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Nuclear dependence of the Drell-Yan process in relativistic heavy ion collisions
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The EMC-type effects observed in lepton, hadron-nucleus collisions have revised the conventional
high energy picture of the nucleus as a collection of semi-independent nucleons interacting via a
meson 6eld. For high momentum transfers deviations from this picture can be accounted for by a
/CD treatment in which the nuclear dependence, attributed to overlapping of bound nucleons, is
introduced through the nonperturbative parton momentum distributions. These phenomena must
be more pronounced in nucleus-nucleus interactions to be studied at the Relativistic Heavy Ion
Collider. We calculate the ratio of the Drell-Yan cross section for collisions of two large nuclei to
that for interactions of two protons or deuterium nuclei to order o, We predict that in the invariant
mass range between the heavy quarkonium peaks this ratio is less (greater) than one for small (large)
values of the pair longitudinal and transverse momentum. For 6xed nucleon energy the depletion at
low lepton momenta decreases with increase of the invariant mass and disappears well beyond the
meson resonances. We investigate the dependence of these effects on the choice of ocean and gluon
momentum distributions.

PACS number(s): 25.75.+r, 13.85.gk, 12.38.Bx

I. INTRODUCTION

The production of lepton-antilepton pairs in high en-

ergy hadron collisions has been successfully attributed to
the annihilation of a quark and an antiquark originat-
ing in the interacting hadrons to a virtual photon which
subsequently decays into the lepton pair [1]. Within
the &amework of the quark-parton model the calcula-
tion of the lepton pair production rate due to this gen-
erally called Drell-Yan process relies on the fact that at
high energies the cross section can be factorized into a
parton level part which can be calculated perturbatively
and nonperturbative distribution functions that express
the combined probability for the interacting partons to
carry given &actions of the hadron momenta. Appli-
cation of /CD leads to corrections to the lowest order
Drell-Yan cross section [2] without invalidating its fac-
torizability [3]. Because of the involvement of antiquarks
this process has been used to supplement deeply inelastic
scattering data with lepton probes in order to extract the
ocean quark distributions in hadrons since these distri-
butions are accepted to be process independent.

Another potentially important correction to the Drell-
Yan cross section comes into play when at least one
of the reacting hadrons is a nucleon bound in a nu-
cleus. Deeply inelastic scattering data with charged lep-
ton probes on nuclei have conclusively shown that nu-
cleons bound in the nucleus cannot be treated as inde-
pendent constituents [4]. At small values of the Bjorken
xB~ variable the deep inelastic scattering cross section
on a large nucleus is depleted relative to that on deu-
terium, treated as a loosely bound system of a proton
and a neutron (shadowing), and is enhanced for large
zan (antishadowing). This effect has also been verified
to appear in experiments using neutrino and antineu-
trino probes demonstrating thus its presence with the

weak current [5]. More recently it has been observed
even in the case of light nuclei probed using weak inter-
actions [6]. In general this phenomenon, known as the
European Muon Collaboration (EMC) effect exhibits a
slow dependence on the mass number and is almost in-
sensitive to the value of the momentum transfer in the
kinematic region covered by the data. Based on these
observations we must conclude that the EMC efFect is
an intrinsic property of the nucleus independent of the
probe used for its study.

The origins of this phenomenon have not been thor-
oughly understood and are subject to serious debate and
investigation. Many contributions have been examined
including nucleon Fermi motion [7], rescaling of xsam, iden-
tified as the bound nucleon momentum &action carried by
the quarks [8], rescaling of the momentum transfer due to
size alteration of bound nucleons relative to free ones [9],
pions in the nuclear matter [10],recombination of partons
from adjacent nucleons [11], overlapping of nucleons to
form multiquark clusters [12], and others. Combinations
of such models have also been proposed and studied [13].

Most of these contributions are applicable only in a
certain range of xB; with the exception of the formation
of multiquark clusters, known as the quark cluster model
(QCM), which gives good agreement with the data for
all xBj and for both electromagnetic and weak interac-
tions [14]. This model may overlap with Fermi motion at
large xg~, rescaling at intermediate xB;, and parton re-
combination at small x». Caution is, therefore, required
to avoid double counting of nuclear efFects upon addition
of more than one contribution in the same xn& range [15].

Based on the above mentioned merit of the quark clus-
ter model we believe it can be successfully used to in-
clude the EMC-type nuclear efFects discussed here into
processes involving relativistic heavy ions as we expect
such efFects to carry over to collisions of two nuclei.
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The fundamental principle of the QCM relies on the
quantum mechanical result that wave functions of nu-

cleons bound in a nucleus may overlap to the extent of
forming multiquark color singlets larger than nucleons
with nonzero probability. This probability is calculable in
the case of light nuclei by making use of realistic nuclear
wave functions. Scaling arguments can be applied to de-
rive good estimates for heavy nuclei as well [12]. There-
fore, the state vector of the nucleus can be expanded on
a complete basis of color singlet states characterized by
the number of valence quarks they contain. This model
can also be considered as a phenomenological approach
to nuclear effects whose parameters are determined by
fitting EMC data. In essence, the 3q (nucleon) and 6q
cluster terms of the color singlet expansion with a suit-
able, effective, value of the six-quark cluster formation
probability and a reasonable choice of quark momentum
distributions in the clusters sufFice to give a good repre-
sentation of the EMC data.

The QCM has been successfully applied to the Drell-
Yan process in hadron-nucleus collisions with proton and
pion projectiles [16,17]. In agreement with the fixed tar-
get experiment data of Ref. [18] it predicts that the ocean
quark distribution in the nucleus is depleted (shadowed)
relative to that in a &ee nucleon for small values of the
longitudinal momentum of the Drell- Yan lepton pair and
enhanced (antishadowed) for large values. These devia-
tions &om the free nucleon results are balanced in a way
that the nuclear Drell-Yan cross section per unit mass
number integrated over the lepton pair longitudinal mo-
mentum is very close to that of a nucleon. These studies
have not, however, considered the lepton pair transverse
momentum dependence of the cross section since they
were restricted to the lowest order calculation.

The production of real photons in collisions of protons
with heavy nuclei has also been studied within the QCM
framework. It has been shown [17,19] that real photons
with large transverse momenta should be produced more
copiously in the case of heavy nuclear targets as a conse-
quence of an EMC-type effect on the gluon distributions.
Introduction of the model to the production of real pho-
tons in central heavy ion collisions has resulted in the
prediction that the nuclear effects should be more dra-
matic in this case unveiling a very pronounced EMC-like
behavior of the real photon rate [20]. This observation
has led the author of this work to consider the implica-
tions of the QCM on the Drell-Yan process with rela-
tivistic heavy nuclei for all the variables determining the
lepton pair phase space.

The calculation presented here refers to the initial hard
scattering stage of the nucleus-nucleus collisions. It is be-
lieved that, at RHIC, the energy density in the interac-
tion region will be high enough to allow for the formation
of quark gluon plasma (QGP), a QCD phase in which
quarks and gluons become unconfined. Upon the QGP
phase transition the new state of matter is expected to ra-
diate, among others, low transverse momentum real and
virtual photons with thermal distributions superimposed
on those originating in the initial (hard scattering) and
final (~ decay, ir+ annihilation, and bremsstrahlung)
stages of the heavy ion interaction [21]. If a state is at

equilibrium its effective temperature can be characterized
by the expectation value of the transverse momentum
of the emitted radiation. In order to isolate the ther-
mal (QGP) component of the radiation it is imperative
to understand all other sources that may contribute to
the real and virtual photon distributions, especially the
initial hard scattering stage. In addition, the Drell-Yan
process constitutes a background from which the quarko-
nium resonances must be extracted. In particular, the T
particle which, due to its very small radius, is not seri-
ously affected by final state interactions may carry im-

portant information from the state of matter in which it
is produced [22]. Hence, its Drell-Yan background must
be evaluated accurately, including nuclear effects, before
possible modifications of its production rate due to the
QGP transition can be inferred.

In Sec. II we give a brief description of our model,
in Sec. III we present an outline of the calculations, in
Sec. IV we show our results and discuss their physical
meaning, and we conclude with some outlook in Sec. V.

II. ESSENTIALS
OF THE QUARK CLUSTER MODEL

The quark cluster model (QCM) is based on the quan-
tum mechanical expansion of the nuclear state of 3A va-
lence quarks (A. is the mass number of the nucleus) on a
basis of color singlet states characterized by the number
of valence quarks they contain (3 for a nucleon, 6 for a
6q cluster, and so on),

IA) = ~I3q) + Pl6q) + &19q) + "

f =klnA, (2)

where the coefficient k ranges from 0.0575 to 0.0721 [17]
as follows from EMC data. For deuterium this gives fD

The squares of the magnitudes of the expansion coef-
ficients express the probabilities for occurrence of the
corresponding states in the nucleus in a dynamic equi-
librium with one another. They have been calculated
using nuclear wave functions and have been shown to de-

crease rapidly as the number of valence quarks in the sin-

glet state increases [12]. In principle, the expansion (1)
also contains pions as well as possible exotic pentaquark
states but with much smaller probabilities. We will not
discuss such contributions here. Therefore, we may trun-
cate the right-hand side of Eq. (1) to the first two (or
three) terms maintaining all its essential implications. If
this approach is followed, the multiquark cluster prob-
abilities are parameters to be determined by fitting the
experimental data. In this work we use the first two
terms and an effective six-quark cluster probability f
Then the nucleon probability is simply 1 —f Because of.
the fact that the nuclear density is approximately con-
stant for large nuclei we expect this probability to vary
logarithmically with A,
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between 0.04 and 0.05 in agreement with data on back-
ward hadron production in deeply inelastic scattering ex-
periments [23]. The values obtained from Eq. (2) are
consistent with those calculated using nuclear wave func-
tions [24].

A 3q cluster is simply a proton (p) or a neutron (n). A
6q cluster may be formed by superposition of two protons
(pp), two neutrons (nn), or a proton and a neutron (pn).
Knowing f, the average number of each type of clusters,
n„,n„,n~, n„„,or n„„,can be found employing sim-
ple conservation conditions for the baryon number, the
electric charge, and the cluster formation probability and
assuming that for large nuclei nz oc Z (Z is the atomic
number of the nucleus), n„ocN—:(A —Z), n„„ocZ2,
n„„oc2ZN, and „n„N2 [20]. A solution that satisfies
all these conditions is

(1—fl t'1 —f)
(1+f) ' " (1+f) (3)

f ) Z2 t' f )2ZN
1+f) A

' "" El+ f)
(4)

( f )t N2

pl+ f) A

Clearly, the total numbers of 3 and 6q clusters, ns and
ns, are proportional to (1—f) and f, respectively. In the
case of deuterium we take n6 ——n„„.

The longitudinal parton momentum distributions in
multiquark clusters parallel to a direction of a large mo-
mentum transfer are assumed to be simple functions of
the &action z of the cluster momentum carried by the
parton in this direction (the parton intrinsic transverse
momentum kT is neglected in this discussion). In the
Bjorken scaling limit they do not depend on the momen-
tum transfer Q2. The variable z is a relativistically in-

variant quantity identified as zB~ in deeply inelastic scat-
tering and ranges from 0 to 1 [25]. The general expres-
sions for the parton distributions in nucleons are sug-
gested by deeply inelastic scattering data and those in
6q clusters should have the same general properties. A
protonlike cluster of N valence quarks contains 2N/3 up

(u) valence quarks whose momentum distribution is de-
noted by U~(x) and N/3 down (d) valence quarks quarks
whose momentum distribution is D~(x). The ocean of
the cluster consists of three species of 8ea quarks accom-
panied by an equal number of antiquarks to maintain
electric charge neutrality. Here, we assume that u and
d quarks and antiquarks in the ocean have identical dis-
tributions, S~(x), and that the strange sea distribution
is S~(z)/2. The total sea or ocean distribution is then
O~(z) = 5SN (x). The gluon distribution is denoted by
G~(x). The assumed parametrizations of the momentum
distributions in protonlike clusters are

U~(z) = D„(x)= Us(z),

D„(x)= U„(x)= Ds(z).
(9)

The states pp and nn (I = 1) are related by the following
formulas which are analogous to Eq. (9):

U„„(*)= D„„(x)—= U, (*),

The parton number densities, denoted by lowercase sym-
bols, are obtained from the momentum distribution func-
tions upon division by x. We also take bN

——bN + 1 as a
simple way to accommodate the drop of the neutron to
proton deeply inelastic structure function ratio with xB&.
The parameters of these distributions can be determined
by a number of reasonable assumptions listed here in or-
der of decreasing confidence [14,20]: (1) normalization of
the valence distributions, (2) momentum sum rule, (3)
dimensional counting rules (b~ ——2N —3), (4) assump-
tion that the ratio of the total momenta carried by gluons
and ocean quarks is the same for all clusters and approx-
imately equal to 1/5, and (5) assumption that the gluon
(1—z) exponent is smaller than or at most equal to that of
the ocean. We will take (bs, as, cs) = (3,9, 6) (EMC data
support the choice as ——9) and (bs, as, cs) = (9, 11,10)
as central values and will investigate the sensitivity of
our results on the sea and gluon parameters. The poorly
known gluon distributions play a dominant role in the
production of real photons and charmonium resonances
so that one would expect to develop a better understand-
ing of their parameters by studying EMC-type eÃects in
these processes [20].

We remark that the 6q distributions are softer (con-
centrated at lower values of z) than those of nucleons.
The tota/ momentum &action of the cluster carried by
a certain parton species can be found by integrating the
corresponding momentum distribution over x. The to-
tal momentum &action carried by the valence quarks,z, decreases with ¹ It is equal to 0.31 for N = 3
and 0.28 for N = 6. The ocean and gluon distributions
are proportional to the total momentum &actions car-
ried by those partons, i.e., ON(z) oc z (1+ a~) and
G~(z) oc z (1+c~). The total momentum fractions are
not afFected by the choice of a~ and c~. Gluons carry
0.57 of the 3q and 0.60 of the 6q cluster momentum. It
must be emphasized that in this model momentum is
conserved within each cluster and within the nucleus as
a whole.

The number of independent parameters needed to
specify the parton distributions can be greatly reduced
if relations among the distributions in clusters with the
same isospin (I) are applied [17]. Such relations connect
the neutron to the proton distributions (I = 1/2) in a
straightforward way through the equations

U~(x) = B~~x(1 —x) ",
D~(x) = &+~~(1 —*)'"
S&(z) = A~(1 —z) N,

G~(z) = C (1 —z)'".

(5)

(6)
(7)
(8)

D () =U-(*) -=D.(*)

The I = 1 component of the pn state belonging to the
same triplet with the pp state is also connected to it.
We can assume that the I = 0 pn component has the
same distributions as the isoprobable I = 0 one. These
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remarks lead to the equations

& -( ) = D -(*)= [U (*)+ D (*)1/2

The sea and gluon distributions are taken to be indepen-
dent of cluster isospin; therefore, they are the same for
all clusters with N valence quarks.

III. CALCULATION OF THE CROSS SECTION

In this section we present a calculation of the lepton
pair cross section in central heavy ion collisions to or-
der a, . At the level of interacting partons the processes
that contribute to this cross section are represented by
the Feynman diagrams shown in Fig. 1. The lowest or-
der @ED contribution (DY) is described by the well-
known quark-antiquark annihilation diagram [Fig. 1(a)]
in which a virtual photon is produced, subsequently de-
caying into a lepton pair. The quark-antiquark annihila-
tion (A) diagrams involving an emitted gluon [Fig. 1(b)]
and the quark-gluon Compton-type scattering (C) dia-
grams [Fig. 1(c)] are the order a, corrections to it. We
assume that the initial state partons move in the z di-
rection defined by the colliding beams because their rel-
atively small intrinsic transverse momentum can be ne-

(, ) 4 (') ()P
1 2 lab 7

t(') = —2n,
'

Pi b(E —p, ) + m,
(12)

(13)

glected [25]. In this approximation the lowest order di-
agram cannot produce lepton pairs with nonzero trans-
verse momentum. The pairs produced by the order o.,
diagrams can have high transverse momentum balanced
by that of a quark or gluon induced jet.

We denote the parton level variables using a sym-
bol with a caret and the hadron level ones using the
same symbol but without a caret. The quark clus-
ters moving in the positive z direction carry momentum
Pi' = (i/3)Pisb and those moving in the opposite direc-

tion carry P2 ———(j/3)Pi b, where i, j are equal to 3(j) =
for nucleons and 6 for 6q clusters and P~ b is the nuclear
momentum per unit mass number. The cluster longitu-
dinal momentum due to the Fermi motion is assumed to
be an element of the quark cluster model [15] and is not
included explicitly. The cluster transverse momentum
will be neglected. We define the variables ni' ——i/3 and(') =
n(2 ) ——j/3 which give the mass of the clusters in units of
the nucleon mass and take on the values 1 and 2. The
hadron level kinematic invariants expressed in laboratory
(nucleon center of momentum) frame quantities are

and

(j)
"2 PLab

m, P2
(a)

u(') = —2n(2')Pi b(E+ p, ) + m,

where p„E,and m are the longitudinal momentum, en-

ergy, and invariant mass of the lepton pair (virtual pho-

ton), respectively. The lepton pair momentum in the
transverse direction is pT. It must be pointed out that
the values of the kinematic invariants assumed by the ex-
perimenters are those involving two colliding nucleons,
i e., s = s( ), t = t( ), and u = u( ). Then

(b) s('&) = n")n")s
1 2

t(') = n,,
' t + (1 —n,

'
) m,

(15)

(16)

and

„()„+(1„()) (17)

(c)

Using the experimentally measured variables pT, p„and
E, the longitudinal (zF) and the transverse (zT) mo-

mentum fractions as well as the energy &action (z@) of
the lepton pair are defined as

zF = pz =2PT = PT
7 T 7

Plab ~s Plab

FIG. 1. Feynman diagrams contributing to the Drell-Yan
lepton pair production. (a) Lowest order QED process. (b)
Quark-antiquark annihilation to order n, . (c) Quark-gluon
Compton scattering to order n, . The kinematics is de6ned
in (a). One parton carries momentum fraction xi* of the
positively moving hadron momentum, and the other one car-
ries x2 of the negatively moving hadron momentum. Nucle-
ons have momentum +P~ b and 6q clusters have momentum

2P)~b-

2E E
and ZE =

lab

(18)

The interacting parton that originates in the positively

moving cluster carries a fraction xz' of its parent hadron
momentum and that coming &om the negatively moving

one carries a fraction z2 [Fig. 1(a)]. Using this mo-

mentum &action definition we can write the kinematic
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-(',j) (') (j) (',j)
1 2

t(*) =x t+(1 —x )m,
(19)

(2o)

invariants pertaining to the parton level interaction as - (&.j)
DY,A, C

dm2d3p

-(;,j) g- (»j)
DY,A, C

~ (~ ) (~) (j)
dm dt(')

"( ) ( )t+(1 ( )) (21)

~ ~

(22)

d&(' ) 8~2~ (qz) t(g) - (j)

dm~dt(') 27m (s(*»))
~ u(~) t(')+ . . —2m

( 1 1) 2m
x~

g u(&) t(') ) t(*)u(i) (23)

and

The parton level cross sections, including color fac-
tors, that correspond to the three contributing processes
are [26]

(25)

where p is the virtual photon three-momentum. Then,
assuming factorization, we convolute the parton level
cross sections with appropriate distribution functions ex-
pressing the combined probabilities for the parton &om
one cluster to carry momentum &action x~' and the par-
ton from the second cluster to carry momentum &action
x2 . These functions are sums of products of parton den-(j)

sity distributions weighted by the squares of the quark
charges. We denote the four functions pertaining to the
quark-antiquark annihilation, used in the calculation of
both the DY and the A terms, by H~~' (xi', xz ) and the

~ ~

other four needed for the C term by H~~s») (xi('), xz ). As
an example, the quark-antiquark annihilation function in
the case of a collision of 3 with 6q clusters contains a term

do(" )
C

dm2dt(')

o o (q ) s('») u(a) 2m t(*)

9m (s('») ) u(~) s('») s('») uR

(24)

+ ) ( (s))+(i +4 )d ( (s))

These cross sections must be weighted with the square of
the electric charge of the involved quarks. When m~ = 0
the A and C cross sections reduce to those for real pho-
ton production after removal of the lepton multiplicative
factor [a//(Berm )] [20]. For three active quark Bavors the

strong coupling constant is o, (Qs) = (12n/22)/ ln (tsar) .
The variable q must be related to pT, since, to this or-
der, this is the only scale in the problem. The A and
C diagrams are partially responsible for the Altarelli-
Parisi type evolution of the parton distribution functions
since one of the partons that produce the virtual pho-
ton can be thought of as the product of splitting of the
parton that originates in the interacting hadron. There-
fore, we can use x-scaling parton distributions and in-
clude the A and ( terms to partially account for their
evolution [2]. Because the A and C diagrams give both a
part of the parton distribution evolution and the virtual
photon transverse momentum to the same order we shall
make the identification q~ = p~z. The exact value of the
/CD renormalization constant A plays only a minor role
when ratios of cross sections are considered. However,
ln(A~) does not completely cancel to this order, contrary
to the case of real photon production, because of the
presence of the lowest order /ED term. We shall take
A = AMs

——100 MeV. It may be interesting to note that
the numerical values of the parton level kinematic vari-
ables and cross sections do not depend on the type of
colliding clusters for given x~, xT, and m .

In order to obtain the hadron level cross sections we
first use the convenient transformation

+su."(xi ) "(x~ )
7 (3) (6)

in which valence and sea quarks from the positively
moving nucleons annihilate sea quarks &om negatively
moving 6q clusters. The isospin relations of Eqs. (9),
(10) and (11) have been used to simplify this expres-
sion and the cluster numbers have been calculated using
Eqs. (3) and (4). Complete expressions for the distribu-

tions H,
''(xi', xz ) an-d Hz~s» (xi', xz~ ) are given in

Ref. [20. The convolution of these functions with the
parton level cross sections involves a double integration
over the momentum &actions of the interacting partons.
Because of the presense of the b' function in Eq. (25) one
set of these integrations can be trivially done. We choose
to perform the x2 integrations in this way. This yields

the following relation between x~' and x2

(,) x,* (t(*) —m') + m'
2

x", 8(' j) + u(j) —m
(26)

It also moves the lower limits of the x~&' integrations &om
0 to

(,) ~(j)
x1(min) (q,j) + t(q) (27)

After performing the convolution the hadron level cross
sections for the four types of collisions involving 3 and 6q
clusters (characterized by the four combinations of i and
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j) can be written as lepton pair production cross section

@d~DY, A, C
(i j) 1

dm2d3p (')
1(min)

(~) (~,a) (&) (2)
+me. sg (z i

da dcTDY dcTA+ +dm dxF dm dxF dm dzF dm dxF
(35)

where

-(i 3)
p(. )

~ ' DY,A, C
dm2dt(')

p(~ j) 1

( j) + ~(j) —m2

(28)

(29)

Our main interest is to study the EMC-type nuclear ef-
fects in the Drell-Yan lepton pair production. In order to
isolate the nuclear dependence we can calculate the ratio
of the cross section per unit mass number for two heavy
nuclei to that for two light ones. Since we expect the nu-
clear eKects to be more pronounced in the case of heavy
nuclei, such ratios may exhibit interesting behavior. We,
thus, define

is a remainder of the b function.
We note that in the case of the DY term the presense

of the 8 function over m trivializes the zi' integrations
as well and fixes the relation of the quark momentum
&actions with the measured quantities by the equations

[A /A ]
(7 do

A2 dm2dxF dm2dzF (36)

&F +47 + &F(~)

2%1
(&)

(only in DY), (30)
IV. RESULTS AND DISCUSSION

(j)
X2 = ()2n2

2F + 4~ —zF (only in DY), (31)

where 7 = m /s and zp = ni zi —n2 z2 in this case.2 ( ) (') (j) (j) ~ ~

Next we perform successive variable transformations
resulting in

(i,j)
d~DY, A, C

dm2dzF dp2&

(& j)
DY,A, C

ZQ dmdp (32)

In order to obtain pT-independent results we integrate
over pT. Because the A and C terms are in&ared di-
vergent we regularize the integrals with a cutofF p&(
which we take in the vicinity of 0.1 GeV2. The strong
coupling constant evaluated at this cutofF is 0.61, a rather
large value. However, we will still apply perturbation
theory in this limit keeping in mind that higher order
corrections may become important as pT approaches its
imposed lower bound. On the other hand, if these correc-
tions result in a inultiplicative factor (K factor) [27] that
is approximately independent of the lepton pair kine-
matic variables, they will mostly cancel when cross sec-
tion rutios are computed. After performing the pT in-
tegration we sum over all the combinations of colliding
clusters and obtain

(' i))& ~ (',j)
do DY A C T (msx) Qo DY A C
dm dz

dpT
' ' . (33)

dm d2Fdp
c,g=3,6 J T(min) F T

[PT' ]~ .„l= (4ni n2 —zF) +1 b
(~j) 2 (~) (j) 2 2 2 (34)

Finally we sum the DY, A, and C terms to obtain the

In the case of the DY term this last integration eliminates
the b function over t('). The upper integration limit is
determined by the kinematics, depending on the types of
colliding clusters, and is equal to

Following the steps outlined in the previous section we
can numerically evaluate the cross section ratio defined
by Eq. (36) and investigate its sensitivity to the various
parameters of the model. The results we present here
are calculated for P~ b ——100 GeV per unit mass number
which corresponds to the expected energy at the Rela-
tivistic Heavy Ion Collider (RHIC).

In order to develop some quantitative understanding
of the inBuence of the A and C corrections to the lowest
order Drell-Yan cross section ratio we first calculate this
ratio using only the DY term (BDY). In Fig. 2 we show
the gold to proton cross section ratio for m = 1 GeV plot-

ted versus positive xF. In this case n1 zy ) A2 Z2 and
the contribution of the negatively moving clusters dom-
inates. It can be immediately observed that the shape
of RDY is remarkably similar to that of the EMC ratio,
i.e. , staring from a value below 1, it increases reaching
a local maximum, then it decreases for intermediate mo-
mentum &actions, and, finally, increases again steeply
reaching values well above 1. However, its depletion &om
unity at low xF is much more pronounced than that of
the EMC ratio. For comparison we show the results for
fA„=0 and for the two limiting values of fA„=0.30
and 0.38 predicted by our model. It can be noted that in
the absence of multiquark cluster contributions the ratio
is lower than unity. This is a consequence of the non-
isoscalarity of the heavy nucleus. A nucleus with more
neutrons than protons contains more d than u valence
quarks. Since the d quark distribution decreases with x
more rapidly than that of the u quarks, the valence con-
tribution to the cross section per unit A for nonisoscalar
nuclei is reduced compared to that of protons. For f = 0

the ratio RDY" is a linear function of the nonisoscalarity
e = (W —Z)/(K+ Z) of the nucleus. We can also observe
that the efFect of the mere presence of 6q clusters is more
important than the exact value of f~„

The depletion of RDY below unity for xF ( 0.6 is a
result of the softer parton distributions in the 6q clusters.
In the limit m /s ~ 0 we can easily derive a simple
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FIG. 2. The ratio of the Au to p cross sections per unit

mass number versus the lepton pair longitudinal momentum
fraction (zz) for three values of the 6q cluster probability
(fA„) The EMC. -like behavior is more pronounced than in
the case of hadron-nucleus collisions [17].

FIG. 3. Ratio of Au to proton lepton pair production cross
sections for various Sxed values of the lepton pair invariant
mass (m) versus the lepton pair longitudinal momentum frac-
tion (zp). The curve corresponding to the Drell-Yan back-
ground of T is included. The 6q cluster probability (f~„)is
0.30.

expression for RDY at xz = o,t&/J)

(1 —f'it & f l &&sl
RDv" (o) =

I&1+f I
+ I(1+f )I I(& i

where As s ——xsss(as s + 1) are the sea quark normaliza-
tion factors for 3 and 6q clusters, respectively. In this
limit the valence quark contribution is negligible and the
ratio is essentially determined only by the shape of the
sea distributions and the total fraction of the cluster mo-
mentum carried by them. The large increase above 1 in
the limit zp —+ 1 can also be easily understood when

m2/s ~ 0. In this case we can see that zz ——0 while

xP = 3/i. The 3q cluster momentum distributions from
the positively moving nucleus are, then, zero and the 6q
cluster ones are finite. Consequently the cross-section ra-
tio in which the numerator (denominator) is proportional
to the 6q (Bq) cluster momentum distributions diverges
in this limit. We can, thus, state that this divergence is
a phase space effect due to the fact that the 6q clusters
are twice as massive as nucleons and, as a result, allow
for more copious production of virtual photons.

Next we turn on the A and C terms and repeat the cal-
culation. In Figs. 3 and 4 we plot Rt "/&~ versus x~ in the

range (0, 0.6) for various values of m and for f~„=0.30
and 0.38, respectively. We first observe that the cross
section ratio including A and C corrections remains very
close to that calculated using only the DY term. This
suggests that /CD corrections cancel in cross section ra-
tios so that even the lowest order calculation of R is reli-
able. Since we have introduced an in&ared cutoff to reg-
ularize the integral over the transverse momentum, we
must investigate the stability of the results to the choice
of p2&(,.„).Our calculations have shown that R is indeed

very stable even for values ofp &~,.„~approaching A . We

observe that increasing m increases R~ "~"~. The reason
for this is that as m becomes larger the momentum frac-
tion xz increases and the 6q cluster distributions being
softer than those of nucleons contribute less to the cross
section. This leads to another interesting result. A com-
parison of Fig. 3 with Fig. 4 shows that further increase
in fA„slightly enhances RI+"~"l(0) when m exceeds 16
GeV, contrary to what happens for m & 16 GeV, be-
cause the importance of the 6q cluster contribution in-
creases with f but its actual numerical value decreases
with m. A curve approximately indicating the Drell- Yan
background to the T cross section is included in Figs. 3
and 4 to underline the necessity for a good estimation of



2742 ATHANASIOS N. PETRIDIS 49

P„,b = 100 GeV, f~„=0.38
I I I I

I
I I I I

I

I I I I

I

I I I I

I

I I I I
I

I I I I

P„,b = 100 GeV, f„„=0.30
I I I

I
I I I

I

I I I

I

I I I

0.95—

0.9—

m=9 GeV (Y)-

---------- m=16 GeV

— ———— m-21 GeV

0.9—

0.85— ------- m=25 GeV

0.8—
0.8—

0.75—
0.7—

0.7 0.36

0.65
0 6 —.' 0.48

0.6

055 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5

3CF

0.6
05 I I I I I I I I I I I I I I I I I

0 200 400 600 800

m (Gev )
FIG. 4. Ratio of Au to proton lepton pair production cross

sections for various fixed values of the lepton pair invariant
mass (m) versus the lepton pair longitudinal momentum frac-
tion (zF). The curve corresponding to the Drell-Yan back-
ground of T is included. The 6q cluster probability (f&„)is
0.38.

FIG. 5. Ratio of the Au to proton lepton pair production
cross sections for various values of the lepton pair longitudinal
momentum fraction (zF, shown near the curves) versus the
square of the lepton pair invariant mass (m ). The 6q cluster
probability (fA„)is 0.30.

the lepton pair production rate in order to extract the
correct value of the bottomonium peak.

The dependence of Rr "~~~ on the invariant mass
squared for various values of the longitudinal momen-
tum fraction and the two limiting values of f~„is shown
in Figs. 5 and 6 in which the slow rise as m increases
becomes clear.

The inBuence of the nonisoscalarity of the heavy nu-
cleus can be further elucidated by calculating the ratio
R~ "' ~"~ in which the deuterium cross section in the
denominator contains both neutron and 6q cluster con-
tributions while the cross section in the numerator refers
to either a nonisoscalar (Au) or an isoscalar (Ca) nu-
cleus. In Fig. 7 we plot this ratio versus xF for the two
limiting combinations of the 6q cluster probabilities for
deuterium and the heavy nucleus. We can observe that
the depletion of the ratio below unity becomes more pro-
nounced as the mass number increases. This is a direct
result of the A dependence of the 6q cluster probability.
The presence of the neutron in deuterium removes part
of the effect initially shown in Fig. 2. The curves start
increasing for lower x~ values than in the case of protons
in the denominator. In Fig. 8 we show that, as a function
of m, R~+~"j increases more steeply than Ri

The poorly known sea and gluon distributions intro-
duce an additional uncertainty in the model especially
because in their experimental derivation &om data using
nuclei, EMC-type effects are not always accounted for.
We must, therefore, examine the theoretical uncertainty
in these distributions and compare it to that due to f
In our model sea quarks and gluons in nuclei behave in
essentially the same manner, i.e., when the nuclear glu-

ons are depleted relative to those of the proton the nu-

clear sea quarks follow their example. As indicated by
Eq. (37) we can expect that a less depleted ratio should
correspond to harder Bq cluster distributions (smaller as,
cs) accompanied by softer 6q cluster ones (larger as, cs).
This is shown in Fig. 9 in which the sea and gluon expo-
nents are varied by one unit in either direction. It is clear
that the uncertainty due to the choice of distributions is
larger than that introduced by f This conclu. sion holds
for all values of the lepton pair invariant mass.

The transverse momentum behavior of the cross sec-
tion ratio is another interesting phenomenon to discuss.
To obtain this result we calculate the cross sections and
from them R without integrating over p27. The ratios
R~ ~ ~ and R~ ~ ~ are plotted in Fig. 10 for m = 1 GeV
and x~ ——0 as functions of xz. It can be observed that
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momentum fraction (zp, shown near the curves) versus the
square of the lepton pair invariant mass (m ). The 6q cluster
probability (fA ) is 0.38.

XF
FIG. 7. The lepton pair production ratio R " for Au

and Ca to deuterium. Increase in the mass number (A)
produces more pronounced nuclear efFects due to the increase
in the 6q cluster probability f Ris plott. ed versus the longi-
tudinal momentum fraction (zF) of the lepton pair for fixed
invariant mass (m).

do. (&) do-(J )
A2ja

dm dm
(38)

Based on the earlier observation that the A and C terms
do not drastically afFect the longitudinal dependence of
the cross section ratio we use only the DY term to com-
pute o.. This requires integrations over xg whose limits

for xT & 0.6, 0.5, respectively, the ratios are lower than
unity and they greatly exceed I for high transverse mo-
menta. Another feature becomes apparent in Fig. 10.
The ratio Rt ~"~ tends to infinity as xT ~ 1 but R~ ~"~

flattens out and tends to a constant value (approximately
30). This interesting behavior is easily understood upon
considering that the major contribution &om the 3q clus-

ter momentum distributions comes for xz 2
——xT while

that from 6q clusters comes for xi 2
——xT /2. As a result

the denominator of Rt ~J'~ vanishes in the xT ~ 1 limit
while that of R~ ~~ remains finite beyond this value. Nu-
merical calculations show that R~ ~"'j scales in xT for
difFerent values of m, if xg is fixed.

Finally we compute the exponent a (not to be confused
with the fine structure constant) defined by the equation

depend on the type of clusters involved in the interac-
tion. For example, if i = 3 and j = 6, xg varies in the
range (—2, 1). It is, thus, necessary to perform these
integrations before the cluster summation prescribed by
Eq. (35). Including the uncertainties in f and in the
distribution exponents described earlier we present our
results for a in Table I. It is interesting to note that o,

increases with A. The reason for this is the fact that when

f increases R decreases for low x~ but increases sharply
for high x~ and the area below the B curve in the high
x~ region is larger. Therefore the x~-integrated nuclear
efFect is more pronounced for lighter nuclei. However,
the dependence of o. on the nucleus is not very strong
and consequently not easily observable even though Ta-
ble I shows that an overall depletion of the nuclear cross
section shou1d be expected. Our calculations have shown
that the exponent a almost does not depend on the value
ofm .

The correction introduced by the A and C terms is
only a few percent of the total cross section and does
not account for the experimental value of the Drell-Yan
K factor [27,28] defined as the ratio of the cross section
including higher order corrections (HOC's) to the leading



ATHANASIOS N. PETRIDIS 49

P„b= 100 GeV, f~„=0.38, f~ = 0.04 P„,b
= 100 GeV, m = 1 GeV

1.05—

I I I
I

I I I
I

I I I

I
I I I

I

I
I I ! I

I
I I I I

I
I I I I

I
I I I

a,=8, as=12, cs=5,
a,=10, as=10, c,=7,

cs=11—
c,=g:

0.12

0.24
0.75

0.95—

/
/

/
/

/
/

/

/
/

0.85—

/
/

/

/ 0.36

0.48 --

0.7

0.65

0.6

0.55

I I I I I I I I I I I I I I I I I

200 400 600 800

m (GeV )

j

�0
5 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 8. Ratio of the Au to deuterium lepton pair produc-
tion cross sections for various values of the lepton pair longitu-
dinal momentum fraction (zF, shown near the curves) versus
the square of the lepton pair invariant mass (m ). The 6q
cluster probabilities are fA„=0.38 and fq = 0.04.

FIG. 9. Dependence of ratio of the Au to proton lepton
pair production rate on the choice of exponents in the ocean

(as,s) snd gluon (c3,s) distributions in 3 and 6q clusters for
the two limiting values of the 6q cluster probability (fA„)

logarithm cross section calculated here. A more complete
analysis is needed in order to determine possible nuclear
effects on K. We can say, however, that even if the K
factor in nucleus-nucleus collisions, IC( ), is constant, its
value might be different Rom that measured in proton-
proton collisions, K(P~. This can be seen upon relating
the two factors through the formula

g[&/pl
~(A) HOG ~(p)

g[&/p) (3S)

V. CONCLUSIONS

VVe have investigated the nuclear dependence of the
Drell- Yan lepton pair production cross section ratio R to

where R&~&~c is the cross section ratio (per unit mass
number) including higher order corrections. If, as spec-
ulated in this work, the HOC's do not alter R, then the
two K factors should be the same.

One final remark regarding the @CD renormalization
constant is in place. The effect of the A choice is only
minor in the calculation of R. However, for small val-
ues of xF, xT, and m it may compete with f since an
increase in either of them decreases the cross section in
this region.

TABLE I. The exponent n showing the deviation of the
Drell-Yan cross section in nucleus-nucleus collisions from that
of proton-proton ones defined in Eq. (38). The upper value

corresponds to the lowest f, calculated using Eq. (2), the
largest a3, and the smallest a6. The opposite combination
holds for the lower value. For this table we have taken m = 5

GeV but the results do not crucially depend on this choice.

d
Be
C
0

CU
Sn
W
Au
U

A
2
9
12
16
63
120
184
197
238

Z
1
4
6
8
29
50
74
79
92

~{upper)
0.895
0.962
0.969
0.971
0.976
0.977
0.978
0.978
0.978

~{lower)

0.884
0.950
0.956
0.959
0.964
0.964
0.965
0.965
0.965

order a, within the framework of the quark cluster model

at RHIC energies. This ratio is essentially determined by
the ocean quark distributions in the interacting nuclei

and exhibits an EMC-like behavior based on which we
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FIG. 10. Dependence of ratio of the Au to proton and deu-

terium lepton pair production on the lepton pair transverse
momentum fraction (xT) with f~„=0.38 snd fq = 0.05.
The Battening of R " for large z z is due to the 6q cluster
component of deuterium.

sections exhibits a less spectacular nuclear dependence
which, however, is still stronger than that observed in
hadron-nucleus collisions.

This calculation is potentially useful for the QGP
search because it shows that low pT lepton pairs emanat-
ing &om the first stage of the collision will be produced
at reduced rates per unit mass number at RHIC. This
may enhance the detectability of Drell-Yan pairs &om
the QGP phase. It also shows that the heavy quarko-
nium peaks (in particular the T particle) must be mea-
sured relative to a background which is already modified
by nuclear efFects and implies that the quarkonium rates
may also be altered due to modifications of the initial
state parton momentum distributions.

On the other side of the spectrum, the high x T or zy
lepton pairs are interesting in their own respect. Our pre-
dictions for the Drell-Yan process in heavy ion collisions
are a consequence of the already established EMC effect
which we attribute to modifications of the nonperturba-
tive parton distributions in the nucleus relative to those
of unbound nucleons. The high z 7 rise of R is difficult to
observe experimentally due to very low interaction rates
in this region. However, given the RHIC anticipated peak
luminosity which is of order 10 cm sec we expect
approximately 1000 lepton pairs per unit xF and m in
the vicinity of xF = 0.60 and m = 1 GeV per year of
RHIC operation. We believe this is a tractable rate. For
slightly higher xg the second rise of R should become
visible.

In closing we would like to emphasize that high energy
heavy ion collisions are an important field to apply and
test /CD and to further study nuclear efFects that have
already been observed in lepton and hadron interactions
with nuclei.

can say that the nuclear ocean is expected to be reduced
(shadouted) for small values of the pair longitudinal and
transverse momentum and enhanced (antishadoured) for
large values. The similar ratio of the integrated cross

The author wishes to express his gratitude to Dr. S.
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