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The astrophysical reactions C(n, p)1sO and 7Be(p, p)sB
and Coulomb dissociation experiments
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The use of the Coulomb dissociation method to obtain the cross sections for the radiative capture
reactions C(a, p) 0 and Be(p, p) B is investigated. The contribution of the nuclear interaction
to the breakup is included. Due to the low binding of the proton in B the second reaction is
dominated by Coulomb breakup. The effects of Coulomb reacceleration of the fragments and of the
excitation of states in the fragments are also studied. Ideal kinematical conditions for the experiments
are investigated.

PACS number(s): 25.40.Lw, 25.55.—e, 97.10.Cv, 27.20.+n

I. INTRODUCTION

Among many radiative capture reactions of interest in
astrophysics, the ~2C(n, p) ~sO and ~Be(p, p) sB reactions
attract most of the experimental interest. The first reac-
tion is a key one in the synthesis of heavier elements, link-
ing the stage of helium burning into carbon and oxygen
and the later stages of carbon and oxygen burning. The
stellar burning for this reaction occurs at 300 keV. Due
to the Coulomb repulsion the cross section is very small
and no direct laboratory measurements have been done
at this energy. This reaction is dominated by the El and
E2 electromagnetic capture. One predicts that these two
components for the radiative capture are equally impor-
tant at 300 keV [1]. Recently indirect experiments have
been done by measuring the P-delayed n decay of ~sN

which allowed the determination of the El component of
the radiative capture cross section [2, 3]. As for the E2
component another alternative experiment has yet to be
found to finally determine the value of the radiative cross
section at 300 keV.

An alternative is the Coulomb dissociation method. It
has been proposed in Ref. [4]. The method is based
on the fact that the dissociation of a projectile in the
Coulomb field of a heavy target can be directly related
to the photodissociation cross section. This method has
been successful in determining the radiative capture cross
sections of the reactions N(p, p)~40 [5] and 2H(n, p)sLi
[6]

It can be shown that the Coulomb induced E2 exci-
tations are larger than the E1 excitations at low bom-
barding energies ( 50 MeV/nucleon) [7]. Exploring this
property a recent study on the use of this method for

C(n, p) 0 has been performed in Ref. [8]. The con-
tribution of the nuclear interaction to the breakup was
neglected. In Sec. III of this work we study the efFects
of the nuclear induced breakup. It is shown to be impor-
tant and makes it very difIicult to disentangle the nuclear
from the Coulomb induced breakup.

The other reaction of great interest in astrophysics is
Be(p, p) B. It is closely related to the so-called solar

neutrino problem [9]. The radiative capture cross sec-

II. DETERMINING THE RADIATIVE CAPTURE
CROSS SECTIONS FROM COULOMB BREAKUP

To relate the cross section for the Coulomb breakup
a + A: b+ c+ A with the astrophysical 8 factors
relevant for the reaction b+ c ', a + p what is needed
is the cross section

0
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The relative motion energy E~ and the laboratory en-
ergy E~ p are related to the measured values of the final
energies of the fragments, Ep and E„respectively, by

~bcEs = E*+0=
2m'

—@b+q E... (2)

where E is the energy transfer to the system b + c and

t'ps p. &
ps. =mt,.

~
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tion has been measured to relative energies as low as 150
keV. But in the Sun the reaction occurs at a much lower
energy, E~B, ——20 keV. The possibility for a direct mea-
surement at this energy is currently nonexistent, due to
the very small cross section. The Coulomb dissociation
method offers a good alternative. As shown in Sec. IV of
this work the breakup cross section is dominated by the
Coulomb dissociation mechanism at intermediate bom-
barding energies.

A diKculty in these experiments is the precise deter-
mination of the breakup energy. This will be considered
in Sec. V. It is shown that under normal conditions an
accuracy of 20 keV is obtainable. But before we pro-
ceed it is important to show how to relate the coinci-
dence measurements obtained in Coulomb breakup ex-
periments with the radiative capture cross section for a
given energy. This is done in Sec. II.
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The binding energy of b+ c, and the recoil energy of
the target are given by Q and E„, ;i, respectively. We
consider a lead target due to its large charge. For sB
projectiles, Q = —140 keV, while for ~sO, Q = —7.162
MeV. The lead target is assumed to remain in its ground
state. At bombarding energies around (or higher than)
some tens of MeV per nucleon, a simple recoil formula
can be derived as a function of the scattering angle. The
recoil energy arises &om the Coulomb repulsion and is
given by

(Z Z~e2)2

(mz/m )Ei~b b'

As an example we take the impact parameter b as 15 fm,
in the reaction sB+2 sPb. Then E„,;i 250 keV, at
Ei b = 240 MeV (30 MeV/nucleon). From these numbers
we see that for this particular reaction

Q& Erecoil ++ EbLb ~

Thus, the projectile energy is basically the same before
and after the breakup.

Calling by O&, the relative solid angle of the (b + c)
system in their c.m. kame, E~ their relative energy in
this kame, and O the scattering angle of the a + A
system, we have the relationship

d4o. d4o. J,
dE~ dET dOg, dO de dE, dOg dO,

where ET = E, + Eb —Q + E„,;i is the total kinetic
energy and J is the Jacobian

ma
pa = Plab pb pc .

a+m (7)

We use now energy conservation, multiplying Eq. (5)
by h(ET —Ei b) and integrate it over E, W. e get

o

dEt, dOg dO,
m~ p~mc pc d cT 0Ec

mac pic Map pg dEgc dOgc dOa BET

(8)

where the relation between the variables are given by
Eqs. (2), (3), and (7), and

OE, P. (PZ —Pb)= mg mc+mg mc
BET pc

In order to relate the cross section dsa/dEbdO'bdO,
with the astrophysical S factors we assume for simplicity
that the angular distribution of the fragments is isotropic
in the projectile frame of reference. This approximation
is not necessary. As shown in Ref. [10] one can calcu-
late the angular correlations between the &agments for a
given experimental condition. We get

d o' mg pg mc pc DEC d o

dEb dO, dOb 4s mb, pb, M ~ p~ BET' dEb, dO

(10)

The relation with the photodissociation cross section
is obtained by using [4]

B(Eb, E„Ob, O, ) mb, pb, M ~ pg
B(Eb„ET,Ob„O ) mb pb m, p,

(6)

o
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where dn r/dO is the virtual photon number per unit
solid angle O, for the relevant x8 multipolarity in the
breakup process. The photodissociation cross section can
be related to the radiative capture cross section by means
of the detailed balance theorem. One obtains 6nally

d3cr

de dO, dOg

I

mb pb m~ p, BE~ (2Jb+ 1) (2J~+ 1) 2 dn r S(Eb,)
m~

mb, pb, M~~ pR BEz 4vr(2J +1) dO E
2jl ZbZge mbg

( )2',
Semiclassical expressions for the virtual photon numbers are given, e.g. , in Ref. [7]. These were used in Ref. [8] to

deduce the relative contribution of the E2 and El breakup mode to the reaction Pb(~sO, a+~2C)Pb. However, this
reaction is strongly inQuenced by the nuclear interaction. The equivalent photon numbers are also in8uenced strongly
by the distortion of the c.m. scattered wave. A way to account for this effect was given in Ref. [11].

III. COULOMB VERSUS NUCLEAR BREAKUP

As shown in Ref. [11] the Coulomb excitation amplitude in high energy collisions for a given multipolarity EA,
including the effect of strong absorption, is given by

. +Sm ZTeM~~ E 1)
( )

~)2 A~)(E, 8) if p = +1,

for E1 excitations, and

„(E,e) = ——,(, ) B(E2, Z )

'
A~2(E, 8)/p if p = +2,
—(2 —v /c ) A~i (E, 8) if y, = +1,
Ap(E 8) if@=0

(14)
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for E2 excitations. In the above equations p = (1—
i) /c ) /, and p is the azimuthal component of the
transferred angular momentum. The functions A„are
given by [11]

ftofK, P) = dbbdrfqb) Ko(
'

) exp ibfb)
E 6

0 phv

where q = 2k sin(8/2), k is the c.m. momentum of a+ A,
and J~ (K~) are Bessel (modified) functions of order )fi.

y(b) is given by

Xfb) = —„„ f ffo"'(»' b)de'+ tfofb) (16)

where UN )(r) is the nuclear potential for the a + A
system. The Coulomb phase is given by

ZIG�ZAG

yc(b) = 2 O(b —Rf)) ln(kb) + O(Rf) —b) ln(kBO)
hv

ln 1 + 1 62 R2 1j2 1 g2 R2 lj2 1 g2 R2 3j2 (17)

The first term inside the parentheses is the Coulomb
eikonal phase for pointlike charge distributions. The
second term accounts for the finite extension of the
charge distributions. The radius R0 is taken as the
sum of the radii of two uniform charge distributions,

I4 ——1.2 (A + A&~ ) fm.
Using the detailed balance theorem the reduced matrix

elements B(EA, E~) are given by

B(E1, E)=

x exp

27 h E
64m mb, c Eb,

2~ZbZ, e mb,

2Eb,
(18)

and

B(E2, E)=

x exp

1125 5 c 1

487rs ms, Es2, E
27l ZbZc& mbc

2Eb,

where it was assumed that the transitions are from the
ground state (J = 0) to the J = 1 and J = 2 continuum
states, respectively.

The nuclear contribution to the breakup can be ca1-
culated within the distorted wave Born approximation.
The breakup amplitude is

where r is the vector between the fragments b and c and R
is the a+ A relative coordinate. The coupling interaction
is

fN = —
2

(4'( )(R)q')f(r) ~AV(r, R) ~iIf(+)(R)p;(r)),
2vrh

(20)

where m; stands for the mass of particle i. In Eq. (20)
)If(+) (@( )) is the distorted wave with outgoing (incom-

ing) boundary condition, p;(r) is the bound ground state
of b + c, and ft)f (r) is the final state with the fragments
in the continuum.

For the c.m. scattering waves we use the eikonal ap-
proximation

t*(R)fi r (R) = exp(itt R+itf(b)),

where y(b) is given by Eq. (16).
Since the optical potentials U~ ~, U~ ~, and U~'

are not known experimentally for all combinations stud-
ied here, we construct them by using the "t-pp" approx-
imation [12]. They are given by

Uo (R) = — "
ooo (o+i) f d r pf fr) pe(R —r),

(24)

where p~ (j = a, b, c) and p~ are the ground state densi-
ties, O.N~ is the nucleon-nucleon cross section, and ot is
the ratio between the real and the imaginary parts of the
nucleon-nucleon scattering amplitude at zero degree. In
Table I we give a set of values for uN~ and n for three
laboratory energies used here. The ground state densi-
ties of carbon, oxygen, and lead are parametrized by a
modified fermi function pfr) = p(0)ft -b cr /Rro)(1+

—1
exp (r —Rf))/a and the proton by a Gaussian den-

sity. The densities are normalized to the mass number.
The parameters used are given in Table II.

The transition densities, hf; = P; Pf, for these reac-

AV(r, R) = U~ (ri,~) + U~ (r,A) —U~ (R).

(21)

TABLE I. Parameters of the nucleon-nucleon ampli-

tude. The amplitude is considered isotropic: f)tf ftf

= kftfftfa~ftf(a+ i)/47f. These values are taken from [13].

mb
rbA =R — r,

ma

mcr.A ——R+ r,
mQ

Above, UN is the projectile-target optical potential

and U~ and U~ are &agxnent-target optical poten-(bA) {cA)

tials. The coordinates rbA and r A are given by

E) b (MeV/nucl)

30
50
100

fT)vtv (fm')

19e6
10e3
5.3

0.8?
0.94
1.0
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TABLE II. Parameters for the nuclear ground state
densities. A modified Fermi function p(r) = p(0)(l+
cr /Ro)(1 + exp[(r —Ro)/a]} was used for carbon, oxy-

gen, and lead. The density of the proton was parametrized

by a Gaussian with radius size R0. The data are from Ref.

[14].

Nucleus

H
12'
16O
208Pb

R0

0.8
2.335
2.608
6.624

0.522
0.513
0.549

-0.149
0
0

tions were calculated by using a two-body model for the
system b+ c. In particular, we assume that Up, is the
sum of nuclear, U~, and Coulomb, U&, terms. For the
former, we take a Gaussian form,

r'
U~ = Up exp (25)

while for the latter we take the Coulomb potential of a
homogeneously charged sphere of radius 8,:

(4v(E) I4f(&')) = &(E &')— (27)

In practical terms, Eq. (27) requires that the continuum
wave functions are normalized to the asymptotic form

sin(kr + 6')
r mb~ 1l ) (2S)

1/r for r & R„c( ) b c (3 r2/R2)/2Q for r ( Q

(26)

In the case of C+a we used Up = —85.9 MeV, Rp ——

2.8 fm, and R = 3.55 fm. These parameters yield a
ground state wave function with binding energy equal to
Q = —7.16 MeV. For p+7Be we use Ue ———90.5 MeV,
Rp = 1.9 fm, and R, = 2.4 fm, which yield a binding
of Q = —140 keV. Although not completely legitimate,
we used the same set of parameters to obtain the wave
functions Py in the continuum.

The continuum wave functions are normalized to one
state per unit energy. Formally this is written

10-3
20spb(i 60 tx+C)

V/nucl-

which can be used as input in Eq. (10) to relate to the
experimental measurements. In Fig. 1 we show the dif-
ferential cross section for the breakup of 0 into o.+ C
in a collision with a lead target at 100 MeV/nucleon.
This energy is ideal for this experiment. At lower en-
ergies the cross section is smaller. At high energies the
magnitude of the cross section is somewhat larger but it
is also more diKcult to have a good angular resolution
for the fragments due to the narrowing of the kinemat-
ical cone. A total excitation energy E = 8.1 MeV was
chosen.

The Coulomb amplitude is dominated by the E2 mul-
tipolarity. Thus, we used Eqs. (14) and (19) with the as-
trophysical S value S@2 ——20 keVb. The result is given
by the dashed line in Fig. 1. The nuclear amplitude was
calculated from Eq. (20) using the formalism described in
the text which follows it. The calculated curve is shown
as a dash-dotted line in Fig. 1. The solid curve is the to-
tal cross section, including the interference between the
nuclear and the Coulomb amplitudes. Both cross sec-
tions are strongly influenced by diffraction effects. The
Coulomb cross section peaks at 8 2 . At lower angles,
corresponding to collisions with large impact parameters,
the Coulomb 6eld is weak and the cross section is small.
At large angles the Coulomb cross section decreases with
increasing angle due to the strong absorption at small
impact parameters. The nuclear cross section oscillates
with a diffraction pattern which basically reflects the ge-
ometry of the system.

The total cross section is strongly influenced by the nu-
clear contribution to the breakup. A direct relationship
between the breakup cross sections and the radiative cap-
ture cross sections seems to be infeasible at these bom-
barding energies. The Coulomb cross section at smaller
values of Ep, is dominated by the nuclear breakup. How-
ever, a 6nal judgement of the possible use of the Coulomb
dissociation method for this reaction case should only be
made after a microscopic calculation for the transition
density &pm the grpund state pf 0 tp the ~+12C cpn
tinuum is done. This is because the nuclear breakup
is only sensitive to the tail of each wave function. The

CT

dO dEb,
(29)

k = 2m~E h, and b is the phase shift. With this
normalization the differential cross section is given by I: pl;l'I: jib

~

g Q ~

I ~~ ~

10-6
0

10-4
0

10-5

0

8 10
For 0+Pb: o.+ C+Pb we use E = 2 while for
B+Pb:p+ Be+Pb we use S = I, with the Coulomb

amplitudes calculated as in Eqs. (13) and (14).

IV. DIFFEKENTIAI CKOSS SECTIONS

Here we apply the formulation of the previous sec-
tion to obtain the difFerential cross section d o /dEb dO

0 &.m. [deg]

FIG. 1. Differential cross section for the breakup reaction
0+Pb: o+ C+Pb at 100 MeV/nucleon, with final rela-

tive energy of the fragments equal to 1 MeV, and as a function
of the scattering angle. The dashed (dot-dashed) curve is due
to the Coulomb (nuclear) breakup. The solid curve includes
both mechanisms and the interference between them.
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Z A C 1 e —1

dn. 4~2 e

+ K,'~(ej) (30)

where e = 1/ sin(8 /2), a = 1/137, ( = E ap/phv, and
op —Z Z~e /2E(ab.

Using the above expression for dnzi/dO in Eq. (11)
we obtain the dashed curve in Fig. 3 for the same re-
action, but at 30 MeV/nucleon. One observes that the
quantum result deviates &om the semiclassical one at
0 ) 4'. At lower angles the agreement is quite good.

form of the tail might be reasonably well described by
the two-body model used here. The internal part of each
wave function is only relevant for an overall normaliza-
tion. But this normalization is important to describe the
magnitude of the wave function in the tail and this is
very much dependent on the model assumed for the in-
trinsic structure of the b+ c system. As shown in Ref.
[15] the internal structure of the n and C are important
to give the correct number of nodes in the ground state
and continuum wave functions.

The situation is much better for the B breakup. Since
the binding energy of the p+ Be system is very small,
the Coulomb breakup amplitude is very large. This also
changes the dependence of the Coulomb cross section
on the bombarding energies. It is found that the total
Coulomb breakup cross section is maximum at bombard-

ing energies of order of 10 MeV/nucleon. In Fig.
show the differential cross section for the breakup of B
at 50 MeV/nucleon and Es, ——100 keV. The Coulomb
amplitude is dominated by the E1 multipolarity. We
used the value of SEq ——20 eVb. One sees that for
c.m. scattering angles smaller than 6' the cross section
is dominated by the Coulomb interaction. The peak at
very small angles reflects the fact that the large impact
parameters contribute more to the cross section.

It is instructive to compare with the Coulomb cross
section obtained with a semiclassical method [7]. In this
case the equivalent photon number which enters in Eq.
(12) is given analytically by

1 0-&

1

102 '

1 0-3

Be)
nucl

1 0-5
6 8

8, f11 [deg]

FIG. 3. Comparison between the angular distribution for
the Coulomb breakup in Fig. 2 with another obtained by
means of a semiclassical calculation (dashed curve).

This shows that strong absorption is not relevant for the
scattering at low angles. The peak at small angles is a
consequence of the adiabaticity condition. For ( )) 1

(0 (( 0.3') the Coulomb field is too weak to provide the
necessary breakup energy. For ( (( 1 (8 )) 0.3') the
Coulomb field is very strong and privileges the breakup of
the projectile to final relative motion energies Ep, larger
than 100 keV. Therefore, the cross section at a fixed rel-
ative energy of the fragments in the final channel has
a peak at the optimal scattering angle corresponding to
that energy. For the case above this angle is about 0.3 .
We note that this is the angle for the scattering of the
c.m. of the p+"Be system. Due to the energy transfer,
the fragments will be observed in a much larger opening
angle, as we discuss in the next section.

An interesting problem is related to the excitation of
the Be fragments. Be has an excited state at E* = 450
keV. Since this energy is small, an appreciable amount
of excited Be fragments could be expected. But, since
the virtual photon spectrum decreases with the photon
energy this does not actually occur. From the equations
developed in Sec. I one can show that the ratio between
the cross sections for the two breakup possibilities is given

by (assuming that the S factor for the capture from the
excited state in Be is the same as that for the ground
state)

1 0-&
cr* E nEi(E + E*)
a. (E +E*)' n~i(E )

(31)

1 0-2

1 0-3

1 0-4

where n~i(E ) is the total virtual photon numbers for
a B+Pb collision [7]. We find that this ratio is less
than 0.04 at collisions in the range of E~ b

——30 —100
Me V/nucleon.

1 0-5

10

V. ENERGY RESOLUTION AND
REACCELERATION EFFECTS

8 c.m. [degj

FIG. 2. Same as in Fig. 1, but for the reaction B+Pb
:p+ Be+Pb at 50 MeV/nucleon and E~s = 0.1 MeV.

Although the c.m. of the fragments are focused at
small angles for a small energy transfer, there will exist
an appreciable opening angle for the fragments. This
opening angle can be obtained &om Eq. (3). One gets
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Esc Es Esp Es, Es, Esp'+ 2 cos 8gc + 2 cos Hs,
mac ms msi ms ms ms&

where

cosos, = cos8s cos8, + sin 8s sine, cos(Ps —P,) .

(33)

The plus (minus) sign in Eq. (32) corresponds to the
solution when the fragment c is faster (slower) than frag-
ment b, but having the same relative energy. Also, the
above relation limits the values of 8~, for which one has
a real solution for E, On.e obtains that the following
condition has to be fulfilled:

2 mg E~
cos 8' + 1—

c
(34)

For the reaction sB+Pb at 50 MeV/nucleon, if we set
Epro&on 50 MeV, and E~ ——250 keV, then 8propon- Be
can be as large as 5'.

Also important is the uncertainty in E~ due to the
uncertainty in Hs, and in Es and E,. From (3) one has

E~ E E~E
Eg ——mg + ' —2 os 8gc

mg mc mgmc
(35)

The resolution depends upon 8g, via

EgE,
AEg, ——2m~ ' sin8~ 68t„.

mgmc
(36)

An uncertainty in Vp results in

V~, AVg, ——Vb AVg —V, AV~cos8~ . (38)

The most favorable situation occurs when the nuclei de-
cay perpendicular to the direction of motion. In such a
case

V cos8g V V~,

The energy resolution which may be obtained is sig-
nificantly better than the energy resolution of either de-
tector telescope [4]. For example, in the reaction sB+Pb

; p+ Be+Pb at E&~p ——400 MeV, taking Epro&on
MeV, E~B, ——350 MeV, 8g, = 5', and 68 = 0.1', we get
DER, = 13 keV.

In terms of velocities Eq. (35) reads

V&, ——V& + V, —2VgV, cos8g

I

energy resolution for the radioactive beam (in this case,
a sB beam) is possible. Because of the poor quality of
typical secondary beams, the energy resolutions might be
much worse than those obtained above.

A 1ast and more involved problexn which one has to
consider is the possible reacceleration of the &agments
after the breakup. This occurs due to the action of the
Coulomb field of the target. For fragments with equal
charge-to-mass ratio, e.g. , o. and C, the reacceleration
is the same and no net effect is observed. On the contrary,
e.g. , p and Be, there will be a deviation of the measured

Ep &om the relative motion energy associated with the

energy transfer in the breakup.
The final state interaction between the fragments is

not relevant since this will also be manifest in the re-

verse radiative capture reaction of interest. What mat-

ters here is the further reacceleration of the fragments

after the breakup. We will use the following procedure
to calculate the reacceleration effect. We assume that
the breakup occurs at the distance of closest approach
and that the fragments follow Coulomb trajectories af-

terwards. We assume that the particles are separated

by a distance of 4 fm at their initial breakup position.
At the end of their trajectories the extra relative energy

gained by reacceleration is determined. This will depend
on their orientation at the breakup point. Thus, their
initial orientation is taken randomly and the final result

is averaged over the number of simulations. A similar

method has been used in Ref. [16] to account for the
reacceleration effect in Li breakup experiments.

For p+rBe incident on lead at 50 MeV/nucleon (solid
curve) and 100 MeV/nucleon (dashed curve) the reac-
celeration energy is shown in Fig. 4 as a function of
the impact parameter. It is large ( 120 keV at 50

MeV/nucleon) at grazing impact parameters. But it de-

creases rapidly with increasing impact parameter. An

initial relative energy is given to the kagments. But it is

found that the dependence of the reacceleration effect on

it is very small for the relative energies of interest, 100
keV.

0.15

0.12—

and hence the right-hand side of (38) becomes small, i.e. ,

Vg AV~ && VgAVg .

Similarly we can show that

V~AV~ && V,AV,

(40)

(41)

and the resolution which can be obtained depends weakly
on the energy resolution for Eg and E . These results give
support to the studies performed in Ref. [4] regarding
the accuracy limits in determining E~. It is important
to note that these arguments are valid when a reasonable

0.06—

0.03—

0.00
0 20 40 60 80

b Cfrn]

FIG. 4. Extra relative energy due to Coulomb reacceler-
ation of the proton and Be after the breakup.
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(&E) = d bP(b) EE(b)
&min

d bP(b) .
bmin

(42)

The reacceleration energy for a given impact parameter
has to be weighted with the breakup probability:

This quantity does not depend on the model for the nu-

clear breakup since the excitation probability is a prod-
uct of kinematical factors and the matrix elements for
the breakup [7]. These matrix elements do not depend

on 6 and are cancelled in the division. Using the analyt-
ical formulas obtained in the semiclassical theory [7] one
gets

OO OO

(b,E) = d b K~ (() + Ko(()/p b,E(b) d b K~(() + Ko2(()/p2
dmin ~m.

(43)

where ( = E b/b'av. Using b;„= 1.2(A + A& )
fm and the results obtained above for AE(b) we find

(AE(b)) = 14.6 keV and 9.3 keV for E~ b = 50 and 100
MeV/nucleon, respectively. These values are tolerable
for the precision that one wants to extract &om the ex-
periments.

VI. CONCLUSIONS

The possibility of using the Coulomb dissociation
method to determine the radiative cross sections u( C,
p)~sO and p("Be, p)sB has been investigated. While
the perspectives are not very favorable for the former
reaction, they are quite good for the later one. This
is basically due to the very small binding of sB which
renders a very large Coulomb dissociation cross section.
The nuclear contribution to this reaction is negligible for
scattering to forward directions.

The limits of energy resolution that one may extract
&om these experiments were also investigated. The
method limits the energy resolution for the radiative cap-

ture energy in the range of 10—20 kev. Therefore, experi-
ments using this method for the p(~Be, p) B are promis-
ing and should be encouraged.

The perspectives of using this method for other reac-
tions of astrophysical interest depend essentially on the
energy transfer required. For loosely bound systems,
e.g. , B, the Coulomb force is very effective to induce
the breakup and the Coulomb cross section can be many
orders of magnitude larger than the nuclear one for prop-
erly chosen experimental conditions. On the other hand,
experiments with stable beams, e.g. , 60, bene6ts from
the intensity of the beam which can be obtained with
many orders of magnitude higher than that for a ra-
dioactive beam, e.g, B. One could sacrifj. ce a great deal
in magnitude of the cross section if an energy could be
found at which the nuclear contribution would be negli-
gible. To obtain a definite answer to this question more
theoretical efFort is certainly needed.

I am very indebted to Sam Austin, Moshe Gai, and
Tohru Motobayashi for stimulating discussions.
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