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Pion-nucleon partial-wave analysis with fixed-t dispersion relation constraints
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We have performed a set of partial-wave analyses of the pion-nucleon elastic scattering data to
2 GeV employing rigorous constraints from simultaneous forward and fixed-t dispersion relations.
Constraints were generated from the forward C+ amplitudes and the invariant amplitudes A and B
at fixed t in the range 0 to —0.3 GeV . Solutions were generated for a range of pion-nucleon coupling
constants (g /4x) and isoscalar scattering lengths (a~+~). A chi-squared map for these (g /4s, a~+~)

solutions exhibits a clear minimum near g /4x = 13.75 (f /4n = 0.076) for both the fits to the data
and the dispersion relations. While favoring a particular g /4v, this work shows that it is possible
to obtain good, stable fits for nearby values, but at the cost of increased chi squared. Consequently,
this approach provides a criterion for defining the preferred value and uncertainty of g /47r from
pion-nucleon scattering data. On this basis, we conclude that g /4s = 13.75 6 0.15 (f /4vr =
0.076 + 0.001).

PACS number(s): 25.80.Dj, 11.80.Et, 11.55.Fv, 13.75.Gx

I. INTRODUCTION

There is an ongoing controversy in pion-nucleon and
nucleon-nucleon circles regarding claims for a revised
value of the pion-nucleon coupling constant substantially
lower than the one proposed by the Karlsruhe-Helsinki
(KH80) group in 1980 [1],which has come to be regarded
as "canonical. " Since our contribution to the debate has
evolved over the years, a brief review would be instructive
to the reader.

Our foray into this arena was sparked by two events
which can be traced to the Few Body conference [2] held
in Vancouver in 1989. The Nijmegen group had reported
a value (f2/4vr = 0.075 + 0.001) for the neutral-pion-
nucleon coupling, considerably lower than the "canoni-
cal" charged-pion result of KH80 (f /47r = 0.079+0.001),
implying (at that time) a large charge-independence-
breaking (CIB) effect. Then Hohler displayed the poor
agreement of VPI solution FA87 with the Bxed-t disper-
sion relation (FTDR) for the invariant amplitude B. A
subsequent VPI solution (SM90) [3] was used to check
Hohler's claims. We found an improved behavior near
t = 0 and a much greater consistency away &om t =
0 (the older FA87 solution was also found to be "reason-
able" away &om this point). The resulting pion-nucleon
coupling constant (f /4' = 0.0735+0.0015) [3] was com-
patible with the neutral-pion result &om Nijmegen, i.e.,
considerably below the KH80 result. Despite our im-
proved consistency with the FTDR, and the removal of
the once-suggested large CIB, the revised value has not
been well received.

As a result of the controversy, much of the past 2
years has been spent in checking our results and tech-
niques. These efforts have focused on (a) addressing
some concerns raised by Hohler and Bugg about our

energy-dependent parametrization of partial waves, (b)
investigating the use of various forward and FTDR con-
straints (DRC), and (c) developing a strategy for de-
termining the "best" values of the pion-nucleon cou-
pling constant and S-wave scattering lengths from elas-
tic scattering data. Concerning point (a), a problem
of unphysical structures near threshold in some partial
waves was traced to the Chew-Mandelstam representa-
tion used in our analyses. We found that these unphysical
structures could be removed if relatively minor changes
were made in the parametrization. Further questions re-
garding this parametrization and our choice of charge-
correction scheme are still under study, however, there
are strong indications that future modifications (if any)
will not significantly alter the conclusions presented here.

In previous publications [3—6] we have used dispersion
relations in order to extract a value for the pion-nucleon
coupling constant. However, the analyses presented here
are the Grst in which we have employed DRC in the fitting
procedure. For this work, we chose the forward C+(io)
and FTDR. The forward dispersion relations were chosen
because of the link to well-measured total cross sections
via the optical theorem, and the Goldberger-Miyazawa,
Oehme (GMO) sum rule [6]. The FTDR offers an inter-
esting graphical visualization which can easily be used
to (a) determine constraints required in the analysis, (b)
evaluate how well the sr+ and ~ amplitudes satisfy the
dispersion relations, and/or (c) extract the coupling con-
stant (see, e.g. , [1,3,7]).

Hohler has commented on the di%culty of estimat-
ing an uncertainty for the coupling extracted &om the
FTDR [8]. Errors derived from straight-line fitting pro-
cedures usually severely underestimate the uncertainty
since it is notoriously difBcult to obtain an error estimate
for the amplitudes used in the dispersion relations aris-
ing &om uncertainties in the data. Consequently, in most
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cases these uncertainties are ignored. He suggests that a
better estimate comes &om gauging the self-consistency
of the dispersion relations at various values of momentum
transfer. The latter suggestion is a necessary ingredient
in any realistic error estimate, but is not sufBcient.

The trouble with obtaining the coupling constant &om
a dispersion relation constrained analysis is that first one
must assume a value of the coupling in order to calculate
the dispersion relations and hence to determine the con-
straints used to make the amplitudes satisfy them. One
would not be surprised if, after the analysis was com-
plete, a coupling determined &om the FTDR was equal
to the value assumed initially. Nonetheless, this is exactly
what was done in the KH80 analysis [1], where the value

f2/4m = 0.079 used in all their dispersion relations was
the value they ultimately "determined" &om their anal-
ysis. The analysis was not attempted with other values.
Hohler has countered [9,10] that in these analyses [1,9],
the final step was a fit to the data, and so the data could
have "forced" a diferent value of the coupling constant.
To check this claim, we performed our analysis for a range
of input couplings, and found that stable, consistent so-
lutions could be obtained for all reasonable values of the
input, and in these cases, the value extracted via the
FTDR was always the same as the input. Moreover, the
chi-squared goodness of fit (Z2) varied smoothly with
the coupling constant, yielding a single pronounced min-

imum. This fact illuminates what we feel is the most
natural criterion for establishing the "best" value of the
coupling constant and its uncertainty. The "best" value
gives the smallest L, and its uncertainty can be esti-
mated &om the depth of this minimum, as well as &om
the self-consistency of the dispersion relations.

In the following, we describe the steps followed and the
techniques used in our investigation of the effect of im-
posed DRC on our partial-wave solutions and the deter-
mination of the pion-nucleon coupling constant. Section
II will describe the form in which the DRC were imple-
mented. Details of the analyses are discussed in Sec. III.
In Sec. IV, we give our results. Finally, in Sec. V, we
summarize our findings in the context of other recent re-
sults, and consider what further work is required.

II. DISPERSION RELATION CONSTRAINTS

We have carried out a number of analyses using dif-
ferent subsets of the DRC described below. The FTDR,
which was used in our initial extraction of the mNN cou-
pling [3], has been used to constrain our analyses at sev-
eral fixed values of momentum transfer t. From relations
for the m+p invariant amplitudes in terms of the crossing
even and odd amplitudes, By(v, t) = B+(v, t) p B (v, t)
the following dispersion relation can be constructed

v ImB+ ImB dv' g
(vg + v) pReBy (v, t) +—,+, , = —+ B(0,t) (vg + v),v'yv v'+v v' M

with

2 ImB (v', t)B O, t Av (2)

where s, t, and u are the usual Mandelstam variables,
v = (s —u)/4M, v~ = (t —2IJ, )/4M is the nucleon
pole, and vugh = p+ t/4M, p, and M being the charged-
pion and proton masses, respectively. [The pseudoscalar
and pseudovector coupling constants are related by g
(2M/IJ, ) f ]This dispe.rsion relation has a contribution
&om the integral in the unphysical region between v~h

and the point where cos(8) = —1. 1mB+ in this region
I

I

was determined at each iteration in the analysis by an
analytic continuation from the physical region using the
current solution.

From the right-hand side of Eq. (1), it is evident that
this relation should be linear in v~ 6 v with an intercept
corresponding to g /M. Deviations from linearity were
corrected by introducing constraint values of ReBy(v)
which were to be included as "quasidata" in the next
iteration of the fitting procedure.

The forward isospin-odd amplitude ( (u) was used to
link the a( ) scattering length with g2/4vr. As the GMO
integral [11] is slowly convergent, we chose to use the
subtracted form to constrain our solutions:

2 2k2

4' (u M + p 2M2 (A&2 —(u~~)(p2 —(v~2)

with k equal to the pion laboratory momentum, cu~ ——

v~(t = 0), and

I

following once-subtracted form:

( )
k u) 0 ~(k') —rr +p(k') dk'

7r 0
k'2 —k2 (4)

a~+~ =—1 M
ReC+((u) +—

4~ M + p, M (~~2 —ur 2) (p2 —(v~2)

The subtraction reduced our reliance on high-energy con-
tributions. Here a ~„denotes the hadronic total cross
section (i.e. , all Coulomb contributions removed).

The forward C+ dispersion relation was used in the with

—I'+I (k) ),
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I(+)
k2 0 p(k') + 0. +~(k')
7l O

k'2 —k2

The once-subtracted form was chosen over the more con-
vergent twice-subtracted form in order to avoid the in-
troduction of the subthreshold constant C~+l (0, 0) which
is not known a priori. The penalty is that some assump-
tion on the high-energy behavior of the integral must be
made.

These expressions were constructed such that constant
values are expected when the right-hand sides of Eqs. (3)
and (5) are evaluated. (At threshold, these relations re-
duce to identities for the a+ scattering lengths. ) One
can choose to fix values for a+, or to select an "average"
value after each iteration from the expressions on the
right-hand sides. This constant was used to constrain
our analyses. Analogously to the FTDR, deviations were

I

A+(O, t) = ReA+(v, t)

v dv' t ImA+(v', t)
v' v' —vVth

ImA+(v', t) )v'+ v

and

corrected through constraints imposed on ReC+ in sub-
sequent iterations.

After much of this work was completed, it was pointed
out [12] that the B~ dispersion relations used do not ef-
fectively constrain the 8 waves since they are suppressed
by a kinematical factor, and are dominated by the P33 in
the important (3,3) resonance region. Consequently, as
a consistency check, we calculated for each final solution
the following subtracted A+ dispersion relations

2 dv', ReA (v, t) v dv' tImA (v', t)
7c ~„v vvth vt, h

ImA (v', t) t
v'+v

J

where the crossing-odd amplitude A was divided by v
to make it crossing even so that it does not vanish at
v = 0. The right-hand sides of Eqs. (7) and (8) were
evaluated and plotted as a function of v, where again
the contributions &om the unphysical region were taken
&om an analytic continuation using the current solution.
If this dispersion relation is to be satisfied for each fixed
value of t, a constant value is required.

III. THE PARTIAL-WAVE ANALYSES

In practice, the integrals of Sec. II were evaluated up
to some k „which ensured sufhcient accuracy for the
analyses, except for the case of the forward C+ disper-
sion relation, where the integral was taken up to infin-
ity. Two diferent high-energy parametrizations for this
integral were tested [7,13] for values of pion laboratory
kinetic energy above 10 GeV, whereas the piece &om 4
to 10 GeV was taken &om Hohler's table of forward am-
plitudes [7]. The results were found to be insensitive to
the choice of high-energy parametrization. The fixed-t
and subtracted C dispersion relation were evaluated up
to a pion laboratory kinetic energy of 4 GeV, the con-
tribution &om 2 to 4 GeV coming &om the Karlsruhe
solution [9]. The C+ dispersion relation constraints were
imposed at 25 MeV intervals, &om a T~ b of 25—600 MeV.
The FTDR constraints covered diferent ranges of T~ b
depending upon the value of t —which extended from 0
to —0.3 GeV2.

Analyses were performed with the value of g /4' con-
strained to selected values between 13.0 and 14.5. The
value of a~ ~ was determined in two ways. In one ap-
proach, a~ l was obtained from the GMO sum rule [11].
In this way, the scattering length was essentially fixed by
the value of g2/4m. In another, an average value of a~

was calculated from the right-hand side of Eq. (3) over

the range of cu values extending &om 25 to 600 MeV.
We found that these two methods produced essentially
identical results. The second method was retained in our
final set of analyses.

Since the very small scattering length a~+~ arises &om
the cancellation of two relatively large terms, it was ob-
vious that attempting to constrain to an "average" value
from the right-hand side of Eq. (5) would not be the
most reliable way of implementing that dispersion rela-
tion. Consequently, it was decided that the value of a~+~

would be varied over some range for each value of the
coupling. This resulted in a grid of solutions, one for
each (g /47r, a~+l) combination.

As mentioned in Sec. II, deviations &om our DRC were
corrected by determining values of ReB~ and ReC+ to
be fit in conjunction with the experimental data. Af-
ter several search cycles, the constraints were regener-
ated kom the resulting solution, and the process was re-
peated. This was continued until the overall chi-squared
stabilized. We found that great care was required in de-
termining a global minimum for these solutions. Numer-
ous local minima were encountered. Solutions caught
in local minima were often found by plotting L versus

g /4m. for the full set of analyses. These ofFending so-
lutions generally deviated &om the parabolic behavior
exhibited by consistent "families" of analyses. Plots of
X versus g /4m are given in Fig. 1 for difFerent choices
of a~+~.

IV. NUMERICAL RESULTS

Our initial analysis consisted of a grid of 12 solutions
comprised of coupling values of 13.0, 13.5, 14.0, and 14.5,
and scattering length values of —0.025@, —0.050@,
or —0.075p . After generating our first solutions, it
became obvious that 13.0 and 14.5 were heavily dis-
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3a' = —0.050
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FIG. 1. Quadratic fit to total Z (data and constraint)
for sets of solutions with 3a+ = —0.025@ (squares),
3a+ = —0.035@ (triangles), and 3a+ = 0.050@ (circles).

favored values for g2/4m, as was —0.075@ i for 3a(+).
We eventually focused on a grid of 15 solutions which
straddled the best fit suggested by the first grid of
solutions: [g2/4x = 13.5, 13.63, 13.75, 13.87, and
14.00; 3a+ = (

—0.025, —0.035, —0.050)p i]. The resul-
tant L "map" derived from these solutions was fitted
with a six-parameter, biquadratic function (as shown in
Fig. 1). The individual Z values for each solution are
given in Table I. A deep minimum was revealed near

g2/4m = 13.7 and 3a+ = —0.03y, . It is significant that
the same minimum is seen in both the constraint "data"
and the experimental scattering data. This means that
the dispersion relations themselves are better satisfied for
that particular value of coupling. While it was again sat-
isfying to see that the vr+p components of the database
data gave the same "best value" for g /4n, a problem
was seen in the charge-exchange (CXS) data. We do not
yet have an explanation for this disparity. Fortunately,
the CXS data add a comparably small contribution to
the data L, and so the essential results should persist
once this anomaly has been sorted out [14].

The errors chosen [15] for the dispersion relation con-
straints used in our fits resulted in a E2/constraint close
to unity for near-optimal combinations of couplings and
scattering lengths. Nonetheless, to check for effects due
to the strength of these constraints, we cut these con-
straint errors in half and regenerated the full set of so-
lutions. Here the optimal value of g2/4x increased to
about 13.8, with a reduced discrepancy between the min-
ima found from the different charge channels and from
the constraints. (The vr+p and charge-exchange results
differ by less than 0.15 in this case. ) The total Z2 in-
creased by approximately 1000 in these solutions. We
have also made comparisons with the Karlsruhe solution
KA84 [16]. In general, our solutions with both "soft"
and "hard" constraints were in good agreement with the

TABLE I. Z values for solutions with soft constraints (see text). The values of g;„/47r are
found from quadratic fits.

Solution

S352
S362
S372
S382
S402

g'/47r

13.50
13.63
13.75
13.87
14.00

Data
(21 078)
48 738
48 467
48 414
48 555
48 981

Constraints
(496)
493
407
386
405
478

7r+

(10 106)
23 080
22 973
22 979
23 079
23 395

(9 304)
20 590
20 527
20 530
20 632
20 784

CXS
(1 668)

5 068
4 967
4 905
4 844
4 802

g';„/4vr
(3a+ = —0.025)

S353
S363
S373
S383
S403

13.50
13.63
13.75
13.87
14.00

13.72
+0.02
48 745
48 490
48 421
48 578
48 976

13.76
+0.04

481
398
392
400
490

13.68
+0.02
23 100
23 002
22 983
23 104
23 395

13.66
+0.03
20 578
20 517
20 525
20 637
20 781

14.25
+0.06
5 067
4 971
4 913
4 837
4 800

g';„/47r
(3a+ = —0.035)

S355
S365
S375
S385
S405

13.50
13.63
13.75
13.87
14.GO

13.72
+0.02
48 849
48 588
48 506
48 695
49 078

13.74
+0.04

471
411
411
410
521

13.68
+0.02
23 173
23 049
23 G17
23 175
23 454

13.66
+0.03
20 627
20 560
20 566
20 694
20 829

14.36
+0.07

5 049
4 979
4 923
4 826
4 795

g';„/4s.
(3a+ = —0.050)

2
+min

g /47r
b.(g /4')
3000a+

4 (3000a+ )

13.71
+0.02
48 405
13.72
+0.01
—26.9
+2.2

13.72
+0.04

383
13.75
+0.03
—32.3
+5.1

13.68
+0.02
22 950
13.68
+0.02
—18.0
+3.8

13.65
+0.03
20 512
13.67
+0.02
—32.3
+2.6

15.42
+0.11
4 753
14.32
+0.05
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dispersion relations considered above.
In order to assess the "cost" (in Z ) of imposing these

DRC, we generated a solution with all fixed-t constraints
removed but with forward constraints retained. The data
X for an "unconstrained" fit were then compared to that
for the fxt with g /47r = 13.75 and 3a+ = —0.025@ . As
the strength of the constraints was increased, the overall
L2 increased by 800 &om a baseline of about 48 000. We
feel that this cost is quite modest in order to satisfy the
dispersion relations.

Our estimate of the uncertainty in g2/4m was based
upon the spread of values from the FTDR, from the con-
sistency of these and the forward dispersion relations,
as well as the depth of the E minimum. Prom these
considerations, and the results of our fits with increased
constraints, we conclude that g2/4vr = 13.75 6 0.15. The
uncertainty estimated &om our E2 mapping was only a
small &action of the value quoted above. The uncertainty
was determined mainly &om the span of values found in
linear fits to the FTDR given in Eq. (1). For coxnpari-
son's sake, the rms deviations [4] for g2/4m taken from
the Hamilton B+ dispersion relation (which was not used
in this analysis) were around 0.04, far smaller than our
estimate of 0.15.

After generating our solutions, we checked their con-
sistency with the A+ DRC displayed in Eqs. (7) and (8).
Though these DRC were not considered in our analyses,
they are both very well satisfied. In fact, the consistency
is superior to that displayed by KA84.

As a final check, we have extracted the coupling con-
stant using charge-corrected amplitudes, instead of the
uncorrected, or hadronic, amplitudes. Note that our
Coulomb correction scheme employs the same direct
Coulomb and Coulomb rotation terms used in KH80,
differing only in the Couloxnb barrier piece [3]. In the
FTDR, we examined the change in extracted couplings
when the Coulomb rotation and barrier were turned on.
The difference was comparable to the error we have
quoted. Consequently, differences between our Coulomb
barrier scheme and that used by KH80 are not expected
to significantly alter our findings.

pling constant and scattering lengths, and for solutions
with tighter DRC. In the beginning, we were not certain
that our iterative algorithm would lead to convergence.

By generating a grid of solutions, we can immediately
see the sensitivity of the data to different choices of pion-
nucleon coupling constant and scattering lengths. This
approach is clearly the most natural way of determining
the "best" value and error estimate for g /4vr. One scat-
tering length combination, a~ ~, is intimately connected
to the value of g /4x through the GMO sum rule. It is
interesting to note that our results were much less sensi-
tive to the value of a(+), as can be seen, for example, in
Fig. 1. This too is important. Although our "near op-
timal" solution (S372) gives values for 3a( ) (0.264', )
and a -z (0.079@ ) consistent with determinations from
the Panofsky ratio and pionic hydrogen measurements,
respectively [17,18],we can easily accommodate any "rea-
sonably similar" value for the scattering length combina-
tion a -„coming &om a recently completed improved
measurement [19]. The solution S372 is also consistent
with the GMO sum rule, if one takes into account the
uncertainties of f2/4s, a( ), and the integral over total
cross sections.

The results from other groups have continued to evolve
and now seem to be converging on a mutually agreeable
value for the coupling constant. The uncertainty on the
Karlsruhe value for f2/4m has been enlarged from 0.001
to a value between 0.002 and 0.003 [8]. Bugg has recently
claimed [12] a value of f2/4vr = 0.0771 6 0.0014. The Ni-
jmegen value rexnains [20] near f2/4vr = 0.075. We should
also mention that the effect of a reduced pion-nucleon
coupling has been extensively studied in the deuteron
system [21]. The most recent results [21] have confirmed
a neutral-pion coupling near 0.075. The charged-pion
coupling was less certain in this study.

We are currently considering a question, raised by
Hohler, regarding the fIexibility of our parametrization
to accommodate structures found in the Karlsruhe solu-
tion, but not in our previous analyses. Other questions
regarding the form of charge corrections, and the thresh-
old parametrization of P-wave amplitudes are also under
study [12].
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