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Meson exchange model for mp scattering
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We investigate xp scattering in the pseudoscalar (x), vector (~), and axial-vector (Aq) channel
using a model based on s- as well as t-channel meson exchange. We start with the realistic case of
a broad p meson and illustrate the application of three-body methods in this approach. In a second
step our calculation is simplified by treating the p as a stable particle. Our model is adjusted to
reproduce cu- and Az-resonance parameters and we are able to resolve in a natural way apparent
discrepancies occurring in the analysis of the Az.

PACS number(s): 13.75.Lb, 21.30.+y

I. INTRODUCTION

Although our knowledge about the underlying struc-
ture of strong interactions, with quarks and gluons as
fundamental degrees of &eedom, has increased quite a
lot, baryons and mesons have definitely retained their im-
portance as relevant degrees of &eedom for a realistic de-
scription of low energy nuclear phenomena. The meson-
exchange &amework has originally been developed to ob-
tain a theoretical understanding of the nucleon-nucleon

(NN) interaction. Today there are several potentials
based on meson-exchange which are able to describe the
NN interaction qualitatively and quantitatively [1]. Hav-

ing obtained a satisfactory theory of the NN interaction,
the meson-exchange framework has been applied to sev-
eral other processes of medium-energy physics. The con-
cepts of the Bonn potential [2] have, e.g. , been extended
to meson-baryon and baryon-antibaryon reactions and
finally it was possible to describe even meson-meson in-
teractions sucessfully by meson exchange (n'm, vrK [3]).
In this work we continue along this guideline and develop
a dynamical model for mp scattering.

The xp system is somewhat difFerent &om previous ex-
amples like NN, AN, or vrx since due to the short lifetime
of the p meson no m p scattering data exist which would
have to be explained. Therefore, it; is not our main aim to
investigate elastic mp scattering but to develop a realistic
model for this interaction which can then be applied to
the description of other important processes. The main
application we have in mind here leads back to the Bonn
potential of the NN interaction. There is a long stand-
ing discrepancy between the rather hard vrNN form fac-
tor required by the Bonn potential (A ~~ = 1.3 GeV)
and the strong evidence for a soft form factor deduced
from several other sources (A ~~ 0.8 GeV) [4]. 7rp

scattering enters the problem in a twofold way. First,
in a meson-exchange model of the xNN form factor one
of the dominant diagrams includes a vrp loop and here
mp rescattering can take place [Fig. 1(a)]. It has already
been shown that the mp interaction model we will develop
in this work has a strong infiuence on the 7tNN form
factor leading to an appreciable reduction of the cutofF
mass [5] and thus to a soft form factor, in agreement

with Ref. [4]. On the other hand, n'p scattering provides
an additional contribution which is not yet included in
the Bonn potential, namely correlated 7rp exchange [Fig.
1(b)]. The results of the present work demonstrate that
this diagram can be expected to produce additional ten-
sor force; its inclusion should therefore allow the use of
a softer 7rNN form factor in the Bonn potential and (at
least partly) remove this discrepancy.

The large width of the p meson does not only prevent
xp scattering experiments, it also complicates the theo-
retical investigation. Due to the p decay the vrp system
couples strongly to an underlying 3x system. The de-
scription of this coupled channel problem requires the
application of three-body methods making the analysis
much more complicated. Fortunately, we do not have
to solve some relativistic equivalent of the full Faddeev
equations [6]. Since the underlying two-body interaction
(7rm -+ p ~ 7rx) is taken to be separable, it is possible to
derive an efFective two-body scattering equation for vrp

scattering. In the present work we apply the relativis-
tic three-body theory of Aaron, Amado, and Young [7]
to xp scattering. However, this calculation leads to an
off-shell xp T matrix which is valid only in a very re-
stricted momentum range. Therefore, and for simplicity
reasons, we decided to evaluate a second, simpler model
for xp scattering where the p is regarded to be a stable

N,

FIG. 1. (a) Meson-exchange model of the 7rNN form fac-
tor. (b) Correlated n p exchange contribution to the NN po-
tential.
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particle. We will compare the results of both models and
will show that the main conclusions remain unchanged
in the simplified model. Having proven its adequacy this
simplified model is then used in all applications where a
full off-shell mp T matrix is required (7rNN form factor,
correlated n p exchange).

This work is organized as follows. In the next section
we set the theoretical basis of our model. We start by
fixing the underlying Lagrangians and derive the general
expressions for the pseudopotential V. In the following
we discuss in more detail the differences in the potential
and scattering equation between a stable p model and an
unstable p model. For the latter we briefly outline the
three-body theory of Aaron, Amado, and Young (AAY)
[7] and apply it to the harp system. The last part of the
second section contains the treatment of pole diagrams in
order to reproduce the properties of the physical particles
~ and Ai. In the third section we present our results.
After the discussion of the unstable p model we show
that the simple stable p model retains the main physical
conclusions. Finally we summarize our results and give
an outlook.

II. THE Kp INTERACTION MODEL

A. Determination of the potential V

&w~p = gamp(~ x )9@~) ' p )

~WW = 2&~~(~~Pv
1

&A, wp = gA, ~p (~g Pv ~vPg )
2mg1

[m x (8"A" —0"A")],
~wmp = gwmp& g~vc P~ ' ~.

(1a)
(1b)

(1c)
(1d)

The starting point of our calculation is the determina-
tion of the xp pseudopotential containing the diagrams
which are the relevant ones for the present problem. We
take into account s-channel pole diagrams (Aq, u) as well
as exchange diagrams involving the physical x, p, and ~
(Fig. 2). The pion pole contribution and Aq-exchange
terms are not included since they are unimportant, for
different reasons: The pion mass lies far below the vrp

threshold, and the physical Ai mass of about 1.2 GeV
leads to a very short-ranged contribution only.

Basis for the evaluation of the processes shown in Fig.
2 are the following Lagrangians:

(a) (b)

(c)

A,

(d)

FIG. 2. Diagrams included in the mp potential.

p and Cppp are obtained &om models considering the
p to be the dynamical gauge boson of a hidden local sym-
metry where the self-coupling of three p mesons results
from the non-Abelian structure of the underlying gauge
group. These models yield for the coupling constant
g = g ~ = g~~~ = m~~a/(2f ) [8,9]. Taking for a the
vector domincance value a = 2 we obtain g /4x = 2.71 in
remarkably good agreement with results from the decay
p ~ 2vr leading to g /4vr = 2.84. 8 ~ and Z~, ~ may
be regarded as extensions of this gauge particle approach
to Aq and u mesons [9] and similar relations could be
obtained for the couplings. However, the Aq7t p coupling
appears in a pole diagram only and here as well as for the
~ pole diagram we have to use bare coupling constants
g~ ) since the coupling is renormalized by the iteration
in a scattering equation which will be discussed below.
Together with the bare masses m~ ) they are adjusted to
reproduce the resonance parameters of Aq and ~ (Sec. II
D). The coupling constant g ~ appearing in the u ex-
change diagram is obtained &om a study of the decay
~mvrp~vrp to become (g /4m) m2 7.5 [10].

The calculation of the Feynman diagrams contributing
to V (Fig. 2) using the Lagrangians of Eqs. (1) follows
standard lines; therefore we restrict ourselves to the pre-
sentation of the result (a dot indicates a product between
four-vectors):

(a) n exchange

V = —g IF d(2q —k') e'(2q' —k) (2a)

(b) w exchange

V = g IF d(q q'[k k'e . e' —k' e k e'] + q . k[k' . eq' e' —q' k'e . e') + q e[q' . k'k e' —k . k'q' e']). (2b)

(c) p exchange

V = g IF d((q+ q') @[2k e' —k' e'] + (q+ q') e'[2k'. e —k. e] —e. e*(q+ q') . (k+ k')). (2c)
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(d) ~ pole

V = (g& l ) IF d& l s([k. k'e. e' —k' ek e']+kp[epk' e —kI)e. e']+ep[kpk e' —epk k']). (2d)

(e) Aq pole

V = (g&, ) /mz, IF d s(kI)[epk. e' —kpc. e'] + ep[kp k'. e —epk. k']). (2e)

In order to ensure convergence of the scattering equa-
tion (to be applied later) we have added phenomenologi-
cal form factors of standard monopole or dipole type for
each vertex, the. product is abbreviated by I'2 in Eqs.
(2). e and e' denote the polarization vectors for an in-
coming and outgoing p meson (Fig. 3), respectively, the
Mandelstam variable s is de6ned by 8 = E, , and the
isospin factor I for each diagram is given in Table I. The
propagator d for the exchanged particle (d~ l for pole di-
agrams) depends on the model we use for the iteration of
the pseudopotential. Its explicit form will be determined
below.

B. Three-particle case (unstable rho)

Having obtained the expressions for the pseudopoten-
tial V we have to specify a model for the iteration of this
potential in a scattering series to obtain the full scat-
tering amplitude. This will be done Grst for the more
realistic case of a broad p. In the next section certain ap-
proximations will be performed yielding a simpler model
including a stable p meson.

fective two-body Bethe-Salpeter equation as the starting
point of the AAY calculation

T('q' q) = V('q' q)

+ (2~) 4

J d p v)sq', p)D(rr, )T(a; pq),

Tf, —Ty,
—— i ) . dO„Ty„T„—,

d02 T22T22 —z d03T23T32 (4)

where q, q', and p are pion momenta, s = P2 denotes the
square of the total four-momentum, and o„= (P —p)2
denotes the square of the four-momentum of the inter-
mediate p subsystem (Fig. 4).

In order to get a soluable (three dimensional) scatter-
ing equation further simplifications are necessary. As in
the two-body case one tries to find a form of D which,
on the one hand, reduces the dimensionality of Eq. (3)
but, on the other hand, does not influence the unitarity
of the scattering amplitude T.

Assuming only two- and three-body intermediate
states the unitarity requirement is given by

1. The basic formalism,

Since the rather large width of the p meson (150 MeV)
is generated by the decay p -+ 2m, the ~p system which
we investigate couples strongly to the 3m system. There-
fore a rigorous treatment requires in principle the ap-
plication of three-body methods. In the following we
brieBy report the relativistic three-body theory of Aaron,
Amado, and Young (AAY) [7] and apply it to the s'p sys-
tem.

As it is known for the nonrelativistic three-body prob-
lem the full set of Faddeev equations [6] can be reduced
to an effective two-body Lippmann-Schwinger equation
under the assumption that the underlying two-body in-
teraction is separable or, in other words, if the two-body
interaction proceeds via an isobar. This concept can be
generalized to the relativistic case and leads to an ef-

with

d4.
dO„= (2s) b P —) q;

'
2mb'+(q; —m;) .

, ');";(~)'

In the AAY calculation a second expression for T —T+
is derived &om the Bethe-Salpeter equation yielding

T —T+ = [V —V+]

+ T+D+[V —V+] + [V —V+]'DT

+ T+['D —D+]T + T+'D+ [V —V+]'DT, (6)

where T—:T(s+ ie) and T+—:Tt(s+ ie) = T(s —ie) (D
and V analogous).

Taking matrix elements in momentum space it is ob-
vious that for

q'.
TABLE I. Isospin factors for the diferent diagrams.

q k, z

FIG. 3. Diagram de6ning incoming and outgoing particles.

Diagram
m exchange
p exchange
~ exchange

A~ pole
co pole

T=0
+2
+2
+1
0

+3

—1
—1
+1
0
0
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op = (P —P)' = s —2~sId„+ m'

D(o„) denotes the propagator of the intermediate p sub-
system in the three-dimensional scattering equation

FIG. 4. The effective two-body Bethe-Salpeter equation.

D(o.„) = (2m-) 2Id„

x o —(m( ))
ds I (f(o) )2

(2m)sIdp (op —4Id2, )
(14)

disc[V(p, q)] = 0, disc[V(q', p)] = 0 Ir'p

and disc[V(q', q)] = 0

the first three terms on the right hand side of Eq. (6)
vanish. Following the AAY calculation we postpone the
discussion of the restrictions due to Eq. (7) for the mo-
ment and compare the resulting equation

disc [T]—:T —T+
= T(1) —V+)T+ + TV(V —V+)XT+

I (d& + (d&& + (dz
V (s;q, q) = —fi

( ( )2]
f2 (9)

with

= gq2+ q'2+ m2 + 2qq'cose (10)

fi and f2 are the exp vertex functions appearing in Eq.
(2a) with the modification that the dispersion integral
performed by AAY to obtain V from disc[V ] forces +s
tO vS=Idq+Idq~+Id~:

with Eq. (4). Evaluating the latter explicitly expres-
sions for disc[V] and disc[17] can be determined from this
comparison.

Having obtained the discontinuities of B and V one
can deduce an explicit expression for these quantities,
which is of course by no means unique. For details of
this calculation the reader is referred to [7]. We report
the results here (modified for the present problem of sr p
scattering) to define the ingredients of our model.

The potential V arising f'rom pion exchange has the
following form (isospin neglected)

T(s; q', q) = V(s; q', q)

+ V(s;q', p)D(o„)T(s;p, q) . (15)

2. Application to the mp System

The fundamental ingredient of the three-body theory
developed in the last section was the assumption of an un-

derlying separable two-body (air) interaction. In terms
of a meson exchange model this implies that the vec-
tor/isovector part of the 7rvr T matrix is generated exclu-
sively by a p pole diagram and thus can be written as
(cf. Subsec. D)

T.'.='( -;q', q)

(0) (o)= f..p( - q ) (,)
f..p(s- q)

s —(mp )2 —Z(s )
(o) (o)

fwwp Arm p (16)

with

and is determined such that it reproduces the main fea-
tures of the two-body (7m) subsystem (see below).

It is clear that further diagrams with disc[V] = 0 can
be included in V. In our calculation the potential V con-
tains in addition to the pion exchange [Eq. (9)] p and
~ exchange as well as the pole diagrams. The propaga-
tor d for these diagrams is taken to be the usual Feyn-
man propagator d = [K2 —m2] i where K denotes
the four-momentum and m the mass of the exchanged
particle. Since the spectator pion is kept on-mass shell,
four-momentum conservation fixes the four-momenta of
the involved p mesons: kII ——~s —Id~, kII = v s —Id'.

We finally get a three-dimensional effective two-body
scattering equation

g (2q —k') ~* = g [2q —(+s, 0) + q']

[2q + q' —(Id~ + Id~ + cd, 0)] . e* —= fi

g (2q' —k) ~ = g [2q' —(+s, 0) + q]
[2q'+ q —(Id~+Id~ +Id, 0)].e = f2 .

The propagator 'V in the Bethe-Salpeter equation is given
by

V(cr„) = 2vr8+(p —m )D(op) (12)

This 6 function reduces the dimensionality of the scatter-
ing equation and puts the spectator pion on-mass shell.
Furthermore, since p = m

E(s )
s 1 (f p)

(o) 2

(2rl ) Id&~ s~~ —4Id

Once we have fixed the parameters g(o) (implicitly con-

tained in f ( )p and therefore also in 2) and m( ) to re-
produce the orner vector or isovector phases we have at the
same time determined the propagator D(cr„). It is obvi-

ous that D(rrp) is obtained from d(s ) by the replace-
ment s ~ 0.„, i.e., by the inclusion of the spectator
pion. Figure 5 shows a comparison of D(IT„) with the
two-body propagator G of Subsec. C demonstrating the
transition from a zero-width p meson to a broad one.
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FIG. 5. Comparison of the propagator G of a stable xp
system and the propagator D of a 3m system.
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FIG. 6. Singularities of the pion exchange potential V
V is complex for all combinations of q and q' inside the
shaded area. Solutions for +s —uq —uqi —u (y = +1) = 0
are shown [Eq. (19)].

To solve the scattering equation (15) we have to per-
form the momentum integration along the real axis. The
singularities of the propagator D(o„) are positioned in
the complex plane far away &om the real axis and thus
do not have any in8uence on this integration. The sit-
uation appears to be more complicated for the pion ex-
change part of the potential V, which may be written in
a partial wave decomposed form

solving the scattering equation). Fortunately, it turns
out (Sec. III) that this is sufficient for the calculation of
mass distributions, i.e., for our investigations in the Ai
and ~ channel. However, in the calculation of the vrNN
form factor [5] or of correlated qrp exchange between two
nucleons, a full ofF-shell xp T matrix is required. There-
fore, we present in the next chapter a simplified model
neglecting the width of the p meson, which is able to
provide a full off-shell

harp

T matrix.

+1 VV (s;q, q;y)
v~ ~q ~q' ~ (q q'y)

(1S)

For certain values of a, q, and q' the integrand may
become singular and the integration leads to a complex
potential V . After regularizing this integration the real
part of V contains moving logarithmic singularities

V,(.. .) 1
K -, -, -.(y ) (19)+s —lalq —(dq& —(de (y = +1)

fs —3m' l
'

2vs ) (20)

In summary, the present approach to the three-body
system allows the calculation of T(s; q', q) only for q, q' )
Q (this may be seen as an advantage since we then have
no problems with the moving singularities of V while

Figure 6 shows the position of these singularities in the
(q, q') plane. For (q, q') lying in the shaded area between
the singularity curves the potential V is complex, i.e.,
disc(Vi)g 0. Outside this area the propagator in Eq.
(18) cannot become singular and thus V remains real.

At this point it is necessary to continue the discus-
sion of the validity of Eq. (8). It was discussed above
that this equation only holds if disc[V(p, q)] = 0 Vp,
disc[V(q', p)] = 0 Vp, and disc[V(q', q)] = 0. Figure 6
immediately shows that this is fulfilled only for q, q' ) Q.
Q is s dependent and given by

C. Two-particle case (stable rho)

Treating the p meson as a stable particle we can ap-
ply the usual two-body formalism to obtain the scat-
tering amplitude T from the pseudopotential V. Equa-
tion (3) is then replaced by the well-known two-body
Bethe-Salpeter equation

T = V+ d pV 8T,

where p denotes the relative momentum of the up system.
Again, the dimensionality of this equation can be reduced
by making a certain choice for the propagator Q with the
constraint that T remains unitary. In our calculation we
use the Blankenbecler-Sugar scheme for this reduction
[11]with a slightly modified propagator Q introduced for
instance by Aaron [7]

[lt' m2] —' (23)

( 1 1 i 7I ld~ + ld&
&(p, s) = b

I po ——~.+-~,
I

2 2 P td~(d& 8 —((d~ + (d&)

( 1 1
2vrh

~
pp ——(u + —(up

~
(2s) G(p, s) (22)

2 2 )
with sr~ = gp + m . The b' function in front of g
reduces the dimensionality of the scattering equation and
determines the ofF-shell behavior of the potential V.

The propagator d (or dp) for each exchanged particle
in the pseudopotential diagrams has the form
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d=[K —m] (24)

thus eliminating any singularities.
Having obtained the potential V and. fixed the form

of the scattering equation we can proceed using standard
methods. After partial-wave decomposition and transfor-
mation into the LSJ basis the remaining one-dimensional
integral equation is solved by matrix inversion, yielding
the T matrix for mp scattering.

where A denotes the four-momentum and m the mass
of the exchanged particle (for pole diagrams m ) is used).

When the pion exchange contribution to V is calcu-
lated using this form of d and the ofF-shell behavior de-
fined by Eq. (22) problems arise since it turns out that
the propagator d creates unphysical singularities. The
reason for this lies in the fact that the pion exchange di-
agram contains the propagation of three pions (Fig. 7),
a process which above 3' threshold cannot properly be
described by the simple form of d given in Eq. (23). It
is obvious that a physically satisfactory form for the pion
exchange propagator can only be found in the three-body
formalism as it was done in the last section; however, in
order to create a simple model (stable p meson, i.e., no
three-body effects) we decided to use the static propaga-
tor approximation for d

pion has therefore a negligibly smaB efFect on elastic harp

scattering and we do not have to include anything like a
pion pole diagram in our model.

2. co-me8on channel

Vp„——Vp + V~", (25)

Since the cu-meson mass lies above 3' threshold, but
below mp threshold, the treatment of this particle de-

pends on the model we use for the xp system. For an
unstable p (i.e., if we investigate a 3vr system) the ~ me-

son appears to be a "normal" resonance of three pions
having a certain mass and width (although the latter is
quite small, I' 8 MeV). If we consider the p to be
stable (with a mass of 769 MeV), the ur meson can no
longer decay into vr and p being a zero-width particle in
this model. Nevertheless, since the ~ lies rather close
to xp threshold, it definitely has an influence on the harp

amplitude so that an cu pole diagram should be included
for a stable as well as for an unstable p meson.

a. u-meson for the stable p modeL After partial wave

decomposition the potential in the ~ channel can be di-

vided into a pole and a nonpole part

D. Pole diagrams, determination of poles

There are three states of the 7rp system that are char-
acterized by quantum numbers identical to those of im-
portant physical particles

LJT —Po] w 7r —meson,

LJT = Pyo M (d —meson,

Sl y M Al —meson.

In the following we discuss the inclusion of these particles
in our model in order to evaluate a m p amplitude that re-
flects our experimental knowledge about 7r, ~, and Aq.
We would like to note here that due to selection rules a
contribution to the NX potential from correlated harp ex-
change is obtained only if the exchanged 7rp system exists
in one of the states mentioned above (exept for unim-
portant higher J contributions). A correct treatment of
these channels is therefore quite important.

where the pole part consists of the ~ pole diagram only,
whereas the nonpole part contains ~, ~, and p exchange.
Iterating this potential in a scattering equation T = V+
VGT (suppressing the L~T index), it can be shown [12]
that the T matrix also separates into a pole and a nonpole
part:

T = T"'+T"
TDP

= T"'+f df,
VDP + VDP QTDP

f(o) + f(o) GT~P

(d( ) —Z)

(26a)

(26b)

(26c)

(26cl)

(26e)

where f( ) denotes the bare ur -+

harp

vertex function in a
partial wave decomposed form and can be written as

f. m-meson channel f(')(s, q) [(g( )m~) /4vr]32m sm~ qF(q) . (27)

As was already mentioned the vr-meson mass lies far
below vrp threshold and even below 37r threshold. The

P k'

f( ) and therefore also f and E contain the bare cou-

pling constant g~ ~, the propagator d~ ~ contains the bare
mass m(o). The self-energy Z(s) is real at s = m indi-

cating that the ~ meson is a zero-width particle in this
approach. The requirement of a pole of T" at the physi-
cal cu mass therefore fixes only one of the two parameters,
namely m~ ~,

Tl

Ttq k, P
I"IG. 7. A time-ordered contribution to the pion exchange

diagram.

d (m ) —Z(m ) = m —(m ) —K(m ) = 0 . (28)

The bare coupling constant g(o) [included in E in Eq.
(26e)] has to be determined using the independent con-
dition that T" has the right residue at the cu pole which
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(g'")' = g' - + g' —Z( )
o

(f(o))2 Bs (29)

with f . g(o) f ~f (o) . g(o)f (o) and Z =. (g(o) )

b. u meson for the unstable p model. Using the unsta-
ble p model the underlying algebra leading to Eqs. (26)
remains in principle unchanged with G replaced by the
three-pion propagator D. (It was shown in Subsec. B
that the unstable p model does not allow the calculation
of a fully off-shell T matrix. From this point of view
T p is not well defined fully off-shell since it is not a uni-
tary amplitude for all momenta. However, we can just
dePne a certain function T"r by Eq. (26b) and this ex-
pression can then be used to determine the self-energy
Z. Alternatively, we could have calculated Z by using,
e.g. , the equation T(s;q, q) = T r (s;q, q) + f(s;q)[s-
(m(o))2 —Z(s)] ~ f(s; q), where q is an arbitrary momen-
tum larger than Q [Eq. (20)] and hence all involved func-
tions (T, T"r, f) are physically well defined).

The really important difference in comparison to the
stable p model lies in the fact that the self-energy Z =
f(o)Df is now complex for all values of s larger than
(3m )

2 and the u meson has therefore a certain width in
this model. If we compare

( .I'. l
8 — m~ —i

r2
s —m +im I' (30)

with

-( "')' —Z( ) (31)

we get two equations to determine g~ ~ and m~ ~

m = (m( )) + Re Z((m —iI' /2) ),
—I' m = ImZ((m —iI' /2) ) (32)

3. A~-meson channel

The Aq meson has a mass around 1260 MeV (details
are discussed in Sec. III) and lies above 3' threshold
as well as above n p threshold. For both models (stable
unstable p) we have to apply the formalism explained
in 2. b) for the u meson resulting in Eqs. (32). The
corresponding bare vertex function is given by

(o) g(o) 4n ~sI' (q)
g4~ 3m'. 2k. + - (q)-",k~ td

(33)
m~

where ko denotes the zeroth component of the p four-
momentum, which depends on the off-shell structure we
use.

includes the physical coupling constant g. One obtains
[12]

To determine the pole of the mp scattering amplitude
the self-energy Z(s) has to be determined for complex
values of 8. Details of this calculation are given in Ap-
pendix A.

III. RESULTS

In the last section we have developed two interaction
models for xp scattering, one assuming the p to be a
stable particle (model B in the following), the other in-
cluding the decay width of the p meson (model A). In
this section we will present the results we obtain using
these models of the harp T matrix.

Before we start we would like to make a short remark
about the ingredients of our pseudopotential, in partic-
ular about the role of cu exchange. Figure 8 shows the
on-shell potentials for model B in the three partial waves
of interest when only exchange (nonpole) diagrams are
included. Obviously p exchange provides the dominant
contribution in the Aq partial wave whereas in P waves
vr exchange is of comparable strength. Figure 8 further
demonstrates that cu exchange is quite unimportant in
all partial waves. For model A u exchange is somewhat
problematic since for the off-shell structure used in this
case the u propagator creates unphysical singularities.
We avoid these problems by assuming that u exchange
is as unimportant for model A as it is for model B and
neglect this contribution in both models.

We start our analysis by investigating the Aq (Sqq)
channel. Empirically our knowledge about the A~ meson
is based on two different classes of experiments [13]. The
first class contains investigations of the leptonic decay
v -+ v Aq ~ v 37t which proceeds via an intermediate
virtual W boson [Fig. 9(a)]. The corresponding exper-
iments are expected to be &ee from any background so
that the extracted A~ parameters are reliable. For the
present analysis we make use of the working hypothesis
that the results derived from 7 decay are the correct ones,
i.e., we assume

m~, 1260 MeV, I'~, 400 MeV [13,14]. (34)

The second class of experiments investigates hadronically
produced Aq mesons. It may be subdivided into diffrac-
tive production ( [13], 7rp -+ 3vrp) and charge-exchange
production ( [15], xp ~ 3am). In both cases the analysis
is troubled by the existence of a significant background
and it is one aim of this work to get a theoretical un-
derstanding of this background. We will do this for the
charge-exchange reaction since this reaction proceeds via
the exchange of a p meson and allows a direct applica-
tion of our harp interaction model [Fig. 9 (b)]. Charge-
exchange data &om Ref. [15] are given in some of the
following figures. Prom these results and without the in-
clusion of any background the authors derive an Aq mass
of 1.13 GeV (unfortunately no width) in apparent dis-
agreement with the r-decay results. (In addition, they
introduce a certain phenomenological background to re-
move this discrepancy. )

Our theoretical model can clarify this situation since it
allows us to determine both the experimentally observed
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mass spectrum and the pole parameters of the A1. The
former is given by

where M3 denotes the invariant 3x mass, o ~ is the mass
spectrum for the reaction harp

—+ 3m, and f (t) is a function
containing the XXp vertex, the p propagator, and so on.
(7 ~ is given by [16]

7T

( )

IT p(E M3 ) —f 1)B3Tg3T~z
—— —2 Im(T ~(t, M~ ))

P
n

(b)

-100-
N
No -aoo-

~p4

m -400-

-500-

I I I

LJT poi
( )

I I I I I I

(36) FIG. 9. Reactions including the Ai meson. (a) The
dominant diagram contributing to r ~ v37r decay. (b)
Charge-exchange reaction xp ~ 3mn. t denotes the
four-momentum squared of the exchanged p meson.

Here, T ~ denotes the off-shell T matrix for srp scattering
that was calculated in Sec. II using model A. It is an
advantage of this model that the off-shell structure forces
the pion to be on-mass shell whereas the p meson can
be off-shell. This is exactly the situation we 6nd in the
charge-exchange experiment [Fig. 9 (b)] and T ~(t, Ms )
can therefore be written in the more common form

900 1000 1100 1200 1300 1400 1500 1800
E(c.m.} [MeV]

0

T p(s = Ms; k, k) with k = s+m~ +t —m2 .

-100-
N
N+ -aoo-
O

~A
M
g -300-
4)

~+I
W -400-

-500-

-eoo-
I I I I I

In the experiment t is always lower than zero; Fig. 10
shows the k value corresponding to t = 0 which depends
on s. This figure shows in addition the value Q that
bounded the region where the vr-exchange potential is
complex. As was discussed in Sec. II B the three-body
theory can only be applied for momenta larger than Q
and Fig. 10 shows that in the present case this is ful6lled
for all values of M3 and all t ( 0.

As will be discussed below in Fig. 14 the t dependence

900 1000 1100 1200 1300 1400 1500 1800
E(c.m.} [MeV]

1.20

1.00-

0.80-

O
~W
N
g -300-
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A O.BO-
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-500- JT joL= s (A, )
0.20—
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I I I I I I
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E(c.m.} [MeV]

0.00 I I I I I I I
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FIG. 8. On-shell potentials in m-, cu-, and A~-partial waves

arising from nonpole diagrams in model B. The dotted line
contains only vr exchange; for the solid line p exchange is
added. The dashed line includes all exchange diagrams.

FIG. 10. The solid line shows the p momentum k corre-

sponding to t = 0 as a function of M3 . The dashed line

shows the boundary Q for disc[B] g 0. The arrow indicates
the movement of the solid curve when t is varied (t ( 0).



49 MESON EXCHANGE MODEL FOR mp SCATTERING 2771

of the shape of the mass spectrum is rather weak. We
therefore make use of the approximation

~(t, Ms. ) = f(t) ~,(t=o, Ms. ) (3S)

and 0 p(t =0, M p) = 0 will be compared with experi-
mental data.

To get a feeling for the importance of the different con-
tributions to the potential we first calculate the mass
spectrum using exclusively the Aq-pole diagram and do
not include any exchange contribution. As described in
Sec. II D we fix the pole at the Aq mass [Eq. (34)] and
vary the only remaining parameter, the cutoff mass ap-
pearing in the form factor I"(q) in Eq. (33). In all model
A calculations that follow we have looked for the pole
on the second as well as on the third sheet. We have
never been able to find an Aq pole on the second sheet
but always on the third one. Results (normalized to ex-
perimental data) are shown in Fig. 11. Obviously it is
not possible to describe the experimental data by includ-
ing only the A~-pole diagram. On the other hand, it is
definitely not possible to renounce this diagram and gen-
erate the experimentally observed bump by iterating the
exchange part of the potential only. This is demonstrated
in Fig. 12, which shows the mass spectrum resulting from
the nonpole part T„~ only. We have chosen arbitrary
cutofF masses for 7r- and p exchange but the result turns
out to be rather independent of this choice. Figure 12
also demonstrates that p exchange provides the dominant
contribution to the nonpole part of the mass spectrum.
This is qualitatively understandable since we found out
that for m exchange the Born approximation works quite
well. Therefore o,„ Im T,„ Im V,„=0.

Both parts on their own, exchange diagrams and the
Aq-pole diagram, are not sufEcient for an understanding
of the experimental data. However, if we put these parts
together, the situation changes. Note that T„~ influences
the mass spectrum in two ways; first it implicitly changes

e$

b

600
I

800
I I

1000 1200
M, „(Mev)

I

1400
I

1600

FIG. 12. The mass spectrum in the Aq channel of the m p
system (without any Az pole). The dashed line shows the
result when only p exchange is included in the potential. The
solid line contains in addition m exchange.

the pole part from f (o)df(o) to fdf, second it is added to
the pole-part T„ to yield the total T matrix [Eq. (26a)].
The result is shown in Fig. 13. Again the pole of T is
fixed to reproduce the A1 parameters of Eq. (34). But
in contrast to Fig. 11 it is now possible to get agreement
with the experimental data.

In summary, we are able to describe the experimen-
tal charge-exchange data and, at the same time, find an
Aq mass in agreement with results &om w decay. The
important ingredient for this consistent understanding is
the existence of a strong nonpole background T„~ con-
tributing to the total xp amplitude T. This background
does not appear explicitly in r decay. It can be shown

[17] that the coupling of the W boson to the mp system
may be written as

f~~~p = f~~~p + f~~~ DTnp + f~~A dfA~mwp
(o) (o) (o)

2.0-

1.5-

~ ".3 35 GeV

2.0-

1.0-
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-- 3.00 GeV

—2.40 G@V
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0.5- 1.0-

0..0 I I I I I

400 600 800 1000 1200 1400 1600
Ms (Mev)

FIG. 11. The mass spectrum in the Aq channel. The figure
shows the data of Ref. [15]. In addition, it contains the model
A result for the mass spectrum when no exchange diagrams
are included in the potential. The difFerent curves are ob-
tained for diferent values of the cutoK mass appearing in the
Aq -+ 7rp vertex function. The pole is Sxed at 1260 —i 400/2
MeV.

0.5-

0.0
400 600 800 1000 1200 1400 1600

M„(Mev)

FIG. 13. The Aq-mass spectrum for our full model (solid
line). The pole is Sxed at 1260 —i 400/2 MeV. The dashed
line shows the nonpole part of the mass spectrum which is
included in the full calculation.
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[f: total (dressed) vertex function, f( ): bare vertex func-
tion]. But in the framework of axial vector dominance

the direct coupling f~ and therefore the contribu-
tion including T„z explicitly vanishes. For the charge-
exchange reaction, on the other hand, the full xp T
matrix contributes and the strong nonpole background
(dashed curve in Fig. 13) allows the connection of Aq pa-
rameters and mass spectrum. Finally we would like to
note that vr exchange which was included in some inves-
tigations of difFractive production [16] is (at least in our
model) not sufficient to generate a nonpole background
strong enough to remove the discrepancy. It is the p ex-
change that is responsible for the bulk contribution to
T„~. We complete the discussion of the axial vector par-
tial wave with Fig. 14 showing the t dependence of the Aq
mass spectrum. Besides the result of our full model A for
t = 0 it gives the mass spectrum for t = —(0.45 GeV)2, a
value which is given in [15] as the upper bound of the mo-
mentum transfer in the experiment. The t dependence
is quite small justifying our previous approximation to
calculate the mass spectrum only for t = 0.

Having obtained a good description of the Aq channel
we now turn to the u partial wave. The parameters for

the nonpole part are 6xed now; the bare mass m and(O)

the bare coupling constant g ~~ are chosen to generate a(0)
'

pole at m —tI' /2. The only remaining parameter is the
cutoff mass A appearing in the ~ m xp vertex function
[Eq. (27)]. Table II shows the complete set of parameters

we use in this calculation. g ~~ is rather large, it is about
a factor of 8 larger than the physical one. This large value
for gI ~ is necessary to reproduce the small width of the
w meson. Figure 15 shows the resulting mass spectrum
in comparison with experimental data from [15]. The
normalization is of course the same as in Fig. 13. We get
a good qualitative description of the empirical situation
for the pole region as well as for the high energy tail. It
is interesting to note that no shift between u mass and
maximum of the bump is observed, in contrast to the
Aq channel and in agreement with experimental data.
The mass of the v meson lies about 130 MeV below harp

TABLE II. Parameters of our model A [for pole diagrams
(gI I) /4z is given].

Diagram
vr exchange

p exchange
A» pole
(u pole

g'/4vr
2.84
2.84
1.237

52.170

m (MeV)

1288
1144

A (MeV)

1350
2600
1300

Form factor
monopole
monopole

dipole
dipole

threshold; the nonpole amplitude of mp scattering is due
to phase-space quite small in this region and therefore
no effect on the u mass spectrum can be observed. The
situation is different in the axial vector channel where
the mass of the Aq meson and the important part of the
nonpole amplitude coincide.

Finally we will look at the 7r channel. This partial wave
is of special importance for us since our main motivation
to investigate xp scattering has been our plan to apply it
to the 7rNN form factor and to correlated sr p exchange in
the NN interaction. In both cases it is the vr partial wave
where open questions may be answered when 7rp scatter-
ing is included. Unfortunately, no data are given for this
partial wave in [15]. However, we are confident that our
results are reliable since we have checked our interaction
model in the Aq- and ~-partial waves, and all parameters
are Axed now. Figure 16 shows the mass spectrum in the
x channel (solid line). To get a feeling for its strength we

have also plotted the nonpole mass spectrum of the Aq

channel for comparison (dashed line). The nonpole am-
plitude was important in the axial channel and Fig. 16
demonstrates that it is of equally strong magnitude in
the vr channel.

We have shown that our three-body model A provides
a good description in all channels of physical interest. Al-

though we already found results which are interesting by
themselves (analysis of Ar) it was our main aim to evalu-
ate a realistic 7rp interaction model to apply it to several
processes of medium energy physics. This is somewhat
diKcult with model A since in this framework we can-
not calculate the full off-shell T matrix which is needed
for the applications. Besides simplicity reasons this was
the main motivation for us to develop a second model for
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FIG. 14. t dependence of the mass spectrum. The solid
line shows the result of our full model, i.e., t = 0. The dashed
line shows the mass spectrum for t = —(0.45 GeV), cf. Ref.
[15].
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FIG. 15. The mass spectrum in the cu channel. Data are
from Ref. [15] and normalization is as in Fig. 13.
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FIG. 16. The mass spectrum in the s channel (solid line).
Normalization as in Fig. 13. The dashed line shows the non-

pole mass spectrum of the A~ channel for comparison.

FIG. 17. The Aq-mass spectrum using model B and in-

cluding only the A&-pole diagram. The different curves are
obtained for different values of the cutoff mass appearing in
the Aq ~ vrp vertex function.

xp scattering in whiih the p is considered to be a stable
particle (model B). We will demonstrate now that our
model B has all the important features that have been
shown to be crucial for the description of the empirical
situation when we discussed model A. Having tested the
reliability of the simple model it can then be used in the
desired applications.

Besides the approximations already made in the cal-
culation of the xp T matrix in model B additional as-
sumptions are necessary to calculate the mass spectrum.
If the incoming pion is on mass shell the incoming p is
also on mass shell, i.e., t = k = m & 0. The off-shell
structure of model B does therefore not allow the cal-
culation of the T matrix in the correct region of q and

k~. However, we assume that the t dependence is rather
small and that the conclusions concerning the shape of
the mass spectrum are not affected if we use the on-shell
T matrix to calculate the mass spectrum, which is then
defined by
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00

1.0-
4
a5

b
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400 600 800 1000 1200
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1400 1600

FIG. 18. The Aq-mass spectrum for our full model B. The
dashed line shows the nonpole mass spectrum for comparison.

e = rr ~ (t =m, M ~) = f ttttt T„~T~ (40)

As for model A we start our discussion in the Aq chan-
nel and investigate the relation between the Aq pole and
the shape of the mass spectrum. Figure 17 shows the
model 8 calculation corresponding to Fig. 11. The pole
is again fixed at 1260—i 200 MeV to reproduce the A~ pa-
rameters and we calculate the mass spectrum without the
inclusion of any exchange diagram. It is obvious that the
use of model B does not change our previous conclusion,
namely that it is impossible to get a good description
of the mass spectrum. Fortunately also our solution to
this problem remains va1id for model B.Figure 18 shows
the resulting mass spectrum when the nonpole part of
the potential is switched on. We get a comparably good
description of the data; the main difference lies in the
fact that the mass spectrum falls off very rapidly at mp
threshold now. The nonpole part must be suKciently
strong to reproduce the mass spectrum and this require-
ment again fixes the cutoff masses for m and p exchange.
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FIG. 19. The mass spectrum in the vr channel using m del
B (solid line). Normalization as in Fig. 18. The dashed
line shows the nonpole mass spectrum of the A~ channel for
comparison.
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TABLE III. Parameters of our model B [for pole diagrams
(gl l) /4z is given].

Diagram
vr exchange

p exchange
AI pole
(u pole

g'/47r
2.84
2.84
1.221
4.853

m (MeV) A (MeV)
800
1350

1232 3200
801 1000

Form factor
monopole
monopole

dipole
dipole

All parameters of model B are given in Table III.
The situation turns out to be more dificult in the ~

channel. In model B the bump with a width of 8 MeV,
see Fig. 15, is replaced by a delta function indicating a
zero-width u meson. Our model B cannot describe the
magnitude of the high energy tail of the u as in model A.
Below xp threshold the mass spectrum is clearly zero but
also for higher energies our result is too small compared
to the data. The high energy tail in Fig. 15 is due to the
correct description of the a-pole diagram in model A. The
treatment of model B just ensures that we get a pole at
the u mass with the right residue but we cannot expect
that this approximation provides an overall description of
the data which is as well as it was for model A. However,
the disagreement in the w channel does not afI'ect the
reliability of the nonpole part of the T matrix. It is a
problem of principle that model B can generate only a
zero-width ~ meson but this difhculty is not caused by
the nonpole part which has been proven to be realistic in
the Ai channel.

In the 7r channel where we want to apply the vrp inter-
action no pole diagrams close to threshold interfere with
the nonpole part. Figure 19 shows the nonpole mass
spectra for the Ai and vr channel. As in model A the
7rp interaction is about equally strong for the vr channel
as for the Ai channel and for the latter it was shown to
be quite important. This can also be seen from the po-
tential (Fig. 8): Its magnitude is comparable in all three
channels of physical interest. It is this strong nonpole
amplitude in the 7t partial wave that encourages us to
investigate the vrNN form factor and correlated harp ex-
change where this part of the xp interaction enters.
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quired in most applications of vrp scattering. We there-
fore developed, in addition to the rather complicated in-

stable p model, a simpler model assuming the p to be a
stable particle. The previous results have been used to
test this simple model and it was shown that the main
conclusions do not change.

It turned out that the nonpole amplitude is compara-
bly strong in P waves {7r, cu channel) as in the S wave {Aq
channel) where it was responsible for the consistent de-

scription of the Ai meson. To underline the importance
of vrp scattering in the pionic channel we have recently
calculated the vrNN form factor in a meson-exchange
framework including the simple model for 7t.p scattering
[5]. It turned out that this interaction has indeed a large
eKect leading to an appreciable softening of the form fac-
tor T.he final result is rather soft (A ~~ —1 GeV) in
agreement with information from other sources [4].

The next step must be the inclusion of such a soft
form factor in the Bonn potential of the NN interaction
[2]. It is again the strong nonpole contribution in the
pionic channel of the xp interaction that encourages us
to regard correlated vrp exchange as a possible solution
for the problems arising from a soft vrNN form factor.
We are confident that this process generates additional
tensor force in the NN interaction, which one needs if a
soft mNN vertex is used. Calculations along this line are
in progress.

IV. SUMMARY AND OUTLOOK

In this paper, we have developed a dynamical model for

harp scattering. The starting point was a pseudopotential
based on s- as well as t-channel meson exchange. We first
investigated the more realistic case of a broad p meson
and applied the relativistic three-body theory of Aaron,
Amado, and Young [7] to 7rp scattering. The results
have been compared with data from charge-exchange re-
actions and good agreement was obtained in all relevant
channels. Especially in the axial vector partial wave the
strong nonpole background which is generated mainly by

p exchange turned out to be crucial for a consistent un-

derstanding of the Ai meson.
However, although our three-body model produces

good agreement with experimental data, it cannot be
used to calculate a fully oB'-shell T matrix, which is re-
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FIG. 20. The cut structure of the two-body propagator G.
The squares mark the cu and Aq pole, z = ~s. The dashed line

shows the cut for real momenta, the solid one for a momentum
contour rotated by an angle of 0 = 31 . The shaded area
shows the region of the second sheet we can explore with this
contour.
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APPENDIX: DETERMINATION OF POLES

The self-energy Z = f(o)Gf or Z = f( )Df contains
the intermediate propagator G or D and re6ects the mul-

tisheet structure of the scattering amplitude. To 6nd the
poles of the T matrix one has to investigate the cut struc-
ture of these propagators [18]

-50-

~~) -f00-

-aso-

8 —z00-

3m' m~+my

G(s, p) - [~s —(u (p) urn(p)+is] (A1)

+s —ur (pe 'o) —urp(pe 'o) = 0 (A2)

For a momentum contour along the real axis G has a cut
along the real axis of the complex +s plane starting at
~s = m + m~ (Fig. 20). If we want to calculate Z(s)
for values of ~s in the lower complex half plane (e.g. ,

~s moving along path C in Fig. 20), we have to avoid
crossing this cut. This can be achieved by rotating the
momentum contour by an angle 0 into the lower half
plane. This procedure efFectively rotates the cut into the
complex +a plane and the new position is given by
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-aoo- (a)
I I I I I I I
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Re(z) (MeV)
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3m% mn™p
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The result is shown in Fig. 20. We are now able to cal-
culate Z(s) for values of +s in the dotted area, i.e. , we

can investigate Z(s) on the second energy sheet since it
is now continuous along path C in Fig. 20.

In the three-body case Z contains the more compli-
cated propagator D given by Eq. (14) which obtains two
cuts. One is generated by the 2' self-energy appearing
in the denominator of D and is given by

crz —4'„, = 0

-350

50
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-50-

I I I I I I

800 400 800 800 1000 1800 1400 1800
Re(z) (MeV)

I I I I I I

mg™p
I

op = (mp —il'p/2)2 (A4)

For real p and a p' contour following the real axis this
equation defines a cut along the real +s axis starting at
+s = Sm [Fig. 21(a)]. The second cut is generated by
the two-body resonance in the three-body system and is
de6ned by

~o -j.00-

-i50-

-200-

-250-

-Boo- (c)

P/2

This cut lies in the complex plane and has a branch point
at (m + m~, —I'~/2). To explore the regions of the com-
plex plane where the ~ and Aq poles are located we have
to rotate both, p and p' contour, into the lower complex
half plane. Figures 21(b,c) show the resulting rotation of
the cuts in the +s plane. In Fig. 21(b) 0 = 12' and we
are able to look for an Aq pole on the second sheet. In
Fig. 21(c) we have chosen 0 = 31 exploring the third
energy sheet.

-350
I I I I I I I

0 800 400 800 800 1000 1800 1400 1800
Re(z) [MeV]

FIG. 21. (a) The cut structure of the three-body propaga-
tor D for real momenta. Notation as in Fig. 18. (b) The
same for both momentum contours (p and p') rotated by an
angle of 0 = 12 . The shaded area shows the region of the
second sheet we can explore. (c) Both momentum contours
rotated by an angle of 0 = 31 . The shaded area shows the
region of the third sheet we can investigate.
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