc-
tions of the linear equations (26), which may be decou-
pled into equations for the pseudoscalar function and the
scalar function.

(1) Pseudoscalar mode. Using the equilibrium condi-
tion or the gap equation (20), we obtain

where Op denotes the continuum mode, ~& is the
eigenenergy, and. J' is the inertia parameter of the chiral
rotation energy. It is well known that the RPA treatment
results in a special eigenmode with zero energy [11].The
conjugate coordinate o. of vr is de6ned as

A

) —(P„+P„)=0. (2S)

A Ap pp
P

which satisfied the equations

(33)

This solution P (Pzz + P* )/E is the zero-frequency

meson mode (the Goldstone mode). The zero-&equency
mode is a consequence of the violation of the chiral sym-
metry (ps invariant). In other words, there is the degen-
eracy of the deformed vacuum state under the p5 gauge
transformation. Since the axial charge is, in RPA, given

by

The mesons are considered to be the collective modes
of the time-dependent mean fields, and the ideal quarks
are the dressed particles which satisfy the commuta-
tion relations and dier from the conventional fermions.
Then, the Hamiltonian (15) including the ideal quarks is

given as

A

= —2m ) —(ppp + p' ) = vr,
P

this charge conserves, in agreement with the Goldstone
theorem.

(2) Scalar mode. The RPA equations (26) reduce to

where A (a normalization factor), P, and Q are defined

M—HRPA + Hquark + Bcoupl

where Hq„~,k is the ideal quark Hamiltonian

Irquark = ) @p(+pampa
*

pa)
ps

+quadratic terms at ideal quarks, (36)

These equations have the solution u = 2m. Since P
and Q under the parity transformation are invariant, the

modes are scalar.
In the normal modes, the RPA collective Hamiltonian

assumes the diagonal form

m2

II~pp„: + P + 47' Q + ) (dp0 OpRPA

and H, „p~ is the coupling Hamiltonian between the
mesons and the ideal quarks.

Thus, we derive the meson Hamiltonian interacting
with the ideal quarks in the RPA order. As seen

from (32), the meson Hamiltonian HRMP& includes the
continuum modes 0&. The ideal-quark Hamiltonian

Hq„,k consists of the single ideal-quark Hamiltonian and
the ideal-quark —ideal-quark two-body interaction. The
Hamiltonian (35) has the chiral symmetry through the

chiral rotation (Nambu-Goldstone mode) in RPA order.

If we neglect the continuum mode and the quadratic
terms at the ideal quarks in the Hamiltonian (35), it may

correspond to the Hamiltonian obtained from the linear

0 model [5].
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