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Color transparency and Dirac-based spin effects in (e, e'p) reactions
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Color transparency (CT) in high momentum transfer (e, e'p) and (e, e'p) reactions is explored.
The vector nature of the photon and the spin of the proton and photon are treated explicitly by
describing the initial bound proton and the ejected wave packet as four-component Dirac spinors.
Such e6'eets, ignored in previous calculations, yield several results: (1) The use of Dirac-based
optical potentials in the "standard calculation" (ignoring CT) leads to smaller cross sections than
predicted before. (2) The normal component of the ejectile polarization, which vanishes in the limit

of full CT, is found to approach zero very slowly as the energy increases. (3) Due to the presence
of the 10qq/2 orbital, a measurement of the normal-transverse response in Pb could afford the
opportunity to see CT at quite low momentum transfers 1 GeV/c. (4) The four-component nature
of our formalism allows us to determine that our calculations are roughly consistent with current
conservation, except when the momentum of the struck nucleon is greater than about 150 MeV/c.

PACS number(s): 12.38.Aw, 13.60.—r, 13.85.—t, 24.85.+p

I. INTRODUCTION

Color transparency (CT) is the postulated [1,2] ab-
sence of final- (or initial-) state interactions caused by
the cancellation of color fields of a system of quarks and
gluons with small spatial separation. For example, sup-
pose an electron impinges on a nucleus knocking out a
proton at high momentum transfer. The consequence of
color transparency is that there is no exponential loss of
Bux as the. ejected particle propagates through the nu-

cleus. We restrict our attention to processes for which
the fundamental reaction is quasielastic. This requires
that the nuclear excitation energy be known well enough
to ensure that no extra pions are created. This subject
is under active experimental investigation [3—7].

The existence of color transparency depends on (1) the
formation of a small-sized wave packet in a high momen-
tum transfer reaction, (2) the interaction between such
a small object and nucleons being suppressed (color neu-
trality or screening), and (3) the wave packet escaping the
nucleus while still small. That color neutrality (screen-
ing) causes the cross section of small-sized color singlet
configurations with hadrons to be small was found in
Refs. [8], and is reviewed in Refs. [9,10]. So we take item
(2) as given. The truth of item (1), for subasymptotic
energies, is an interesting issue, see Refs. [10—12]. Here
we shall be concerned with testing the assumption that
(1) holds.

It is reasonable to expect that the small object expands
as it moves through the nucleus [13,14]. For present ex-
periments [3—7] concerned with the onset of color trans-
parency, the value of transferred momentum Q2 is in-
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creased from a low value, where the expansion is rapid.
Thus the final-state interactions are suppressed but not
zero.

This paper is concerned with the quasielastic (e, e'p)
reaction scattering for Qz starting at about 1 GeV2/cz,
where the conventional distorted wave impulse approx-
imation (DWIA) is known to be valid, up to values of
about 10—20 GeVz/cz. The published calculations of
color transparency effects in this range seem to treat the
photon as a scalar object and ignore the spin of the out-
going proton. Thus we use the full Lorentz structure of
the matrix element for the electroproduction of nucleons
from nuclei. What do we hope to gain by introducing this
complication'? It is necessary to check that predictions
with the new formalism are not much different than pre-
vious ones. Furthermore, the normal component of the
polarization of the ejected proton [in (e, e'g experiments]
vanishes in the limit where final-state interactions are ab-
sent [15]. Therefore, the spin-dependent observables may
provide a very sensitive measure of the effects of CT.
Most importantly, an experiment has been proposed and
approved, to be run at CEBAF [7], which will measure
the energy dependence of the unpolarized cross section
and the normal component of the ejected proton's po-
larization. It is desirable to have theoretical predictions
ready to be con&onted by the experimental results.

In a previous paper [16]a multiple-scattering series for
the interaction between the outgoing wave packet and the
nucleus was developed within the framework of Glauber
(eikonal) theory. The effects of CT were included by
treating the outgoing wave packet as a linear superpo-
sition of baryonic states. The present approach has the
same philosophy, but four-component Dirac spinors are
used for the scattering- and bound-state wave functions.

At medium energies, where there is no color trans-
parency, this "Dirac phenomenology" has been success-
fully applied to proton-nucleus interactions [17,18] and
quasielastic (e, e'p) reactions. In particular, the proton-
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nucleus analyzing powers, spin rotation functions, and
differential cross sections were successfully described.
Furthermore, Do Dang and Van Gai [19] showed that
this phenomenology may account for the suppression of
the longitudinal response function relative to the trans-
verse response observed in the (e, e'p) reaction. Apart
from effects of the composite nature of the nucleon, such
as CT, the (Dirac) impulse approximation should be even
better for the higher energies of interest here.

The organization of this paper is as follows. In Sec. II
we display standard forxnulas for the (e, e'p) cross section
and polarization in terms of the nuclear current matrix
element (NCME). This defines our notation. In Sec. III,
the NCME is computed using the Dirac impulse approx-
imation. Section III is generalized to include the effects
of CT by treating the outgoing wave packet as a lin-
ear superposition of (four-component) baryonic states in
Sec. IV. The approximation schemes of Ref. [16] are used
to evaluate the CT wave functions in Sec. V. In Sec. VI
we present numerical results for total cross section ratios,
differential unpolarized cross sections, differential normal
polarizations, individual nuclear response functions, cur-
rent conservation violations, Fermi motion, and the ef-

fects of the purely relativistic lower components. Section
VII contains a summary and some concluding comments.

We make no attempt to accurately include the effects of
short-range nucleon-nucleon correlations. The estimates
of the size of this effect range from about zero [20] to
50%%uo [21]. In any case, the correlations are a property
of the nuclear ground state so the effects are expected
to be independent of energy in the kinematic regime of
our interest. Therefore, we take the point of view that
while correlations may affect the overall magnitude of
our ratios, the Qz dependence of the observables is well

modeled by our formalism. We also neglect the pos-
sibility that the nucleon properties are much modified
in medium. A recent analysis of the Brookhaven Na-
tional Laboratory (BNL) (Ji, pp) experiment argues that
the hard proton-proton scattering may be reduced by a
factor of 2 due to the effects of the nuclear medium [22].
If so, the nucleon form factor could also be modified in a
similar way. Indeed, that very point is argued in Ref. [23)
where 10—15% effects are found. At present it is difficult
to understand the precise origin and size of such effects,
so we neglect them. We also make no attempt to com-
pletely review the CT literature.

The details and final results of the SLAC experi-
ment [6] are not now available, and it is important to
use the precise experimental acceptance in computing
observables. Thus we leave a detailed assessment of that
experiment to a future publication.

II. THE NUCLEAR CURRENT MATRIX
ELEMENT AND CROSS SECTION

We describe the spin-dependent formalism to make
clear the definitions and conventions [24] used in this pa-
per. Consider the (e, e'pQ process of bombarding a spin-0
nucleus with unpolarized electrons and detecting the po-
larization of the knocked out protons. The kinematics

P'8 pF qf PF

(M, O)

FIG. 1. Coordinate system used to describe the (e, e'N)
reaction.

are displayed in Fig. 1. We take the virtual photon to lie
along the Z direction, and the electron scattering plane
to be the Y-Z plane. The rest-kame polarization of the
outgoing proton is taken as along a direction sR. We use
the notation that a describes a unit vector in the direc-
tion of a. The upsidedown "hat" is used to distinguish
unit vectors from operators.

The scattering amplitude is defined as usual as

(2.1)

where j„ is the matrix element of the electron current
and J",- is the matrix element of the nuclear current

(NCME); it depends on the rest-frame spin projection
sR of the ejected proton. The sum is over all occupied
shells.

Since the electron current is well known (see, e.g. ,

Ref. [24]), the crucial quantity is the nuclear current ma-
trix element (NCME). We use the one-photon-exchange
approximation and the nuclear shell model to evaluate
the NCME:

(2 2)

where q is the four-vector of the virtual photon, and can
be determined solely from the electron kinematics. The
initial state of this knockout process is labeled by the shell
model state of a bound proton, n. The binding energy of
the nucleon in shell o. is small compared with the other
energy scales in the problem and is neglected. In the
final state, a proton moves with a momentum p, energy
E„= gpz + M~, and with rest-frame spin projection
s~, MN is the nucleon mass. The residual nucleus is an
o.-hole state, which is not detected, but which is assumed
to recoil with negligible kinetic energy. The initial and
final states are connected by a vector operator denoted as

TH(q) which describes the absorption of a virtual photon
on a proton in the nucleus. The overlap of the initial and
final nuclear states is imagined to be a single-particle
state of a nucleon bound in shell model state o..

Saha and collaborators [7] plan on measuring the dif-
ferential cross section and the normal component (to the
photonuclear scattering plane) of the proton polarization.
The differential cross section is given by
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d~g~dOg dOp

M~~p~ ( d~ l
2(2~)s I, dOg ) M „

x ) [M;„i'+[M;„[', (2.3)

where the sum is over all occupied shells, o.. The solid
angle dO~ = sin( d( dP refers to the ejected proton, while
the solid angle dOA. refers to the scattered electron. The
precise direction of the spin, here, does not matter as it
is summed over. It is also useful to consider the "total"
cross section, obtained by integrating over the solid angle
of the outgoing proton. This is very similar to the ob-
servables measured in Ref. [6]. More details are provided
in Ref. [24].

The normal component of the polarization vector is
deBned as

(RITN(V) IR') = e*'"~'(R —R') W'I'"(a), (3.1)

where

cause this nucleon is somewhat oK the energy shell, the
current operator, in general, can be expressed in terms of
scalar functions of the four-momenta multiplied by any
of 12 four-vectors [24]. Since the bound nucleon is only
slightly off shell (the binding energy is small), and any
other choice is only a guess, the current operator is cho-
sen to be that of the free nucleon. Thus, we deBne the
conBguration-space matrix elements, which are matrices
in the Dirac space, as

( d'~ ) M~~p] r d~ i
(del, dOI, dOp) 2(2m)s (dOI, ~) M„,

x) iM „-i —iM (2 4)

and Fi (q2) and F2(q2) are the usual Dirac and Pauli form
factors of the nucleon. We use the well-known dipole
parametrization for the electric and magnetic form fac-
tors, G@(q2) and GM(q2). Note that the po of Eq. (3.1)
enters to convert the standard ut into a u.

where the spin of the ejected proton is projected along
n = ~" which is normal to the photonuclear scatter-

/qxp/ ~

ing plane. For in-plane scattering, this is only component
of the polarization which is nonvanishing. Again, the sum
on n is over all occupied shells. The normal-transverse
response function RT, is of special interest here. This is
obtained f'rom (2.4) by keeping only the contributions of
the transverse components of the current, J",-„' (q), to
M - that appears in the sum over o,.

III. DWIA FORMALISM

The DWIA approximation to the matrix element of
Eq. (2.2) is specified by defining the single-particle
bound-state wave function, the electromagnetic current
operator, and the scattering wave function. We discuss
each of these.

A. Bound state

In earlier work, the ejected proton was taken as ini-
tially bound in a nonrelativistic one-particle shell model
state. Since the present formalism is spin dependent and
relativistic, it is necessary to look for a relativistic single-
particle shell model state which is a four-component
Dirac spinor. Here we use the Bnite nucleus mean Beld
model of Horowitz and Serot [25], which is an approxi-
mation to a quantum hadrodynamics (QHD) Lagrangian.
Our opinion is that QHD is not a fundamental field the-
ory. However, its mean Beld approximation yields real-
istic nuclear densities and four-component bound-state
wave functions.

B. Current operator

The vector current operator represents the absorption
of a virtual photon by a nucleon bound in a nucleus. Be-

C. Optical potential and distorted wave

We have chosen the bound-state proton wave function
to be a relativistic four-component object, and the cur-
rent operator to be a 4 x 4 matrix. Thus the proton
wave is also chosen as a Dirac spinor, obtained by solv-
ing a suitable one-particle wave equation.

Treating the Dirac equation as a one-particle equation
is problematic. However, the difBculties can be iden-
tified (see, e.g. , Sec. 2 of Ref. [26].) Here we are in-
terested in the scattering energy eigenstates of an inter-
acting Dirac Hamiltonian. Such eigenstates propagate
with no transitions to the negative energy states, so in-
terpreting the Dirac equation as a governing equation
of a single-particle relativistic quantum mechanics is al-
lowed. We stress that we are using the Dirac impuluse
equation as a phenomenological tool, which is consistent
with much medium energy data. At higher energies the
impulse approximation is expected to be even better.

The complex potentials that appear in the Dirac equa-
tion are a Lorentz scalar V, and a time component of a
four-vector, V„. In the relativistic (forward scattering)
impulse approximation, the scalar and vector optical po-
tentials, V, and V„, are proportional to forward Dirac
scalar and Dirac vector scattering amplitudes (F, , Fo)
and to the scalar and vector nuclear densities [18,27] (p„
p„), such that

V, (R) = r F, p, (R) and V„(R) = r F„p„(R), (3.3)

and r = —4vripi b/M~ is a kinematical factor. The quan-
tities p, (R) and p„(B) are those of the QHD mean field
model discussed above. The ranges of the interactions
are taken as small compared to the nuclear size and are
neglected.

The quantities E, and F„are obtained &om NN scat-
tering data [28—31]. The Appendix shows how we de-
termine the values of I", and I" . Since the strengths
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depend on the energy-dependent NN scattering data,
we consider our calculations reliable only at the energies
where sufhcient data exist to determine F, and F . The
results are displayed in Table I. It is useful, when exam-
ining the table, to recall that M~V, (R) +EV„(R),where
E = gp2+ M~, enters in the Dirac equation. Thus at
high energies the vector potential is the important quan-
tity and the optical potentials of Table I are as absorptive
as the usual optical potentials. The last two columns of
Table I show the potential strengths in MeV, where we
use po

——0.166 fm s. We also note that each of V, (R)
and V, (R) have a significant real part, even when the
real part of the forward scattering amplitude is small.

The Dirac equation for the distorted wave is given by

H4';„(R) = —zn V+ P [M~+ V, (R)]

+V„(R) 4 '+,-'„(R)

(3.4)

U, (R)=

IV. COLOR TRANSPARENCY

U, (R) = 2EV„(R) + 2M~V, (R)
+V, (R) —V„(R), (3.7)

E+ M~+ V, (R) —V„(R)

x — (V„(R) —V, (R)) . (3.8)
1 0

Finally, we note one other complication. The eikonal
wave function presented in Eq. (3.5) takes the particle to
travel along the Z axis (direction of the virtual photon).
At very high energies, the di8'erence between p and Z is
small and should be inconsequential. However, assuming
that p = Z leads to the result that the response function
Rz~ vanishes. But RTT is not zero, as can be checked
by considering the plane-wave limit. Thus we account for
the difference between p and Z in our calculations. See
Ref. [33] for details.

This equation is solved by separation into two coupled
first-order differential equations. The eikonal form of the
solution to this equation is well known [32] and is given
by

—'cr V
E+M~+V, (R)—V„(R)

O'PZ

Z

x exp dZ'0 B,Z' y;„, 3.5

where R:—8+ ZZ,

R p = pZ, and B . p = G. Also note that we have
used outgoing boundary conditions and changed the sign
of the rest-frame spin projection, as in Eq. (2.2). The
norma1ization is JV = g(E+ MN)/(2M~). The Dirac
scalar and vector potentials have been eliminated in favor
of new central (U ) and spin-orbit (U, ) potentials:

P(B, Z') = {U,(B,Z')

yU.,(B, Z') [rr B x p —~'pZ']), (6.6)

Color transparency occurs in the (e, e'p) reaction when
a small-sized wave packet, produced by the absorption of
a photon, leaves the nucleus without interacting. Our
approach to including CT is to treat the outgoing wave
packet as a linear superposition of baryonic states.

The CT scattering matrix element with spin along sR
;„ is given by

(4.1)

where g", is the nuclear current matrix element includ-
ing the eR'ects of CT. The triple difFerential cross section
is given by Eq. (2.3), with the replacement of M;„by

;R. Similarly, the polarization including CT is given
by Eq. (2.4) with the same replacement. Let us now
compute g",-„. We follow the method in Ref. [16] and
write

(4.2)

Here, ~@N p;„)(+) is a column vector representing a
linear superposition of baryons, with each element de-
pending on the nuclear coordinate R. The subscript
on 4 denotes the boundary condition that ultimately
a nucleon N moving with momentum p and rest-kame
spin along —s~ is detected. The overlap of this state

TABLE I. Energy-dependent strengths of optical potentials. Q is in GeV and p( b is in GeV.
r = —4zrzp)~b/M)v.

Qz

0.96
1.88
2.38
3.25
4.14
5.96
9.65

20.86

P16,b

1.1
1.7
2.0
2.5
3.0
4.0
6.0

12.0

r F.' (fm')
—9.566+ 1.768i
—9.550+ 3.748i

—10.46 + 4.219i
—7.243+ 4.047i

—10.75 + 6.735i
—7.091+ 2.147i
—7.681+ 2.398i
—7.631+10.73 i

r F„(fm )
5.720—2.291 i
4.970—3.895 i
4.912—3.936 i
3.396—3.573 i
3.836—4.124i
2.155—2.540 i
1.831—2.380i
1.168—2.809 i

pp r F, (MeV)
—313.3+ 57.91i
—312.8+122.8 i
—342.6+138.2 i
—237.3+132.6 i
—352.0+220.6 i
—232.3+ 70.33i
—251.6+ 78.56i
—250.0+351.4 i

po r F(lVI e)V

187.4 —75.05 i
162.8 —127.6 i
160.9 —128.9i
111.2 —117.0 i
125.6 —135.1 i
70.59—83.20 i
59.98—77.96 i
38.27—92.03 i
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with the nuclear position state (R~ gives a vector in the
baryonic space, which we identify with boldface type:
(R]%'iv z,-„)~+l = 2I)'~,- (R). The operator Tg (q)
acts on the quarks; we squall evaluate its matrix elements
in baryonic states. The state (N, a~ is the same relativis-
tic bound-state proton wave function as in the DWIA
calculations, Eq. (4.2).

A. Current operator

r" (q) =F',„(q')~~+ M F2„(q')~ "q„. (4.4)
N

Thus the ejectile is a coherent superposition of an infi-
nite number of states m, with amplitude proportional to
I'iv (q). These amplitudes can be related to deep inelas-
tic structure functions [34]. A comparison between the
present method and that of Ref. [34] is given in Sec. V A.

B. Optical potential

We now consider the optical potentials V, (R) and
V„(R) which represent the interaction between the wave
packet and the nucleus. These optical potentials are es-
sentially products of the baryon-nucleon scattering am-
plitude operator f,~„l(b2) with p, ~„l. At present, there
is no detailed knowledge about the precise form for

f,~„l(b2). However, some general properties are known.
For small wave packets with b (& b~ with bH

(N]b2~N), f,~„l should vanish. Interactions do occur for
larger wave packets. For nonzero but still small-sized
wave packets, the interaction goes like

lim f,(„)(b ) m
b

b~ -+0 H
(4.5)

The operators f,~„l are normalized such that

f,(„)(6 = 0) = 0,

(N]f, ( )(b )~N) = 1.
(4.6)

(4.7)

The matrix elements of the scalar and vector operators
can then be written as

Upon absorption of a high-energy photon, the proton
is converted into a coherent superposition of an infinite
number of baryon states (a wave packet). We label the
individual components by a discrete quantum number,
m, for simplicity of notation. Then, we identify the rele-
vant inelastic transition Dirac and Pauli form factors by
taking the matrix elements of the current operator to be

(N, R~T&(q)]m, R') = e'~' b (R —R') p I'& (q),

(4.3)

where

To simplify the notation, we define the quantity

V, ( ) (R)f, ( ) (b ) = V,(„)(R).
In practice, we use the same f (b ) for both the scalar

and vector potentials: f(b2) = f„(bz) = f, (b2). There
is no information available at present on possible differ-
ences. However, an explicit evaluation of the two-gluon
exchange in perturbative QCD leads to a purely vector
potential [35]. We have shown in Sec. III that the vector
potential is also dominant in our phenomenology. Thus
the results we present are not sensitive to the choice of

f, (b2) for the scalar potentials.

C. Distorted wave

In this section we obtain the wave equation for the
propagation of the wave packet formed in the hard col-
lision through the nucleus. Start by considering the
time-independent Dirac equation. The equivalent Dirac
Hamiltonian should now be considered an operator in the
quark space. Thus the wave equation is

RC ~i+, (R) = —in V+(2 (M + V, (R))

+V„(R) 4'lN+l,-„(R)
= E@~~+l,„(R), (4.9)

where E is the energy and we have already taken the
matrix element in the external configuration space. That
is, @~,- (R) = (R~4'N &,-„)~+l. In this notation, M2

is the baryon mass operator squared: M ~m) = M ]m).
The nucleon is the ground state with m = N having
eigenvalue M~2. The combination

p =E —M (4.10)

U(R) = 2RV„(R) i,(M, V. (R)) i M, V„(R)

+V.'(R) —V„'(B), (4.11)

U. (R) = — (V„(R) —V.(R))
n

x E+M+V R —V R, 412

is also a quark space operator which can be interpreted as
the baryon momentum operator squared. This operator
accounts for the different kinematics with which the wave
packet components propagate through the nucleus. Here
p is also a three-vector in the Z direction; p = pZ.

The Dirac equation can again be solved by eliminating
the lower components. Then we see that the CT scalar
and vector Dirac potentials (which are operators in the
internal space) can be eliminated in favor of combinations
given by

(m, R]V,~„l~m', R') = h' (R —R')V, ~~l(R)

x(m~ f,(„)(b )]m'). (4.8)

where the square (curly) brackets are the (anticommuta-
tor) commutator symbols. We also define "path-evolved"
versions of the operators of Eqs. (4.11) and (4.12) as
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M, (, )(R) = e '~ U, (, )(R)e'" (4.13)

We solve the Dirac equation in the eikonal approxima-
tion so that the solution to the resulting eikonal first-
order equation is a path-ordered exponential. The nota-
tion is simplified by defining an operator 0 such that

Note that [O(R), A(R')] g 0 since p and b do not corn-

mute. This is because p contains M2, and [M2, f(b2)] g
0.

We note that the eikonal approximation is valid when
the potentials are small compared to the momentum p;

I

O(B, Z') = . M, (B,Z')2' .
+U, (B,Z') (cr B x p —ipZ') . (4.14)

W

terms of order V2/p2 are ignored. Thus we may make the

replacement [E + M + V, (R) —V„(R)] [E + M]
in Eq. (4.12). In performing the calculations, one also
encounters terms like p/p2 and (E+ MN)/(E+ M2 ).
We set such terms to unity. The errors introduced by
using these approximations are very small.

Next we use the wave function of Eq. (4.9) to write the
NCME of Eq. (4.2) as

Z".-„(q) = j d RO (R) e '~'

x ) I'~z (q) @CT, (R, m), (4.15)

where I'" = po [I'"]tpo; the nucleon current operator is

defined in Eq. (3.1). The quantity FACT,- (R, m) is
mth component of the outgoing state sucji that

. (R, m) =A'(mI;~. p(+)

E+M+V'(R) V„(R) —)

Z
e'~ %exp f dZ B(B,'Z') ~N)y (4.16)

where we have taken the momentum of the outgoing wave
packet to lie along the Z direction in Eq. (4.16) but not
in the calculations. Above, 'P is the path-ordering sym-
bol. The effects of CT effects can be seen by comparing
this expression with Eq. (3.5). We have projected the
column vector 4' on to the nucleon state to be detected,
and could also project on to a nucleonic isobar to obtain
the isobar production amplitude. The inelastic nucleon
current operator, I'~, is defined in Eq. (4.4).

The expression for the CT wave function, shown in
Eq. (4.16), is the central formal result of this paper.

At this stage, we may proceed to make the expansions
and approximations, as in Ref. [16],which allow a numer-
ical evaluation of the CT wave function, Eq. (4.16), the
NCME, Eq. (4.15), and ultimately of the (e, e'p) cross
section and polarization. The definitions of these ap-
proximations are only slight generalizations of those in
Ref. [16]. We find that neglecting the path ordering is a
good approximation; see Ref. [33].

V. MODELS

The formalism described above can be used to com-
pute color transparency effects for any choice of baryon
spectrum and function f (b ). An earlier calculation [34]
showed how such choices could be avoided by treating
the expansion of the wave packet in terms of measured
diffractive dissociation and deep inelastic scattering cross
sections. But the spin dependence was not extracted in
Ref. [34]. Thus we must model the spectrum and inter-
action.

f(wb) = wb/b

as in Eq. (4.5). Further, we choose the internal bary-
onic states to be described by the full spectrum of a
two-dimensional transverse harmonic oscillator. For in-
teractions of the form f (62), the use of three-dimensional
oscillators leads to the same results as those of the two-
dimensional case. We calculate transparencies for bH ——

1 fm and for two different values of the oscillator spac-
ing: M2 —M~ ——1.19GeV and M2 —MN ——2.36GeV .
These simple choices reasonably represent the present
(lack of detailed) knowledge of f (b2) and the baryon wave
functions.

One may compare the present model with that of
Ref. [34]. The first step is to compare the results of
Ref. [34] with earlier work using the harmonic oscilla-
tor basis [14]. This shows that the present model for
expansion corresponds to using the realistic inputs if one
employs the low value of M2 for Q smaller than about
5 GeV2 and the high value of M22 for larger values of
Q2. This is if one uses the "power law" form of Ref. [34].
The results of using the "sharp cutoff" form are similar
to using M2 ——1.4 GeV. This means that one can obtain
the essential features of the realistic matrix elements by
choosing appropriate values of M~.

B. Zero size

We also assume that the hard interaction forms a
pointlike configuration. Then,

A. Vi7ave-packet —nucleon interaction and quark space
(&ITrr(q) = ) I'~ (q)(rriI

m

= &"(q)(b = 0I

(5.2)

(5 3)
To proceed further we need specific forms for f and

the states Im). We choose the interaction to be where I'~ (q) is defined in Eq. (4.4). Using the speci-
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fied two-dimensional harmonic oscillator model of baryon
wave functions, the elastic and inelastic form factors are
equal.

Assuming the size of the initial wave packet to be
Q(1/Q), instead of zero size, introduces only small nu-
merical corrections to the results shown below. This is
because of the effects of wave-packet expansion; the zero-
size system expands quickly to a small size O(1/Q).

VI. NUMERICAL RESULTS
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0.5
0

0.4
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It is simple to obtain explicit evaluations of Eq. (4.16)
within the various approximation schemes described in
Ref. [16]. The results are lengthy, and can be found in
Ref. [33]. Here we display results obtained using the wave
function of Eq. (4.16), neglecting the path ordering. The
validity of this approximation, called the "exponential
approximation" (EA), has been carefully examined and
shown to be accurate in Ref. [16] and in Ref. [33].

With explicit expressions for the wave functions in
hand, we use Eq. (4.15) and its DWIA limit to calculate
the nuclear current matrix element, &om which we can
construct all of the observables. The kinematics are sum-
marized in Table II. These kinematics are closely related
to, but are not exactly those of the experiments [6,7].
This is because our optical potential strengths are only
known at energies where previous &ee NN data have
been taken. Predictions for the upcoming experiments
can be readily obtained using simple interpolations. For
all of our calculations, we take the angle P = z/2 and
consider only in-plane scattering. The quantities E, and
8, denote the initial electron energy and the electron scat-
tering angle.

A. Integrated difFerential cross sections

TABLE II. Calculational kinematics.

(GeV )
0.96
1.88
2.38
3.25
4.14
5.96
5.96
5.96
9.65

20.86

(GeV)
4.0
4.0
4.0
4.0
4.0
4.0
6.0

11.0
15.0
21.0

(deg)
15.1
22.8
27.0
34.8
44.6
84.5
34.5
22.7
14.7
18.2

der
dO~) )

(nb)
1091
203.0
103.6
36.90
13.40
0.8865

17.07
140.7
85.35
18.24

Consider the angular integral, o, of the (e, e'p) cross
section of Eq. (2.3). The ratio o /o B ', where the "Born"
refers to using a Dirac plane wave for the outgoing pro-
ton, is of interest because it is unity in the limit of com-
plete color transparency. These ratios are displayed in
Fig. 2 for i2C, 4eCa, and 2osPb. The solid curves (circles)
are the DWIA cross sections, divided by the respective

05 I I

0.4

0.3
(C) 20SPb

I I I I I I
I 1 I I I I

0.2

oi
1

I I I I I I I

5 10

Q (GeV2/c2)

FIG. 2. Total cross section ratios for (a) C, (b) Ca, and

(c) Pb. The solid line (circles) is DWIA, the dot-dashed
line (diamonds) includes CT, for Mg = 1.44 GeV, dashed
lines (boxes) have M2 ——1.80 GeV.

Born cross sections. The dot-dashed curves (diamonds)
denote the cross sections, including CT effects, for oscil-
lator spacings of EM = 1.19 GeV (M2 ——1.44 GeV).
The dashed curves show the cross section ratios, includ-
ing CT effects, for an excited state mass of M2 ——1.80
GeV. See Table II for the electron kinematics.

There are several noteworthy features about these
DWIA and CT results. The first is that the optical poten-
tial strengths, obtained &om &ee nucleon-nucleon scat-
tering data, naturally give a DWIA cross section ratio
which is large at Q2 = 1 GeV2 and decreases sharply
with energy before reaching an asymptotic value. This
can be understood by noting that the pp total cross sec-
tion is only 30 mb at this energy. Thus, we have here
an effect similar to the one of Frankfurt, Strikman, and
Zhalov [23]. The second dip in the cross section ratios
is more diKcult to understand but can be traced to the
existence of sizable real parts of the Dirac potentials.

Observe also that the DWIA ratios we obtain here
are smaller than the results of calculations using scalar
photons. For example, for i2C at 20 GeV /c2, our
DWIA value of o'/o ' is 0.50 as compared with 0.54
of Refs. [23,14,36] (using the same pp total cross section
of 40 mb). This modest effect is significant for experi-
ments seeking small color transparency effects. The dif-
ference between our calculations and the earlier ones is
essentially due to the radial dependence of the optical
potentials. Ours of Eq. (4.12) have larger values at the
origin than those that use the Woods-Saxon shape. The
difference may or may not be arti6cial; the conclusion
we draw is that the DWIA result is sensitive (at the 10%%uo

level) to details of the nuclear interior which are not yet
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determined from other experiments.
Next we discuss the color transparency effects. Re-

call that NE-18 took measurements at Q2 =1,3,5 and 6.8
GeV . With an excited state mass parameter of 1.44
GeV the cross section at Q2 = 3 GeV2 is the same as at
Q —1 GeV, although at Q2 5 and 7 GeV the cross
section rises rapidly with energy. This equality of the re-
sults at Q = 1 GeV with those of Q = 3 GeV, which
simulates the effects of no color transparency, arises from
the energy dependence of the nucleon-nucleon scattering
data.

The onset of transparency to higher energies can be
postponed by simply increasing the value of the erst ex-
cited state mass, see the dashed curves. The suppression
of the transparency for an excited state mass of 1.80
GeV may be too great to agree with the SLAC data at
Q2 = 3 GeV2. Thus, it seems that an oscillator spacing
such that M2 1.6 GeV would give a cross section ratio
which would appear to be Q2 independent if one only
looked at Q2 = 1, 3, 5, 6.8 GeV2.

Apart from the energy dependence of the nucleon-
nucleon scattering data, the effects of including color
transparency are qualitatively similar to the earlier re-
sults of Refs. [14,16]. It is natural that the amount of
color transparency depends on the precise value of M2.
As noted above, the work of Ref. [34] indicates that values
between 1.4 and 1.8 GeV are allowed. A clear indication
of color transparency is needed to determine this num-
ber. We note that a value of about 1.7 GeV or so allows
one to reproduce to BNL (p, pp) data [37].

That the SLAC experiment has seen CT is possible,
given the energy dependence of the elementary pp cross
section and the optical potential strengths. However, be-
fore one can be absolutely sure, it is desirable to take
more data points and see what happens at, say, Q2 —2
GeV2. It would also be nice to increase Q2 and really see
a dramatic rise in the ratio cr/o

B. DifFerential cross sections and norma1
polarizations

The upcoming CEBAF experiment [7] was proposed to
test the prediction that the normal polarization should
vanish in the limit of complete color transparency. The
i2C differential cross sections (as a function of the trans-
verse momentum) and the normal polarizations, to be
measured, are displayed in Fig. 3 for low and high values
of Q2. The results for other values of Q and for Ca and
20sPb are presented in Ref. [33]. The figures are labeled
by E, , the initial energy of the incident electron. Differ-
ent values of E, affect only the electron kinematics that
are part of ~M;„~ . These are the first detailed pre-
dictions of these angular observables which include the
effects of CT.

Figure 3 clearly displays the shell structure of the C
nucleus. For instance, C has four p-shell protons and
only two s-shell ones. The wave functions for the 8-shell
nucleons peak at the origin, of course, while the p-shell
ones have a node there. This is why the cross section for

C has a maximum at about q~ 0.5 fm . Similarly,
the shell structure for Ca and Pb can be discerned
from the figures in Ref. [33].

Our predictions are that the energies proposed in the
experiments are not high enough to see the normal polar-
ization vanish. CT effects strong enough to enhance the
total cross section by 40% (high mass case) do not lead
to a strong suppression of the normal polarization. How-
ever, in C there is a measurable suppression of the po-
larization for the CT-included case of light excited state
mass (M2 = 1.44 GeV). A detailed comparison with the
SLAC NE-18 results would be necessary to see if using
the light excited state mass is still viable. In Ca and

Pb there is only a small suppression of the normal
polarization even at Q2 = 20 GeV2.

Thus, it seems that the normal polarization is a difB-
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FIG. 3. Differential unpolarized cross sec-
tion and normal polarization for C at
Q = 0.96 GeV and at Q = 20.86 GeV .
The curves are as in Fig. 2.
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cult quantity in which to observe CT efFects. However, a
precise experiment could be successful.

C. The normal-transverse response of ~ SPb

I I I I I I I I I I I I I I I I

0.10

208pb . Q2 /c'

The total differential cross sections and normal po-
larizations are constructed &om kinematically weighted
sums of bilinear combinations of the components of
g",-g";-, where s is some spin direction. These compo-
nents are sometimes called "response functions" [24]. We
have shown how to calculate a CT-included wave function
which allows a construction of the nuclear current matrix
element. Once done, it is simple to explicitly construct
all of these individual components or response functions.
Since these quantities are more difficult to measure than
total angular distributions, and Saha is not planning on
doing so, we omit most of these results. However, these
response functions, for a number of values of Q2 and
for our three nuclei ( zC, Ca, Pb), have been com-
puted [33] and are available on request.

We do show one striking feature which has emerged
&om our systematic study of the response functions. In
lead, there is strong absorption and the effects of CT do
not manifest themselves until very high energies, mak-

ing the experimental verification of CT in lead unlikely
if one looks only at unpolarized observables. However, in
one of the spin-dependent responses, we see something
quite different and quite interesting. In Fig. 4 we display
the quantity Rr as a function of q~. RT is called the
"normal-transverse response" since it depends on spin
asymmetries normal to the photonuclear scattering plane
(along the X axis here) of bilinear products of the trans-
verse components of the current; see Eq. (2.4) and the
discussion below. Looking at Fig. 4, we see that for both
light and heavy excited state mass cases there is a huge
enhancement in the region of q~ —0.4—1.5 fm . That
is, a ratio of CT response to DWIA response ranges all
the way &om zero to infinity over this angular range.

We note that R& vanishes when the plane-wave ap-

proximation is valid, so that one may wonder if this
"large" value of RT, is a CT effect at all. A close examina-

tion, which we now explain, shows that it is. Obtaining
a nonzero value of R& depends on having an interfer-
ence between a central and spin-orbit interaction. The
spin-orbit interaction can occur in the bound state or the
ejectile state. The bound-state spin-orbit force is partic-
ularly large in the 1Hqqy2 orbital. For this orbital, the in-

terference between a strong bound-state spin-orbit effect
and a reduced central final-state interaction produces the
computed CT results. With the effects of CT reducing
both central and spin-orbit interactions in the scatter-
ing state, the other orbitals produce very little effect in
RT",. This is because the bound-state spin-orbit forces are
smaller for other orbitals and the contributions &om or-
bits with j = t + 1/2 tend to cancel those &om orbits of
j = l —1/2. Thus, when CT is included, it is the 1Hqq~z
orbital that is almost entirely responsible for the value of
RT in the region of p& 0.4 —1.5 fm . For the DWIA,
there is no suppression of central and spin-orbit forces in
the scattering state. In DWIA, the contribution to RT,
&om the 1Hqq~2 orbital is very similar to that obtained
including CT efFects. The reason is that this orbital is
at the edge of the nucleus where distortion efFects are
reduced. However, for the DWIA calculation, the other
orbitals, taken together, contribute equally in magnitude
(to the 1H~&~z) but opposite in sign. This is because
the spin-orbit force is repulsive for the scattering wave,
but is attractive for the bound state. Also, the sum of
contributions from states with j = t + 1/2 is negative in
this angular range, due to the differences in the radial
parts of the bound-state wave functions. The net result
is the nearly complete cancellation observed in Fig. 4. A
cancellation of this type occurs in all DWIA models.

Thus a detected value of RT. of the size shown, could
be an unambiguous signature of CT. This enhancement
begins at momentum transfers as low as Q2 —2 GeV2

and continues to the highest energies. However, the sepa-
ration of this response function &om the total normal po-
larization may be difficult. In fact, our predictions for R&
and for the other response functions [33] indicate that the
transverse-normal response only contributes about one
part in 20 to the polarization. The predictions presented
here, however, indicate that attempting this separation
may be worthwhile.

D. Gauge invariance and current conservation

0.00

-0.05 —
/ ) )

0.5 1 1.5

q~ (fm ')

FIG. 4. Normal-transverse response function for Pb at
q = 3.25 GeV . The curves are as in Fig. 2.

Computations of the nuclear current matrix element
(NCME) should be consistent with the requirements of
of gauge invariance and current conservation (CC). Pre-
vious calculations of CT efFects in (e, e'y) reactions seem
to use a scalar photon; no information about the individ-
ual components of the current four-vector appears. The
present relativistic calculation gives us an opportunity to
study these components and see if CC holds.

It is well known that DWIA calculations of this type
may sufFer &om a lack of CC. This is due to the trun-
cation of a problem involving many nucleons into a one-
nucleon problem. Indeed, CC can be recovered by gen-
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FIG. 6. EfFect of Fermi motion.

the cross section at k~~ divided by the Born cross section
at that same value of k~~, except for the Born curve, which
is the cross section at k~~ divided by the Born cross section
at k~~

——0. At low energies, the efFect of 6nite k~~ is pretty
small on the cross section ratios, about 20%. At high en-
ergies, the effect is quite large for the CT cases, although
still a small effect for the DWIA. However, nonzero val-
ues for k~~ lead to a large reduction, over a factor of 2, in
the Born cross section at low and high energies.

Another result from these calculations is shown in the
measure of CCV. In particular, we see that as k~~ moves
away from zero, current conservation is violated more and
more, reaching the 40'%%uc level for ~k~~~

= 150 MeV/c, at
Q = 0.96 GeV . At higher Q2, the situation improves
so that the violations are at the 5% level. Clearly, viola-
tions of 40% or more are intolerable and our calculation
probably cannot be trusted there. We display these re-
sults only because we expect this problem to occur also
in the scalar photon work of [40,41] who have advocated
measurements at ~k~~ ~

= 150 MeV/c to enhance the ef-
fects of color transparency.

Violations of 5'%%uc probably do not affect the physics
too much. Thus, there is no problem in trusting our
calculation at high Q or at small values of kI.

The most important cause of CCV in our calculation is
probably coming Rom the lack of orthogonality between
the initial-state and 6nal-state wave functions, caused by
the truncation of a many-body problem to a one-body
problem. Indeed, we have left out efFects in the initial
state, such as particle-hole excitations as well as explicit
isobar degrees of freedom which can alter the nucleon-
nucleon force. Also, we have ignored the possibilities
that the nucleons are altered in the xnedium and that the
current operator might not be a &ee-nucleon operator.
Another possibility is to express the observables in terxns
of the "good" components of the current as advocated by
Frankfurt and Strikman [42]. A more careful treatment
of soxne of these effects could lead to improvements in the
gauge invariance of our models.

F. Lower components

We examine the effects of the lower components by ar-
tificially setting these to zero in the scattered wave func-
tion. The results for the integrated cross section ratios
are shown in Fig. 7(a). The solid and dot-dashed curves
are calculated using the DWIA and CT wave functions
with the lower components turned off, divided by the
Born calculation also with no lower components. The
dotted curve in Fig. 7 is the ratio of the Born calculation
with no lower components to the Born calculation with
lower components. The figure shows a striking effect:
the lower components are not significant in the predicted
cross section ratios. This is actually quite amazing since
the Born calculation changes so much when the lower
components are turned off.

However, we point out that these lower components are
crucial to the approximate satisfaction of current conser-
vation, see Fig. 7(b). We conclude that the lower compo-
nents are essential to our description of the ejectile wave
function. Without these inherently relativistic compo-
nents we would lose approximate current conservation,
although the integrated cross section ratios remain un-
changed. A more complete discussion of the role of the
lower components in both the scattered and bound states
is described in Ref. [33].

VII. SUMMARY AND CONCLUSIONS

This paper is concerned with explicitly including the
effects of proton and photon spin in quasielastic (e, e'p)
and (e, e'p) reactions at large momentum transfers. If
CT occurs, a rapidly moving small-sized wave packet is
formed when the photon is absorbed by a bound proton.
The main motivation for including the effects of spin is
the proposal by Saha and collaborators [7] who plan to
xneasure the normal component of the proton polariza-
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lower components. (b) Current conservation
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tion P„ in (e, e p) experiments. The vanishing of P„ is a
signature of color transparency. Further, the photon re-
ally is a vector particle and its spin should play some role
in the scattering. Dirac phenomenology is used to con-
struct the DWIA and, the effects of CT are included by
treating the ejected wave packet as a linear superposition
of four-component states. The principal formal result is
the wave function of Eq. (4.16).

CT eKects are expected to be present in other reac-
tions such as (p, pp), (m, harp), etc The w. ave function in
Eq. (4.16) can also be used to study those reactions.

In our approach to CT, it is necessary to choose an ex-
plicit form for the wave-packet —nucleon interaction. We
choose Eq. (5.1) which is consistent with the known con-
straints. It is also necessary to assume a model for the
baryon spectrum. We use that of a two-dimensional
transverse harmonic oscillator. With this choice comes a
single free parameter, the oscillator spacing, which deter-
mines the masses of the nucleon resonances. This spacing
is characterized by the mass of the first even parity ex-
cited state, labeled by M~ or M2. Here we use the
values M2 ——1.44 GeV and M2 ——1.80 GeV, which the
reader may use to reconstruct the more realistic spectrum
of Ref. [34].

Although we use simplified models for the wave-
packet —nucleon interaction and the internal baryon
space, the methods of calculation presented in this pa-
per are more general and can be used with more realistic
interactions and models.

We calculate ratio of cross sections for C, Ca, and
2 spb as a function of Q2. We use the cross section and
other optical potential strengths derived directly &om
data taken at different energies. The result is that we
confirm the assertion of Frankfurt, Strikman, and Zhalov,

that energy dependence in o/o' '" is expected. This
is because the pp cross section, in the energies of the
experiment [6], varies in such a way that the Glauber
treatment decreases the transparency ratio. Therefore,
since the preliminary results of the experiment see a small
variation in the ratio as a function of Q2, CT efFects may
be ofFsetting the Q2 variation predicted by the DWlA.
Furthermore, we find that the Dirac DWIA calculations
lead to predictions of o/o + some 10% smaller than earlier
DWIA calculations. This is because the shell model leads
to slightly larger optical potentials near the center of the
nucleus, where they are not well constrained by data.

We also compute the spin observables. We display re-
sults for difFerential cross sections and normal polariza-
tions. The difFerential cross sections display a noticeable,
and detectable, increase at large momentum transfers.
This is responsible for the CT effects in the integrated
cross section ratios described above. However, our cal-
culations of P„show no signi6cant deviations from the
usual Glauber treatment. A possible exception is for

Q 20 GeV where in C a moderate decrease of the
polarization is obtained for case of M2 ——1.44 GeV but
not for M2 ——1.8 GeV. We conclude that the energies at
which the normal polarization should completely vanish
are, unfortunately, quite high, in the vicinity of Q2=100
GeV . Frankfurt, Strikman, and Zhalov have obtained a
similar result [43].

We also calculate the individual separated response
functions. In particular, we find that CT effects lead
to a strong enhancement of the computed value of the
normal-transverse response RP for ~q~~ = 0.5 —1 fm
with Q~ ) 2 GeV . That this is due to the strong effects
of the 1H&z/2 orbital is explained in Sec. VI.

A typical possible problem with calculations of this
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sort is the lack of current conservation CC. We show that
the violations of CC are at the 10% level for the DWIA
and only at the 4% level for the CT wave functions at
low energies, but are all at the 1—2 % level at the high-
est energies, Q 20 GeV . Inclusion of CT effects is
therefore desirable, even at low energies, because it im-
proves the consistency with the requirements of CC. We
also argue that a 10% violation of CC corresponds to a
smaller uncertainty in the observables which depend also
on transverse components of the current which are not
constrained by CC. Thus CC is conserved to a sufFiciently
high accuracy.

We also study the effects of Fermi motion of the initial
nucleon, which can have a big effect on the cross section
ratios if the "initial nucleon momentum" is along the di-
rection of q [40,41]. Indeed, for values of k~~ &150 MeV/c,
which is this component, the violations of current conser-
vation become severe at low energies and our calculation
and probably others [40,41] cannot be trusted there. At
high energies, the violations of CC become smaller and
we find that the ratio o/OB '" increases rapidly as k~~

increases.
The efFects of the lower components on cross section

ratios, current conservation, polarization, etc. , are also
examined. We find that the total cross section ratios
are completely insensitive to the lower components of
the scattered wave functions. However, the lower com-
ponents are crucial, in our model, for the approximate
conservation of current.

In conclusion, we make the following short comments.
The recent SLAC data [6] imposes constraints on the al-
lowable models shown in this paper. Despite the lack
of significant Q variation in the data it is possible, be-
cause of the energy dependence of the elementary pp ob-
servables, and because our DWIA results for the cross
section ratios are smaller than earlier calculations, that
the data may be an example of the manifestation of CT.
A measurement of the normal polarization in (e, e'p) re-
actions does not seem to be a good way to see CT effects
at moderate Q2. However, a measurement of the normal
transverse response in a heavy nucleus such as Pb does
seem to afFord the opportunity to see CT, unambiguously,
at quite low momentum transfers.

1. Optical potential

Start with a standard parametrization of the nucleon-

nucleon scattering amplitude given by

= A+ Bo q
. o 2 + aqC (oq„+ (r2„)

2ik
+Do z

. q F2 . q + Eo.zoo.2z, (Al)

where k is the center-of-mass momentum and o = cr ~ a.
One can also parametrize the NN scattering amplitude
in a Lorentz invariant form in terms of Dirac matrices,

F = F. +++&g&2I +&~&g &2~~+Fjpg&2P pv 5 5

5 5 p
++a&&w2wg &21 . (A2)

U pt(R) = — F, p, (R) + p~F„p, (R), (A3)
N

where p~ b is the laboratory-kame momentum and the
superscript 0 here and below denotes that the forward
scattering amplitude is used.

In the forward scattering approximation, the relation-
ship between the Pauli and Dirac amplitudes can be writ-
ten as a matrix equation [27]. Since A, B,C, D, E are to
be taken from data, we invert this matrix to obtain the
scalar and vector density strengths &om the Pauli am-
plitudes. In particular,

((2(+ 1)A + (2$ —l)BF0
S

We are concerned with the case of elastic scattering of
protons from nuclei. In the relativistic impulse approxi-
mation, the T matrix for nucleon-nucleus scattering is a
sum of bound nucleon matrix elements of free nucleon-
nucleon t matrices proportional to F. In a spin saturated
nucleus, only the scalar, vector, and tensor terms are
nonvanishing. The coordinate space optical potential is
obtained by Fourier transforming the momentum space
potential. In the limit of very high energies, the scat-
tering is predominantly in the forward direction. Thus,
we can approximate F, (q) and F„(q) by their forward di-
rection values F, and F„, and neglect the tensor term.
Thus, we arrive at [18]
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APPENDIX: OPTICAL POTENTIAL
STRENGTHS

We describe how the strengths of the scalar and vector
optical potentials of Eq. (3.3) and Table I are obtained
&om protoa-protoa eIastic scattering data.

where ( = ~s/2M)v and the quantity Do no longer ap-
pears.

2. Extracting forward amplitudes from data

We extract the NN parameters A, B,C, E from
the data usiag two methods. La the first, receat ~hase
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shift solutions are used. The second involves a more di-
rect determination of the relevant amplitudes from data.

a. Forward amplitudea from Q~ = 1 —6 GeW

do

dt
—P„ppp ——87cq Im (A + B)C*,

4~q I, . q2—App, g = — Re (A*+ B') 1—
dt

'
k [

4k2

(A9)

Wallace has published [28] the Pauli amplitudes,
A, B,C,D, E for Hoshizaki's phase shift solutions
up to Q2 = 4 GeV2 [29]. Therefore, we construct the
optical potential strengths in this energy regime by us-

ing Eqs. (A4) and (A5) for Wallace's amplitudes.
At higher energies, we use the phase shift analysis of

Higuchi and Hoshizaki [30] for pp phase shifts at pi b = 4
GeV, which translates to Q2 = 5.96 GeV2, in order to
reconstruct the T matrix and extract the strengths as
outlined.

The phase shifts are only loosely constrained at these
energies and, different phase shift analyses yield differ-
ent values for the optical potential strengths. However,
our strengths are roughly consistent with those found in
Ref. [27].

2

+2j'c
~

1 —,
~

c' q'D —F ). (A10)2k') - -

J

pCR=
@o (~p„...

) + (~~....)q=p dq

87r Re (A + B ) Re [(A + B ) Ep*]

1

2kRe(A + B )
' (A11)

Notice that both P„ppp and App g vanish in the forward
direction (q = 0). Their slopes (as a function of q, not

t) a—t q = 0, however, are finite. Taking the derivatives
of Eqs. (A9) and (A10) with respect to q =

~q~
= g t-

and evaluating in the forward direction, it is possible to
solve for the real and imaginary parts of C in terms of
the spin data:

b Form. ard amplitudes at Q~ = 9 65 a.nd 20.86 GeV

A = —(1 —inf),p 0

8' (A6)

At higher energies, more and more partial waves are
required (and the data become more and more scarce)
so phase shift analyses become difficult. However, phase
shift analyses do exist [31] for (laboratory) beam rno-

menta of 6 GeV/c and 12 GeV/c; in quasielastic kine-
matics, these beam momenta translate to Q2 = 9.65 and
20.86 GeV . However, the lack of constraining data and
the problem that the high angular momentum partial
waves are not negligible and must be modeled leads us

away &om using phase shifts. However, we do take cer-
tain qualitative features &om these analyses; see below.
Further, the phase shift analyses do not emphasize the
forward direction observables over the other angles. In-
deed,

AI + BI p 1 f der l f'dP„ppp )
APz+Bz~ 8' g dt), p g dq )

(A12)

where x& and xi denote the real and imaginary parts of
the complex number z, evaluated in the forward direc-
tion. Thus, with these equations, and some good spin
data, we can extract the optical potential strengths di-

rectly &om data.
The experimental values for the ~, o.f, AcrL„Ao.T,

F2, and Fs are summarized in Ref. [31]. In order to com-

plete the analysis described above, we need information
on the slopes of P„ppp and App, p at small q. In Refs. [46]
the polarization P„ppp has been measured at p~ b ——6
GeV/c. Better than that, an empirical fit to the data is

given, which can be directly differentiated. By averaging
these two values &om the two references, we obtain the
result

p &&T .F,
—16' 4k ' (A7)

= 0.494 GeV for p~~b = 6 GeV jc.( dPvappp l —1

),=p

(A13)

Ao.L, . F3 p+i—16m 4k
(A8) TABLE III. Forward scattering data at pl b

——6 and 12
GeV/c.

where nf is the ratio of the real part to the imaginary
part of the forward scattering amplitude and k is the
center-of-mass momentum. The other imaginary parts
F2 and Fs are evaluated using dispersion relations [44].

Thus, the only required quantity not available directly
Rom the forward cross section da.ta. is the parameter C
However, this parameter can be obtained if enough data
on the spin observables at small —t are known. For in-
stance, in the four-index notation of Ref. [45], we can
write two of the spin observables as

tot

Berg

p)~b = 6 GeV/c
40.75 mb ny
0.35 mb F,

—1.04 mb I"3

93.0 mb ( ~g")
p~~b = 12 GeV/c

39.60 mb nf
0.01 mb I"2

—0.73 mb I"g

65 0 mb ( ""')

—0.32
—4.60 GeV

4.60 GeV
0.494 GeV

—0.29
—6.05 GeV

3.55 Gev-'
0.215 GeV
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TABLE IV. Pauli amplitudes for pp scattering.

(GeV )
0.96
1.88
2.38
3.25
4.14
5.96
9.65

20.86

(GeV )
3.08 —1.31 i
4.87+ 0.81 i
4.85 + 1.06i
4.70 + 1.86i
4.53+ 1.34 i
4.31 + 1.13i
4.16 + 1.33i
4.05+ 1.17i

BO

(GeV )
—0.22 + 1.21i
—0.23+ 1.03 i
—0.38 + 0.71i
—0.14+ 0.48 i
—0.05 + 0.47 i
—0.04+ 0.40 i
—0.02+ 0.19i
—0.00+ 0.13i

~0
(GeV )

—1.76 —6.55i
—3.13 —5.44 i
—3.11 —5.22 i
—2.81 —3.35i
—3.41 —3.95 i
—1.62 —2.13i
—1.34 —1.62i
—1.61 —0.87i

@0

(GeV )
0.69+ 0.02 i
0.82 —0.05i
0.81 + 0.16 i
0.29+ 0.16i
0.15 —0.01 i
0.12 —0.09i
0.07 —0.00 i
0.04 —0.05i

The uncertainty in this quantity is only about 3'%%up, see
Ref. [46]. At pi b = 12 GeV/c, the polarization has been
measured [47] and again an empirical fit is given. Thus,
differentiating this quantity directly we find that

t'dPnooo ~ = 0.215 GeV for pi b = 12 GeV/c.
dq

(A14)

To proceed, we now notice that the data for App, I,

at pi b = 4 GeV/c [30] shows that the slope of App k

(with q) is approximately zero. Indeed, explicit calcu-
lation based on Hoshizaki's phase shifts yield a slope of
0.014 GeV i, at Q2 = 4.14 GeVz. There are very little
data for App g at higher energies, yet the phase shift so-
lutions [31] also suggest that the slope of App k is very
small. Based on this evidence, we assume that

=0, (A15)),=o

at least for energies below pi b = 12 GeV/c.
Using the central values in the published data yields

optical potential strengths which are larger in magnitude
than the lower-energy values. However, by adjusting the
parameters within their experimental error bars, num-

bers in better agreement (more consistent) with the low-

energy data can be obtained. It is these numbers which
are summarized in Table I. There is therefore consid-
erable uncertainty in the last two rows of Table I. In
particular, the forward scattering data we use to gener-
ate the strengths are displayed in Table III.

The Pauli axnplitudes (Ao, Bo, etc.) are displayed
in Table IV. The most important of these parameters
are A, which contains the information about the for-
ward scattering amplitude, and the spin-Hip parameter
C which is determined &om the slopes of the forward
spin observables.
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