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Heavy ion collisions at ultrarelativistic energies are expected to provide an environment where
quarks and gluons replace hadrons as the appropriate degees of freedom. As the excited region
expands and cools, the transition to the hadronic state might be characterized by phase separa-
tion with hadrons being emitted from dense droplets of quark-gluon matter. Here we study four
techniques to search for such droplets: rapidity correlations, identical kaon correlations, ¢ meson
production, and proton correlations. We conclude that rapidity correlations are the clearest signal
of such fluctuations, and that proton correlations and ¢ production can also be strongly affected by

drop formation.
PACS number(s): 25.75.+r, 25.70.Pq

Early in the next decade two heavy-ion accelerators,
the Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC), will create highly excited re-
gions, similar to heavy ions in size and with tempera-
tures exceeding 200 MeV. Early in the collision, aver-
age particle separation should be smaller than the ra-
dius of a hadron, making description in terms of hadrons
irrelevant. At this point the relevant degrees of free-
dom become those of quarks and gluons. The hot region
will then expand and cool undergoing a transition from
quark-gluon plasma into hadrons.

Since the size of the excited region is an order of mag-
nitude larger than usual hadronic scales and the particle
number in the thousands, one can use the macroscopic
language of thermodynamics and phase transitions to de-
scribe the reaction’s evolution. Through thoughtful mea-
surements and phenomenology one can gain insight re-
garding fundamentals of the phase transition from our
hadronic world to the quark-gluon plasma. The most
basic challenge regarding this phase transition is deter-
mining the order of the transition. Interpretations of
lattice gauge calculations have not yet settled on this
issue as opinions range from first order with a large la-
tent heat, several GeV/fm?, to no phase transition at all
[1,2]. A second question regarding the phase transition is
the surface energy between coexisting phases. Although
not performed with the correct number of quark flavors,
lattice gauge calculation points to a modest or small sur-
face energy [3,4]. The surface energy is important as it
determines the nature of the mixed phase and the dy-
namics of the transition. A large surface energy would
promote large super-cooling and the creation of large in-
homogeneities in the energy density during the mixed
phase. If surface energies are small, there are no imped-
iments to the formation of many small drops or bubbles
[5], leading to energy density profiles which are smooth
when viewed on a scale of more than two or three fermi.

Signatures of a large latent heat or an absence thereof
should be straightforward to find. A large latent heat
brings with it very low pressure relative to the energy
density, and therefore little collective expansion, which
can be determined from singles spectra [6] as well as from
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interferometry [7]. Density inhomogeneities are more dif-
ficult to measure. Spatial information can only be ob-
tained through many-body observables. Two-particle in-
terferometry has been a useful tool for ascertaining av-
erage spatial and temporal sizes for nuclear reactions at
a variety of energy regions. However, fluctuations in the
spatial and temporal characteristics of a reaction are be-
yond the usual interferometric formalisms.

Two techniques have been proposed for identifying
such fluctuations. Seibert [8,9] discussed how rapid-
ity correlations can reveal the existence of drops of hot
plasma. This method makes use of the fact that due
to incomplete stopping, hadrons should be emitted over
several units of rapidity. Hadrons emitted from a quark-
matter droplet would lie within one unit of rapidity of the
droplet. Thus if a large fraction of hadrons are emitted
from drops and the number of drops is not too large, mea-
sureable fluctuations in the rapidity distribution should
ensue, which can be quantified with rapidity correla-
tions. Several experiments have searched for such effects
[10-12]. A second method is to make use of the fact
that droplet formation increases the probability of two
hadrons being emitted very close to one another in coor-
dinate space [13]. If two hadrons interfere with one an-
other, for example Bose-Einstein interference for identi-
cal kaons, that interference will be magnified by the exis-
tence of drops. This interference is quantified through the
two-particle correlation function. Other sources of inter-
ference would be the interaction of the hadrons through
a resonance, such as two oppositely charged kaons which
can create a ¢ meson or two protons which can form the
isospin-one version of the deuteron just above threshold.

The purpose of this paper is to assess the merits of
four methods of searching for quark-matter droplet for-
mation. The four methods are: rapidity correlations,
proton-proton interfermometry, the size of the ¢ peak
relative to the K+-K~ background, and identical kaon
interferometry. To do this we first construct a simple
model of particle emission with fluctuations in emission
probabilities, where we can vary the number of fluctua-
tions or droplets. We then construct the relevant observ-
ables for each of the four methods, trying to determine
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at which point the droplet number becomes so large that
the signal is washed out. Aside from exploring whether
the latter three methods can signal drop formation, we
need to understand whether usual interpretations of cor-
relation meausurements are significantly distorted by the
presence of drops.

Modifiying Bjorken’s thermal picture [14] can give a
simple model that includes random emission, collective
dynamics, and droplet emission. Bjorken’s model as-
sumes an ensemble of thermal sources, uniformly spread
in rapidity, dissolve at a fixed proper time 7 = /2 — 22.
The sources move with a collective velocity v, = z/t. We
modify Bjorken’s picture in two ways. First, we give the
sources a Gaussian distribution in rapidity. Letting 7,
refer to the rapidity of the source,

P(n,) = e /28, (1)

Each source emits with a relativistic Boltzmann dis-
tribution, determined by the temperature T. If p’ is the
momentum as measured in the frame of the source,

dP p’ _ '
A @)

We generate a distribution by first generating a ther-
mal distribution in the frame of the source, then boost-
ing the distribution along the beam axis according to the
rapidity of the source. The positions and times of the
particle’s emissions are also needed to calculate interfer-
ence effects. For a source moving with a rapidity 7,, the
source will emit at a z coordinate

z = 7sinh(n,). (3)

The proper time of the emission is given by an expo-
nential distribution characterized by the lifetime of the
source 7, and the turn-on time 7o:

P(7) = exp(—7/74)0(T — 70). (4)

The transverse spatial coordinate is chosen according
to the distribution

5 + v
P(Z,,y,) = exp (_sz> . (5)

If the source is a droplet, the coordinate of the emission
is spread out by the extent of the drop, Ry:

P(r—r,) = exp(—(ié_ﬁl:{—)z). (6)

The spreading out is done in the center-of-mass of the
drop to be relativistically consistent. Phase-space coor-
dinates are generated as follows.

(1) First choose a rapidity of the source according to
Eq. (1).

(2) Choose a momentum for the particle according to
a relativistic Boltzmann distribution, Eq. (2).

(3) Generate a time according to the expression for the
proper time in Eq. (4).

(4) For nondroplet emission, choose z = 0 and z and
y according to Eq. (5). For emission from drops, modify
z, ¥, and z through Eq. (6).

(5) Boost both the spatial and momentum coordinates
according to the rapidity of the source. For example,

t' = cosh(n,)t — sinh(n,),

(7
2’ = cosh(n,)z — sinh(n,)t.

Rather arbitrarily, we choose the drop size Ry to be
1.0 fm, the transverse source size, R, to be 5.0 fm, and
the temperature, T, to be 175 MeV. We also needed to
choose the fraction of particles emitted from drops as
opposed to the uniform background to be F = 0.5. The
rapidity spread of the source, A, was chosen to be 1.5
corresponding to a spread of three units of rapidity. None
of the predictions in this paper depends noticeably on A,
and since no experiment is likely to cover more than three
units of rapidity, this should be sufficient. The number
of drops in a collision, Vg4, is a variable which we vary.
Since, most of the forthcoming predictions depend only
on the number of drops per unit rapidity, one should
divide Ny by three to get a feel for how many drops per
unit rapidity this represents. The lifetimes, 7, and 7o,
used for the model are discussed later in the paper. The
probability p of any given pair coming from the same
drop is

F2
P=q (8)

Given the probabilities described above, one can gen-
erate pairs of particles statistically. First we look at ra-
pidity correlations. For the results reported below, only
thermal pions were used. More detailed calculations have
been performed which include effects of decays and other
charged particles, but the difference from the direct-pion
case is not substantial. The correlation function C(y) is

defined

Psa.me (y)

C(y) - Pmixed(y) '

(9)

The distributions P,z;e and Ppixea are found by bin-
ning pairs of particles according to their relative rapidity
for two particles from the same event or by mixing two
particles from different events. The results are shown in
Fig. 1 for Ny = 50, 100, and 200. The height of the
correlation scales as the inverse of the number of drops
per unit rapidity and is also proportional to the square of
the fraction of particles originating from drops. There is
nothing new in these graphs as similar calculations were
done by Seibert and collaborators in the formalism of
factorial moments [8,9]. It has been shown that other
causes of correlation such as Bose-Einstein and resonant
decays, also contribute to the correlation [15]. But these
other causes of correlation can easily be identified and
their contributions subtracted from the correlation func-
tion. For collisions at RHIC where the multiplicity will be
several hundreds per unit rapidity, the contribution from
droplet formation should be identifiable if it exceeds one
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FIG. 1. Rapidity correlations for pions. In
order of the peak height, correlations for 50
drops, 100 drops, and 200 drops are repre-
sented by circles, diamonds, and boxes. Even
if drops are as numerous as 50 per unit rapid-
ity, a measurable signal results.

Yo=Y

or two tenths of a percent. Thus if the number of drops
per unit rapidity is less than 100, and half the particles
originate from drops, the drops should be unmistakably
manifest in the rapidity-correlation measurement.

Two-proton emission is enhanced for small relative mo-
menta due to the resonantlike interaction at threshold.
This leads to an enhancement in the correlation for rela-
tive momenta near 25 MeV/c. The size of this enhance-
ment scales as the inverse volume of the proton emission.
Thus, measurement of the peak in the correlation func-
tion has often served as a means to extract a source size.
More accurately stated, the peak in the p-p correlation
function is proportional to the probability that two pro-
tons are emitted within one or two fermi of one another.
If a source contains large density inhomogeneities, the
probability that two protons are emitted in close proxim-
ity to one another is enhanced relative to the case where
emission is spread out uniformly.

The correlation function for two protons can be cal-
culated by first simulating proton pairs with the model
described above, and then binning the pairs according to
the relative momenta. But instead of adding a constant
to each bin when a pair has the appropriate relative mo-
menta, one adds the square of the relative wave function
which depends on the relative momenta and the relative
position at the time the latter proton is emitted. We refer
to this two-particle emission weight as w; ;. This same
technique will be used for the same-sign and opposite-
sign kaon correlations to be discussed later.

v1 +v
¢(P1—:02,7“1—T2+ 12 2(tl—tz))

2

w2 = (10)

This weighting is the standard prescription in correla-
tion analysis. Fig. 2(a) shows the correlation functions
for the cases of Ny = 10, Ny =25, and N4 = oo for drops
which emit instantaneously at 7 = 20 fm/c. The enhance-
ment of the correlation function for small drop number
can be considered as a signal for the formation of drops.
But the assumption of instantaneous emission is unfor-
tunately of crucial importance. If droplets emit over a

long time, protons from a given drop will be well sepa-
rated and not interfere as often. In fact, if the lifetime of
the drops is longer than the lifetime of the uniform back-
ground [16], as expected, proton pairs from drops might
even be less correlated than those from the background
and the signal would be erased. Fig. 2(b) shows the
correlation function for the case where the background
emits according to equation 2 with 7, = 10 fm/c for par-
ticles from the background and 7, =20 fm/c for parti-
cles from drops. For all particles the minimum time 7
was chosen to be 5 fm/c. From viewing Fig. 2(b) we
conclude that the signal washes out when N, exceeds
about 30, corresponding to 10 drops per unit rapidity.
By comparing Fig. 2(a) to Fig. 2(b) one can see how the
uncertainty in lifetimes affects any conclusion one might
draw regarding the clustering of emitted protons. If both
background and droplet emission were characterized by
the same lifetime, that lifetime could be understood from
other correlation measurements and much firmer conclu-
sions could be reached regarding the p-p measurements
discussed above.

The conclusions are also muddled by the uncertainty
regarding drop size. The choice of one fermi is rather
arbitrary. Given the number of drops and percentage of
particles originating from drops, one could determine the
drop size if the energy density of the drops was known.
If the maximum energy density of a drop with a Gaus-
sian distribution characterized by 1 fermi was 2 GeV/fm3
the amount of energy in a single drop would be 30 GeV
which would account for approximately 50 hadrons. Thus
if 1000 hadrons are emitted per unit rapidity it is not
inconceivable that a significant fraction would originate
from several drops of 1 fermi size or smaller. If a smaller
size were chosen the signal would be stronger, although
it is unreasonable to choose a size smaller than a typical
hadronic size of one-half fermi.

Another example of two hadrons which interact
through a resonance near threshold is two oppositely
charged kaons which can form a ¢ meson. The ¢ has
been measured in heavy-ion collisions at the AGS [17].
Here the interpretation is a bit more shaky. K™* and
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K~ are antiparticles of one another, hence they may be
correlated due to the fact that when a strange quark is
produced an anti-strange quark is produced nearby. In
order to apply the correlation formalism, one must as-
sume that the ¢ is in local equilibrium with the K+-K—
interaction. For this to be the case, strangeness must be
thoroughly dissolved in the reaction volume. For such
equilibrated emission the weighting factor w2 can be
chosen to be

r? 1
w1z =1 “exp(“zﬁ) [/ VAL CRE )

Here M is the invariant mass of the kaon pair which
depends on the relative momentum, I' is the width of the
¢ meson, a is an arbitrary small size, and c is a constant
which is chosen such that the amount of extra weight
integrated over all relative momenta and relative position
corresponds to the correct amount of phase space:

3 3,,.
[ G twa-n =3, (12)

The factor 3/2 is due to the three spin states of the
¢ and the 50% probability that a ¢ decays into charge
kaons. Results for opposite-charged kaon pairs are shown
in Fig. 3(a) and Fig. 3(b) for the same circumstances
as the proton pairs in Fig. 2. The ability to resolve
droplet structures with charged kaons appears somewhat
stronger than the resolving power of protons. The ¢
yields a strong peak because it is a sharp resonance near
threshold, but not so near threshold that the Coulomb
interaction would dampen its peak. The ¢ resonance
resides 32 MeV above the K+-K~ threshold. Other res-
onances one might consider are located even more above
threshold. The height of the peaks in a correlation func-
tion will scale inversely with the density of free states
which means that resonances which are located further
above threshold such as the delta resonance or the K*

FIG. 2. Correlations for two protons, as-
suming the protons were emitted at a proper

time of 7 = 20 fm/c, are shown in the up-
per panel. Correlations, assuming protons
were emitted exponentially with the times de-
scribed in the text, are shown in the lower

75

panel. In order of the peak height, correla-
(b) tions for 10 drops, 25 drops, and an infinite
1 number of drops are represented by circles,
diamonds, and boxes.
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become increasingly difficult to extract from statistical
noise.

Another source of interference among particles which
depends on their relative positions is the Bose-Einstein
interference between identical particles. Here we con-
sider same-sign kaons. Kaons’ lower thermal velocities
makes them somewhat more correlated to a distinct spa-
tial region thus reducing the number of drops which could
contribute to the emission of two kaons with the same
momentum. Thus two-kaon interferometry is slightly
more distorted by drops than is two-pion interferome-
try. For this calcuation we use the Coulomb-corrected
symmetrized wave function for the scattering wave and
weight the pairs as is shown in Eq. 10. Since there are
three uncertainty relations, one can investigate the three
components of the relative coordinate of emitted kaons.
Trying to reduce the effects of lifetime, we choose to sam-
ple pairs whose relative momentum is perpendicular to
both the beam axis and the momentum of the kaon pair.
This is referred to as the sidewards direction. Figs. 4(a)

and 4(b) present Gamow-corrected correlation functions.
The width of the Bose-Einstein correlation is inversely
proportional to the source size, and droplet substructure
manifests itself through a broadening of the correlation
function at large relative momentum.

By inspection of Fig. 4 one sees that Bose-Einstein
correlations are the least affected by droplet formation or
phase inhomogeneities. This is not a disappointing result
as this allows us to trust Bose-Einstein results for yield-
ing source sizes using single-particle distributions and
neglecting many-body density fluctuations. Only in ex-
treme cases of emission from just a few drops and severely
restricting the direction of the relative momentum, is the
correlation strongly distorted by droplet formation. In
these cases the inhomogeneities should be already appar-
ent in the opposite-charged kaon correlations as well as
in p-p correlations.

Despite the fact that simple models were used with
somewhat arbitrary assumptions, we can come to several
useful conclusions. Most importantly, the most power-

FIG. 3. Correlations for K*, K~ pairs in
the vicinity of the ¢ resonance, assuming
emission at a proper time 7 = 20 fm/c, are
shown in the upper panel. Correlations, as-

50 100 150

200 suming exponential emission with the times

described in the text, are shown in the lower
panel. In order of the peak height, correla-

tions for 10 drops, 25 drops, 50 drops, and an
infinite number of drops are represented by
circles, diamonds, boxes, and crosses. Even
if the fluctuations are numerous, but less than
about 20 per unit rapidity, a noticeable dis-
tortion ensues.
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va/z (MeV/c)

200
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FIG. 4. Correlations for identical kaons,
assuming emission at a proper time 7 = 20

fm/c, are shown in the upper panel. Corre-
lations, assuming exponential emission with
the times described in the text, are shown in
the lower panel. In order of the peak height,
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correlations for 5 drops, 10 drops, and an in-
finite number of drops are represented by cir-
cles, diamonds and boxes. The drops affect
the tail of the correlation function, but are
not noticeable for large drop numbers.

0 50 100
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ful method to view droplet formation is through rapid-
ity correlations. If the number of droplets per unit ra-
pidity is less than about 100 and half the particles are
from drops, an experimental signature should exist. If a
smaller fraction, for instance one fourth, of the particles
originate from drops, the number of drops per unit rapid-
ity which would yield a measurable signal would be about
25. Other methods in order of their resolving power are
opposite-sign-kaon correlations near the ¢ peak, proton-
proton correlations, and same-sign-kaon correlations due
to Bose-Einstein interference.

Opposite-sign-kaon correlations are plagued by the as-
sumption that strangeness has dissolved throughout the
plasma and that kaons are uncorrelated in coordinate
space aside from their interaction through the ¢. In fact
if rapidity correlations demonstrate the lack of spatial in-
homogeneities, the ¢ peak could be used to gain insight
into the dynamics of emitting strange mesons and in par-
ticular whether strange and anti-strange mesons are un-
correlated. To do this one would compare source sizes
extracted from identical-kaon interferometry with source

150

sizes extracted from opposite-sign-kaon measurements.
All four methods have the same scaling with respect
to the fraction of particles from drops and the number
of drops per unit rapidity, F'2/N4. In order to determine
the fraction of particles emitted from drops F' and the
number of drops Ny separately, one would have to use
a three-body measurement such as a three-body rapid-
ity correlation. Three-body correlations scale as F3/N3.
The last three methods depend on droplet size, so there
is reason to hope that some information about substruc-
ture could be extracted. Finally, since the distortion of
identical-particle Bose-Einstein correlations is small and
confined to the tail of the peak, it allows us to safely
extract source sizes from correlation functions without
considering the effects of density inhomogeneities.
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