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We study two-body currents in the noninteracting relativistic Fermi gas model. Special emphasis
is put on the role of the A isobar. Due to a resonance behavior, relativistic two-body isobar currents
are found to be important in comparison with experimental data. Real-pion production is studied
within the same framework, and the importance and physical implications of the energy dependence

of the A-isobar decay width are stressed.
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I. INTRODUCTION

One of the most fruitful ways to obtain information on
the nucleus and its constituents has been (and will be)
the scattering of leptons off nuclei (for a recent review
see, e.g., [1]). The response of the nucleus in these scat-
tering processes can be formulated in terms of structure
functions. The latter are solely determined by the prop-
erties of the nucleus and allow for direct and stringent
tests of models that describe the physics that is probed
in these scattering processes. When the projectile energy
becomes comparable to or larger than the nucleon mass,
one expects a breakdown of a nonrelativistic treatment.
One at least needs a relativistic framework to be able
to study, in the kinematic region considered, the limits
of validity of the conventional physics in terms of meson
and nucleon degrees of freedom. In this paper we develop
a systematic and consistent analysis of the contribution
of relativistic two-body meson exchange and isobar cur-
rents, as well as real-pion production in the framework of
the relativistic Fermi gas. The first results of this analy-
sis were presented in [2,3]. There are several motivations
for this work. The response of the nucleus in an inclusive
electron scattering experiment can be phrased in terms of
two structure functions: the longitudinal response func-
tion which is essentially determined by the nuclear charge
distribution and the transverse response function which
is determined by the nuclear current distribution. One
of the central goals of intermediate-energy physics is to
understand the experimental data for these two struc-
ture functions, which became available during the early
and mid eighties, simultaneously. The experimental data
of the transverse response function of nuclei obtained
from (inclusive) electron scattering at intermediate en-
ergies show a distinct two-peak structure as a function
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of the energy transferred to the nucleus in the scattering
process [4,5]. The first originates from the scattering of a
single nucleon, the quasifree scattering process. The sec-
ond is contributed to the excitation of the first nucleon
resonance: the A isobar. The region in between these
two peaks is called, for obvious reasons, the dip region.
The experimentally observed strength in the dip region
is large. Theoretical models based on one-body processes
only, do not give enough overlap in the dip region to ac-
count for the observed strength. It was then postulated
that two-body processes play an important role in the
dip region. We consider two types of two-body currents.
One is a direct consequence of the requirement of current
conservation at the level of the nuclear electromagnetic
current. This requirement gives rise to 7 meson exchange
currents. Their manifestation has been unambiguously
identified in deuteron breakup experiments at threshold
[6]. Due to the constraints from current conservation
there is little ambiguity in the construction of these cur-
rents. The second contribution to the two-body current
we consider are the A-isobar currents. These are much
more model dependent since they are not constrained by
current conservation. Since both types of two-body cur-
rents have little effect on the nuclear charge distribution,
these two-body currents will mainly affect the transverse
response function. One can therefore hope to give a sub-
stantial contribution to the simultaneous understanding
of the two response functions.

A first analysis along these lines was carried out in [7].
Van Orden and Donnelly published an extensive report
on these calculations of the contribution of two body-
currents in a noninteracting Fermi gas model [8]. Their
conclusion was that these processes cannot provide the
major part of the strength in the dip region. Their anal-
ysis is, however, a nonrelativistic one for they apply a
static limit procedure which renders the current opera-
tors local. One of our objectives is to study how the latter
procedure affects their conclusions. This then leads us to
the development of a relativistic formulation of the con-
tributions of two-body currents to the response functions,
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the results of which we study in detail. In [2] we showed
that the relativistic analysis gives rise to a resonant be-
havior of the two-body isobar currents and results in a
much better description of the dip region.

More recently, data for the nuclear response at much
larger energy and momentum transfer on the order of
1 GeV became available [10]. They supply an excellent
testing ground for the model we developed, since one may
expect a priori a breakdown of the static-limit procedure
at this energy scale. At the same time one is approaching
the energy region where it becomes interesting to study
whether a meson-nucleon based model can still provide
satisfactory results.

In order to make a meaningful comparison with the
data the quasifree scattering process and the real-pion
production through an intermediate A isobar are treated
in the same relativistic Fermi gas model. Concerning the
latter an important consistency question in the treatment
of the decay width of Aisobar is addressed.

This paper is organized as follows: In Sec. II we intro-
duce some of the most important concepts we use in this
paper. In Secs. III and IV the construction and subse-
quent evaluation of relativistic two-body currents in the
relativistic Fermi gas model is carried out. In Sec. V the
static limit (SL) of these two-body current contributions
is discussed and in Sec. VI the results of the calculations
with the full currents are compared with those of the SL
currents with special emphasis on qualitative differences.
In Sec. VII the contribution from real-pion production
through an intermediate A isobar is evaluated together
with a discussion of the proper way to account for its de-
cay into a wNN final state. Then the combined results are
presented and compared with data in Sec. VIII. Finally
in Sec. IX the main conclusions of this work are summa-
rized. We discuss a few rather technical issues developed
for the work presented in this paper in the appendixes.

II. INCLUSIVE ELECTRON SCATTERING

In the one-photon exchange approximation the cross
section of inclusive electron scattering can be written, in
the laboratory frame, as!

do q® 2 —q? 21
degdq ~ TMev [(?) Bot (EE *ten 59) Br

(2.1)

I

where ooty denotes the cross section for spin—% scatter-
ing off a structureless target and 6 the scattering angle
of the electron. The longitudinal response function Ry,
and the transverse response function Rt are determined
by the nuclear current operator J#. Phrased in terms of
the hadronic response tensor W#* one has

Ry = WOO’ (2.2)

Throughout this paper we use conventions as in Bjérken
and Drell [9].

RT = — (gij + q—;qzl) Wij, (23)
where the Roman indices run from 1 to 3 and
W =V S (24 (P + g - P')
i f
x(f|J#(0)|2){f|J* (0)]2)*. (2.4)

V denotes the quantization volume, |i) the initial state
with four-momentum P, |f) the final state with four-
momentum P’ and g denotes the four-momentum trans-
ferred to the hadronic system by the virtual photon. The
hadronic tensor W*¥ is the central object of theoretical
studies related to electron scattering experiments.

There is a way to write W#¥ (see e.g., [11]) that allows
for an evaluation of W*¥ according to the rules of quan-
tum field theory and which will be the starting point of
the calculations presented in this paper:

W = %Im (z / d“me“”"(i|T[J"(a:)J“(0)]|z')) . (2.5)
where T' denotes time ordering. This relates W#" to the
imaginary part of the virtual-photon polarization prop-
agator in the nuclear environment (the forward Comp-
ton scattering amplitude). Once the hadronic fields with
which the photon field can interact and their mutual
interactions are specified via an effective Lagrangian,
Eq. (2.5) can be treated with the aid of Feynman dia-
gram perturbation theory. The many-body ground state
is then treated as an effective vacuum on which the rele-
vant excitations are built and the (noninteracting) Fermi
gas Green function is given by

Gole) = L3 + 2t + M)30" —
x8(po)n(p)
= Gop + Gop, (2.6)

where n(p) is the Fermi distribution function, which for
zero temperature and in the nuclear-matter rest frame
takes the form 0(kr — |p|) = 6<(p). For later use we also
introduce 8~ (p) = 0(|p| — kr). Equation (2.6) defines
Go,, the usual Feynman propagator in vacuum and Go,,,
the density-dependent part, which vanishes in the limit
of zero density (kr — 0).

To gain better insight into the physical content of the
propagator of Eq. (2.6) we write it in terms of the projec-
tion operators onto positive- and negative-energy states:

=i (27)
and
A~ (p) = _’62# (2.8)

respectively. Using

P+ M= E%«po + Ep)A*(p) — (po — Ep)A~(—p))
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and

B 1 1
~po—Ep—ie po — Ep + e

2mid(po — Ep)

we can rewrite Eq. (2.6) as

M 9> (p) 6<(p)
Go(p) = E—p[A+(P)(pO_Ep+ie po—Ep—i6>
N

= Go,(p) + Goy (p) + Go_ (P),

where the first term describes the propagation of parti-
cles above the Fermi surface the second the propagation
of holes below the Fermi surface, and the third the prop-
agation of antiparticles both above and below the Fermi
surface.

The approximation to describe the nucleus as a nonin-
teracting infinite system (the free Fermi gas model) de-
serves more discussion. The justification of this approx-
imation can only be given a posteriori. For low energy
and momentum transfer this approximation is certainly
not valid. Here the effects of the shell structure of the
nucleus are extremely important. At energy and momen-
tum transfer between approximately 0.1-1 GeV, there
is much circumstantial evidence that this approximation
makes sense and that the finite size of the nucleus does
not play an essential role. The latter means that the
plane wave representation of the wave function is reason-
able. The finite size (the decreasing baryon density at the
surface) can then be accounted for by the application of
the local density approximation. Interactions between
the nucleons can be incorporated in a mean-field sense
in the nucleon propagator. The power of the present
method to evaluate the nuclear response tensor is that
it is formulated in terms of (covariant) Green functions,
and as such it is suited to incorporate these mean-field
interactions in a transparent way.

(2.9)

III. TWO-BODY CURRENTS

In this section we will discuss the construction and sub-
sequent evaluation of two-body currents in the noninter-
acting Fermi gas model. At the very start of this section
we establish what we mean by two-body currents. We
consider two types of two-body currents. The first are
of mesonic origin, which we will refer to as meson ex-
change currents (MECs). The second are two-body cur-
rents that involve the A resonance, often called isobar
currents (ICs). When we refer to both at the same time,
we simply call them two-body currents.

The essence of the existence of two-body currents is to
be found in the conservation of the nuclear current:

g J* =0. (3.1)
In a relativistic field theory this equation states that the
coupling of the photon field should preserve the local
U(1) gauge invariance present in the free theory. It is
beyond the scope of this paper to give a full account of
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the consequences of this demand in the field of nuclear
physics. In particular we will discard the important con-
sistency relation between the two-body interaction and
two-body currents, which is allowed as a consequence of
the (noninteracting) Fermi gas approximation, and pro-
ceed to derive the two-body currents of our interest. For
clarity we leave out all form factors in this section. An
extensive discussion of form factors can be found in Ap-
pendix A.

A. Construction

We start by deriving the lowest-order pionic MECs.
Without doubt these are the best established MECs
whose form, apart from form factor ambiguities (to be
discussed in Appendix A), is the same for many different
models and approaches.

As our starting point we take the pseudovector 7N
Lagrangian:

L=195(id — M)y + 1(8.¢ - 0%p — m2¢ - $)
+2g—£/!$N oY yYn - T, (3.2)

where 7 denotes the Pauli isospin matrices. Minimal sub-
stitution 8, — 8, + ieA, (i.e., p, = p, — eA,) for the
charged components of the pion field leads to the inter-
action vertices with which the currents of Fig. 1 are con-
structed. To shorten notation we define

Ev®
k2 —m2°

(k) =

This leads to the following expressions:

. = \?
Th gigne = U(T) X T(2)° (m) (k1) (1)
Xn(kg)(z)(kz — kl)#, (33)
Jl‘ tact = 1,('7'(1) X T(z))a (&r_)z
contac 2M

x [I(k2)(2) (Y*7%) (1) = (k1) (1) (7*7°) (2] -
(3.4)

Rather trivially these currents are what we call relativis-
tic MECs.

As mentioned before, the A isobar plays a crucial role
in the understanding of the nuclear response functions

P P P P P 3
— -
q - — q
ki ks kay K
14 f P2 P1 P2 n P2
q
(a) (b) (c)

FIG. 1. The Feynman  diagrams representing
the pion-exchange current. Diagram (a) will be called the
“pion-in-flight current,” diagrams (b) and (c) the “contact-
current.”
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in the intermediate-energy region. We now derive the
contribution to the two-body current due to the excita-
tion of a A isobar in the intermediate state (see the four
diagrams in Fig. 2).

First we have to specify an effective Lagrangian that
involves interacting pion, nucleon, and A fields. In this
picture the A isobar is treated as a separate degree of
freedom, not as a 7N resonance. We therefore have to ex-
tend the Lagrangian of Eq. (3.2) with a spin- and isospin-
% field representing the A isobar. We use the Lagrangian
of Peccei [12], which is based on the Rarita-Schwinger
(RS) formalism. The main reason for this choice is that
we want to compare the results of this work with that
of Van Orden and Donnelly [8] who used Peccei’s La-
grangian. Apart from that, the A part of this Lagrangian
is well suited for our relativistic analysis, since special
care is taken of the off-shell extrapolation of the inter-
action vertices. This guarantees that, also off-shell, only
the spin—% component of the RS A field contributes to
the amplitudes. A second important ingredient is chiral
symmetry from which the 7N sector of the Lagrangian
is constructed. The resulting linear 7N coupling is of
pseudovector type. Since we neglect the nonlinear terms
(in the pion field) that arise, the 7N sector is already dis-
played in Eq. (3.2). We now discuss the most important
features of the incorporation of the A field.

Although there is a general freedom in the expression
for the free A Lagrangian (see e.g., [12]), due to invari-
ance under transformations that do not have an effect
on the spin-g part of the field, we will here choose the
simplest form possible:

La= _EZ[(gpuia - 7112'6;: - 7;47:61/ + 7;41.&'711)

—MA(Q#V - 'Y;A'Yu)]"/’z- (3-5)

This choice can be considered as choosing a specific gauge
for the transformations mentioned above. One then has
the RS A propagator:

uv _ ﬁ + MA v 2 pupu
GA (p) - pz _ MZ _g“ + 3 Mg
—M(p“'r” =" + 3%y (3.6)

There is an ongoing discussion in the literature whether
this is a correct way to treat the spin-% field. Another
frequently used form for the A propagator is given by

P+ Ma

GR(p) = G5 (P*)*/? 3.7)
A p2 _ Mz
with
P Py 21 LN 23 Pi P2
I Lv,” o v
g A > AR 7 —
2 P2 pd B2 dp p P2 pf B Ap
(a) (b) () (d)

FIG. 2. The Feynman diagrams representing the A-isobar
current.

1
PS,/,Z = —|9uv — %’Yp‘yy - 'spﬁ(mypv +P,")’yf) . (3.8)

Comparing these expressions for the propagator, one can
show, by commuting p through v, that they are only on
mass shell (p? = M2) identical. For a further discussion
of their relationship.we refer to [13].

Next we discuss the interactions. The interaction ver-
tices OH¥ are restrained by the condition

Y. 0" = 0. (3.9)
This is a generalization of the property
YuPa =0 (3.10)

of the on-shell free A field, which assures that there is
no direct coupling to the spin—% component possible [14].
This leads to the mN A-interaction term:

tfr - »
Lrxna = %1/)2(49;111 - 'Yp'YV)Tf"/’Na -¢+Hec.,

™

(3.11)

where T represents the 2 x 4 isospin coupling matrices,
which obey the relation

THTYY =69 — Irird . (3.12)
On shell the 'y,;'yu term vanishes and so this term de-

termines the off-shell extrapolation. Defining vertices in
Fig. 3, we have the expressions

A= 7nN: ——z'f;LNA k., (4g"" — 'y”'y")Ti

™

= Yrnay poups, (3.13)
My
N = A: l:::ié}""’k,,(Tf)‘, (3.14)

T

where the pion momentum k is defined outgoing in both
cases. The Roman index ¢ refers to the isospin of the
pion. Finally the phenomenological YINA vertex is given
by

A—yN: ——fggf (49"" — Y*¢” — 3igao™#~")y°T?
= f;%g“"T:", (3.15)
TN = A: —f;’j\vf (49" = 1*q” + Jigay o™)y*(T1)*.
(3.16)

We are now in a position to write down the expressions
for the four diagrams in Fig. 2 containing a A isobar in
the intermediate state. First the isospin structure for

'u,i lu;i
kb ki
L ey — ="

FIG. 3. #NA coupling vertices.
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diagram (a) in Fig. 2 is given by

c

t° sbe
T, 6 T(z) s

_ b

(3.17)
which with the aid of Eq. (3.12) can be written as
I= %7(32) — %i(‘r(l) X 7"(2))3.

(3.18)

For diagram (b) of Fig. 2 we find the isospin factor Z1.
A shorthand notation for the isobar current is then given
by

Ja= Iﬂ%ﬁ\%f”m [Z k2, F*PG s (p1 + )G
— T'G* G, (P — ) F ko, | Ti(k2) 2y + (1 & 2) ,
(3.19)

where the last term, interchange of the particle labels 1
and 2, represents the contribution of diagrams (c) and (d)
of Fig. 2. This current is manifestly conserved (contrac-
tion with g* gives trivially zero) and is therefore much
more model-dependent than the pionic current. It is not
the most general A current one can consider (see e.g.,
[15]), but the parts we do not include are in practice much
smaller than the transverse part we do include here.

The full two-body current (apart from form factors, see
Appendix A) we will consider is given by the sum of the
pion currents [Egs. (3.3) and (3.4)] and A-isobar current
[Eq. (3.19)]:

Jhan = Ja + Jontact T Jha sighs- (3.20)

B. The A decay width

If the A current which we derived in the preceding
subsection is applied in the resonance region, the possible
decay into a physical 7N state should be accounted for.
As a consequence the (real) resonance mass Ma has to be
replaced by M —iI'(s)/2, where I'(s) denotes the energy-
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k
£
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FIG. 4. A-isobar self-energy diagram. The imaginary part
of this diagram determines the A-isobar decay width in vac-
uum.

dependent decay width. Since the energy dependence of
this width is going to play a crucial role in Sec. VII,
we will derive it here, to a large extent along the lines
of [16]. The decay width is given by (minus twice) the
imaginary part of the A self-energy of the diagram in
Fig. 4. According to the rules of the previous section,
the expression for the self-energy is given by

THere

@1 [ Gy
T i(¢+M)if1rNA

k2 —m2 ¢2—- M2 m,

d*k —ifzna

af
ERN —
1

(—k,;)]:a&

X FePk,

(3.21)

with ¢ = p + k. Multiplying the isospin factor (7'f)eT
from the left with T and from the right with (7') and
using Eq. (3.12), one can verify that the isospin operator
in Eq. (3.21) equals the identity operator. As is clear
from the expression (3.21), this self-energy has a com-
plicated Lorentz structure, which makes it difficult to
solve Dyson’s equation. Van Faassen [16] argues that all
spin-dependent terms vanish on-shell, and that the only
remaining Lorentz structure on-shell is given by g®?. He
restricts himself to this term and evaluates the self-energy
accordingly. We make an essentially equivalent approxi-
mation by sandwiching the self-energy of Eq. (3.21) be-
tween RS A spinors with invariant mass /s = W for
which we generalize the on-shell Rarita-Schwinger spinor
sum projection operator to

S AV (Ve o) = L (P (322

If we now average over spin projections, we have

il
Sen(s) = 3 T (V5 0) Dyt (v5,0) (3.23)
i [ % fexs LTe{(— ko) 4 (g + MYk F™ (5 + ) P2/
() 2/ (@ - M2)(R2 — ) -
_ [ 4% (4frna)? 12 (gp)? k-p
=i [ Gy ot (7 ) (). (324

We evaluate this integral in the frame p = 0, carry out
a contour integration over ko and define Wy = Eq + EJ

with E] = /m2 + q2, and find
(4frnn)? [, 4 E W,
p = JTNA/ d M —a)_"9q
N = me 10\ M+ oyt ) 3.5y
1
S TWE i (3.25)

—

Taking the imaginary part and introducing the decay mo-
mentum in the c.m. frame

W= Lo (M - -m?) (320)

we obtain the energy-dependent width

(4f1rNA)2 k3

12rm2 /s

I(s) = —2Im[E,n(s)] (M + Ex). (3.27)
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The minor differences with the result of Van Faassen van-
ish at the resonance, as one would expect. The energy de-
pendence of the width effectively accounts for the allowed
phase space for the pion produced in the physical decay
process. This feature will be explicitly shown in Sec.
VIIC. From this it follows that at resonance (/s = 1232
MeV), with k = 1.14 fm ™! and experimentally T' = 115
MeV, one finds (4frna)%/4m = 0.38. We choose to write
4fxNa since this is the quantity to be compared with
the coupling constants used in other works. We thus see
that the # NA coupling constant is determined by the A
decay width.

Since, by averaging over spins, we obtain a purely
scalar self-energy, it is easy to include it, via Dyson’s
equation, in the A propagator of Eq. (3.7). To this end
we note that we have (P3/2)#¥(P3/2) p = (P3/2)#¢ and
[#, (P3/2)#*] = 0. If one then assumes that the solution
to Dyson’s equation is of the same operator form as the
free propagator, the (exact) solution is simply given by
the free one with the replacement of the denominator by:

— M2 — 2/s¥. This simply follows by construction
since we project in every intermediate state to the pure
spin-% components of the field. Absorbing the real part in
the physical definition of the resonance mass, the appear-
ance of the imaginary part is simulated by the replace-
ment Ma — Ma —iI'/2. This procedure is certainly not
exact for the RS A propagator of Eq. (3.6). There all off-
shell ambiguities are still present. We choose, however,
to include the width also in the case of the RS A prop-
agator by applying the above-mentioned replacement of
the denominator.

IV. EVALUATION OF
TWO-PARTICLE-TWO-HOLE CONTRIBUTION
TO W+

Now that we have specified our two-body current in the
preceding section, we are in a position to evaluate its con-

J

v d4 d4 d4p' d4p! .
Wi =pvin 3 [ e o S AT A (pTA* (pu)[TE(PA* (p) PA* (b))

4 4 4 4
2| GoiEni et @
xS(p1,p2, Py, P3) (27)*6* (p1 + p2 + ¢ — P} — Ph)
with

4

S ) 1’ . =
(P1,P2,P1,P3) lEpl---E:

(Gop (p1) + Goy (P1)]---
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FIG. 5. 2p2h-excitation diagrams. The diagrammatic con-
tent of the blobs in these diagrams is given in Fig. 6.

tribution to W#¥. As long as we neglect the one-particle—
one-hole (1plh) excitations in the nuclear ground state,
it is easy to see that only the two-body current can con-
tribute to the 2p2h channel and no interference with the
one-body current can occur. Since one can show that the
only remaining interference term amounts to a modifica-
tion of the one-body current due to the interactions in
the initial-state wave function we will not consider this
contribution in this work. We now evaluate the two-body
knockout contribution to W#¥:

Wihom = o (FG|J0|2p2h)(2p2h|Jf;) [FG),
2p2h

(4.1)

where |FG) is the noninteracting Fermi gas ground state.
Here we will show how the use of the approach outlined
in Sec. II leads to results that allow for an intuitive in-
terpretation: W#” as a Fermi gas phase-space integral
over an elementary scattering amplitude. Furthermore
the structure of these results allows the use of Dirac ma-
trix algebra to abandon the static limit. The relevant
diagrams are given in Fig. 5. To establish notation, we
denote the general yw NN vertex by I'* (represented in
the figures by the blob which contains the sum of the
diagrams in Fig. 6) and the n NN vertex by P. We
then have, using Eq. (2.9), for the direct contribution
[diagram (a) of Fig. 5]

T

(4.2)

[GOP (pl2) + GOH (Plz)] (4‘3)

Equation (4.2) can be simplified if we note that we only need the 2p2h final state contribution of this dlagra.m

Carrying out, in S, the trivial integration over p2 (to shorten notation we write 1:)2 instead of p; + p2 + q — pl,
however) and the integrations over pi,,p2,, and p} , we find

/ dplo dpzo dp,lo / M4

= 0<(py)0<(P2)0” (P:)6” (P,
5 9w an S (P1,P2,P1) Bpr Epa B, ; Ep;f) (P1)0=(P2)8~ (P1)6” (P2)

+ (g0 — —90))- (4.4)

1
X
(Epl +Ep2 + qo — Epll — EP-_:' + €
As a result Eq. (4.2) reduces for positive go to
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N = - 4 -7 4 T FIG. 6. The diagrammatic content of the
- I blob in Fig. 5.

v dp: dp: dPll M* < < > > !
Whon=V Y / (2m)? (27)3 (27)? Ep, Ep, B, E, ,9 (P1)0=(P2)07 (P1)0” (P2)8(Ep, + Ep, + 90— E,: — E_)

isospin
x <Eg‘_1—m’z“> Tx[TYA* (p,)T*A* (p1)] TY[PA* (p,) PA* (p2))- (4.5)

For diagram (b) in Fig. 5 where the photon coupling resides both in particle (spin) lines 1 and 2, a similar procedure
can be carried out which gives completely analogous results. The full result can now be written as

dp1 dpz dp, M* o )
2p2h 1V Z / (2m )3 (27)3 EplEsz E 0<(p1)0=(P2)8” (P1)0” (P2)d(Ep, + Ep, + g0 — Ep; - Epz’)

lsospm

xm,z[J<2)A+(pi)A+<p2)J(;,A+(p1>A+(pzn, (4.6)

where J* is given by the sum of both pion and isobar currents, the explicit expression of which can be found in the
previous sections. The factor % accounts for the double counting that occurs in this notation (two other diagrams,
topologically equivalent to the diagrams of Fig. 5, are included in the last expression). The index 1,2 at the trace
symbol indicates that for both particle 1 and particle 2 an independent trace is at stake. We may observe that the
structure of the result can be interpreted as the product of a Fermi gas phase-space factor times the spin-summed
square of the invariant amplitude of an elementary scattering process.

For the crossed (Pauli exchange) contribution (the diagram of Fig. 7), the procedure discussed above leads to an
expression similar to Eq. (4.5), where the last line is replaced by

1
(k3 —m2) (P} — p2)? —mi)

Tx[[YA* (p,) PAT (p2) PA* (py)T“ AT (p1)]-

Furthermore, due to the fact that only one, instead of two (in the case of the direct term) closed fermion loops are
present it gets a relative minus sign, compared to the direct contribution. We see that only a single trace occurs. This
single trace happens to be in practice too cumbersome to handle for the isobar currents. In that case we resort to the
derivation in the second-quantization scheme. There the spin summations are transformed to projection operators,
such that the resulting expression for the direct contribution is exactly equal to the one we derived here. For the
exchange term this procedure is more involved and for details we refer to Appendix B. The final result can now be
summarized:

V Z dp: dp: dpll 1 ! '
" 1 < 0( 0> 9>
e 2p2h isospin (2m)3 (2m)3 (2m)? 2Ep,2Ep, 2E 2E / 0= (p1)6<(p2)0” (P1)6” (P2)
x6(Ep, + Ep, + g0 — Epl' - Epz')( T3 — 76""), (4.7)

where we define 7;"‘ Y by

Tie = Traz) [73,6Pd,e(11’1,p’z)Jé‘,de,d(pl,pz)] (4.8)
with
Py(a,b) = (y-a+ M)qy(v-b+ M),
Pela,0) = (Ea + M)l(Eb + M)
X(y b+ M)qy(v-a+ M)ga),

(v-a+ M)y (v -5+ M) ) §(In,2) + 03y 055) I + 1) (I +7°) )

Tae =107 T, 70 V2
Jd(p11p27pl1’p/2) = Je(plvp%p,zap;)v

and I(1:?) the identity operator in Dirac space for both particles 1 and 2. The isospin sum that is still present is
carried out by means of traces in isospin space. To this end we write the full two-body current (3.20) as
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J4 = Fi (i(r) x 7)) + F4 T + F4 I + F4. T, + F1. I}
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(4.9)

with Il = % 7(32) — 'L(T(l) X 1'(2))3 and Iz = % T(31) + 'l(‘r(l) X T(2))3.

Interchange of the particle labels (1) and (2) gives
Fdo g —Fdo,

If we use this symmetry we get for the direct term:

Fd1 HFdsa

Fy, & Fy,.

S T4JY =4Fy Fh + S[Fy Fy + FyFl — (Fy, — Fy,)(Fh — F4)) + 8[F, Ft. + Fy,Fy + (F,, — Fy)F}

isospin

+F g, (Fr, — Fi)l+{(1) & (2)}.

(4.10)

For the pionic contribution to the exchange term the isospin sum gives zero and we only have a pion-isobar interference

term and an isobar term:

D TiJE = §(Fy, + Fo)Fl + Fo (F4 + F)| + S[3(Fg, Flt + Fy FL) + Fy (FL + FY)

isospin

+Fq, (F& + F4) — (Fg Ft + Fo F&) +{(1) & (2)},

with Fei (PhP2aP’2,P’1) = Fd,- (Pl,Pz,P’mP’z)-

The form of Egs. (4.10) and (4.11), with the explicit
symmetry in the particle labels (1) and (2), allows us at a
later stage, when we use the same symmetry in the final
(numerical) integrals, to only evaluate the terms which
appear explicitly in the expressions of Egs. (4.10) and
(4.11) and to multiply the final result with a factor two.

The evaluation of the traces in spinor space is very
cumbersome. We made use of the algebraic computer
program FORM [17] to evaluate the traces in the object
71,72, T* = T (r1 and r; denote two dummy four vec-
tors). In this program built-in rules for the evaluation of
traces of products of v matrices are available. Further-
more it is very suited for those cases where the number
of terms in intermediate stages of the calculation is very
large, as is the case here. The result is typically a poly-
nomial of scalars that can be constructed from the (not
necessarily independent) set of four-vectors.

The transverse amplitude squared R is obtained if we
identify in T

Ty T = "‘2,
vi-qva2-q
Ty1:V1 T2 VU2 =Vy-Va— T

and the longitudinal Ry, if we use
TL°T2 = 1,
T1 V1 T2 " V2 = V1,V2

for two arbitrary four-vectors v; and v;. From the above
expressions we already see that terms in W*¥ propor-

P
FIG. 7. Feynman diagram representing the exchange con-
tribution corresponding to diagram (a) of Fig. 5.

(4.11)

tional to g* do not contribute to the transverse response,
which simplifies the calculations considerably.

Depending on the specific diagram under considera-
tion, the number of terms in the final results can range
from about one hundred to tens of thousands. Because
of these large numbers, it is useless to present them in
their explicit form. This raises the question how we can
convince both the reader and ourselves that the results
are correct. The most important way to do this is to
compare with the static limit (SL) results which, much
to our benefit, are extensively discussed by Van Orden
and Donnelly [8]. For the algebraic part of the computer
work this amounts to verifying that the SL of the full
response functions coincides with the one they present.
This comparison can be found in the next section.

The final step in the calculation of Wz‘;"zh is the evalu-
ation of the momentum integrals appearing in Eq. (4.7).
This nine-dimensional integral can be reduced to seven
dimensions if we use the energy conserving delta function
and the fact that, if one uses spherical coordinates, one
can transform the three azimuthal angles, with respect
to q, such that the integrand only depends on two of
them, allowing a trivial integration of the third. The re-
sulting seven-dimensional integral is handled with Monte
Carlo techniques. This allows for a very straightforward
treatment of the remaining step function 6> (p,), which
in other integration schemes gives rise to a complicated
boundary structure. Again the question arises how we
can gain confidence in the obtained result and it is once
more the static limit that provides us with the strongest
test on the numerical integration. Since the SL result
[Eq. (5.11), to be derived in the next section] only de-
pends on the relative momenta, a further reduction of
the number of integration dimensions to two is possible.
This procedure is quite cumbersome, but is extensively
discussed in [8]. This provides the possibility to calcu-
late the SL result in two completely independent ways:
first naive Monte Carlo integration in seven dimensions,
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second by an algorithm suited for low-dimensional in-
tegrals (like Romberg integration) applied to the two-
dimensional integral. Agreement within Monte Carlo
uncertainties is obtained. The number of Monte Carlo
(MC) points (and accordingly the amount of CPU time)
necessary to obtain accurate results that allow for a com-
parison of this type is rather large: typically 108-107. To
obtain accurate (1%) results for the full calculation, a
number of MC points of the same order is necessary.

V. STATIC LIMIT

As mentioned in the Introduction, the static limit (SL)
is a procedure that is applied to two-body currents to
obtain a nonrelativistic result which is more easy to
handle in practice. To obtain these nonrelativistic two-
body currents we sandwich the expressions (3.3), (3.4),
and (3.19) between positive-energy ingoing and outgoing
Dirac spinors for particle one and two, and only keep the
lowest-order term in a |k|/M expansion such that ko = 0.
For the pionic MECs we have the replacements

U(p;, s) () U (pir i) = x5 (= (00 - ko)X

(5.1)

U(p:,s)(¥7*) U (pi 8:) = XL 07 X, (5.2)
and

k?—mi = —(kf +m3). (5.3)
The static limit # MECs are then given by

2

Jin-siight = 1(T(1) X T(2))° (;—X,‘,)

() "ki)(o2) - ke) (k1 — k) (5.4)

(k +m2) (k3 +m3)

fanNfrNafyNA . (2 3 o) -k
J = w’rk—g{—l— b §T1 (kl X )m

xq— (1 2))]

with
16 o 8
"~ 3(Ma - M)’ - 3(Ma - M)’
ki =p, —p1, ko=p,—p2

Note that, in the static limit all energy dependence of
the A propagator has disappeared. Furthermore, as
was the case for the pion current, the SL isobar cur-
rent only depends on the relative momenta k; and ks.
This result is not equal to the one derived by Van Or-
den and Donnelly [8]. The discrepancy can be phrased

—+ (1 > 2)) —a %i(‘r(l) X T(z))a(

2
Jeontact = i(T(1) X T(2))° (z)g—;/.r)

o -ki)o oo - ko)o
(¢ ) 1)oe @) 2)0(1) . (55)
kZ +m2 ki +m2

Jr = Jin-ﬁight + Jcontact -

(5.6)

Before we proceed to determine the static limit of the
isobar current, we discuss an ambiguity in the application
of the SL to the spin projection operator appearing in
the A propagator. A common and natural procedure,
used for instance by Van Faassen [18], is to replace the
numerator of the A propagator of Eq. (3.6) by the on-
mass shell spin projection operator, and the denominator
by the positive-energy part:

v / + MA
GM (p) ~ "
a 2E% (po — E5)

2
x| —gh + SH AV
(s g

1
3Ma

(" —p"v") + %7“7”),
(5.7)

where the hat denotes the on-mass shell projection (po =
EZ2). If we take into account that the vertices with which
this propagator is contracted obey the relation (3.9), we
can effectively use

224 ~ }—’_MA PN 72 A AV
1
—pYy* . 5.8
+ar? ) (5.8)

If one does this for the current given in Eq. (3.19), a non-
relativistic reduction of this current sandwiched between
Dirac spinors gives

o ki
k2 +m2

™

(kl X 0'(2))

(5.9)

f

in terms of the constants a and b, which in their case
would read: b = 2(2Ma + 3M)/(M% — M?) and a =
2(2Ma + M) /(M3 — M?). This difference can be traced
back to the treatment of the A propagator. Their result
can be obtained if one approximates, in the SL procedure,
the Rarita-Schwinger propagator (3.6) by

+ Ma
et = BEE ()
A ( ) pg _ Mi

with pg ~ M. In this approach one neglects terms of
leading order when the term G% is considered. Precisely
these terms, in combination with the difference in the
numerators of the propagator as a result of identifica-

(5.10)
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tion pg ~ M versus py ~ Mj, give rise to the above
mentioned differences. Furthermore the SL current we
derived above, Eq. (5.9), equals (apart from coupling
constants) the isobar current derived by Hockert [19]
some twenty years ago, which has subsequently been used
many times in the literature.

Apart from this ambiguity, it is now straightforward
to determine the static limit of the expression 7 defined
previously. It should be emphasized that we apply the

J

k? kk?
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SL procedure at the level of 7, not at the level of the
current operator. This ensures that a final comparison
with the SL result for 7 as found by Van Orden and
Donnelly, who applied the SL at the current level, really
provides a strong test on our full results for 7. To cast
our results in a form that can be compared with those of
Van Orden and Donnelly, we frequently have to make use
of the relation q = k; + k,. For the direct contribution
to the transverse amplitude squared we thus find

Rr = 64c [

+64c2 k2 (quz(zé2 +a?) — (282 — a%) (k, -q)"’)

4q%k’k2

1
(k7 4+ m2)?
a’k?

k2 1
1 2 (2 _ 1
Pz may T ( 7T m2)P(kZ +m2)2  C(Z+ m)2(kZ +m2) | (k& m2) (k2 +mz))]

64t g7 - Ak
A7 (k2 +m2)(kZ +m2)

+64cacn a <

with ¢y = (fann/mx)?, ca = faNNfxnafyna/
(2Mm2) (understood to be multiplied with the relevant
form factors), k2 = k? — (k; - q)/(q?) and @ = 2a/3,
b= 2b/3. Note that one hask3 = k2 . This form allows
for a direct comparison with the result of Van Orden and
Donnelly, thus providing a severe test on our full result.

VI. RESULTS AND DISCUSSION

It is the aim of this section to compare calculations
with calculations: we want to compare the results of the
calculations of the full two-body current with those of
the SL current, without yet confronting them with ex-
perimental data. We postpone this till Sec. VII, when
we also have, apart from the quasifree knockout and the
two-body contribution, the evaluation of a third impor-
tant reaction channel at our disposal: production of a
real (physical) pion in the final state. We think that the
above mentioned comparison is interesting in itself, since
it shows the importance of our relativistic treatment com-
pared with the SL, as well as the basic systematics of the
calculations.

In Fig. 8 the solid line shows the result of the full
calculation of the 2p2h contribution to the transverse
response function, the dotted line is the SL result. In
these calculations, the three-momentum transfer is fixed
at |q| = 550 MeV/c and |q| = 1140 MeV /¢, respectively.
At this moment, we leave out the Pauli exchange con-
tribution. Since these two kinematics will return at sev-
eral places, we will refer to them as kinematics I and 1II,
respectively. There are two parameters to be specified:
first the Fermi momentum in these calculations (and all
to come) is given by 1.3 fm™!, the binding energy per
particle-hole pair is taken to be 35 MeV. This will become
of relevance later when we compare with data. Further-
more these results are obtained for mass number A = 56
(the results, at fixed Fermi momentum, trivially scale
with A).

Figure 8 clearly displays the large differences that oc-

-9 —
(k7 +m2)2(kF +m?) " (kf+mi)(kf+mZ) (kf+mi)?

kiki - ) +(142) (5.11)

[

cur in the two calculations. The sizable increase of the
response at large energy transfer in the full calculation
with respect to the SL calculation originates almost com-
pletely from the difference in the treatment of the prop-
agator of the A isobar. Since, in our calculations, its full
energy and momentum dependence is maintained, it is
possible for the isobar current to show a resonance be-
havior: p? can become equal to M2, whereas in the SL
calculation p?> = M?2. The latter choice clearly discards
all dependence on the dynamics of the A-isobar propaga-
tor. It is this feature that gives the large enhancement of
the full result with respect to the SL and which is miss-
ing in the original work of Van Orden and Donnelly [8].
To display this effect more clearly, we also show in Fig. 9
what happens if we try to account for this resonating
behavior by hand in the SL calculation. To this end we
modify the scalar (denominator) part of the A propaga-
tor in the SL current such that it equals the one of the

T T 1.2
q = 550 MeV/c

T T T
q = 1140 MeV/c

[10"MeV™]

0 L 1 1 0.0 I 1 1
100 200 300 400 500 400 550 700 850 1000
w [MeV] w [MeV]

FIG. 8. Comparison of the contribution of the full
two-body current to the transverse response (solid line) with
that of the static-limit current (dotted line). The momentum
transfer is 550 MeV /c (left figure) and 1140 MeV /c (right fig-
ure). The atomic mass number is 56, the Fermi momentum
1.3 fm™!. The Pauli exchange contribution is not included.
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FIG. 9. Ratio of the full two-body calculation results to
the SL results for the transverse response function at a mo-
mentum transfer of |q| = 550 MeV/c and |q| = 1140 MeV /c,
respectively (dashed lines). The dash-dotted lines represent
the ratio of the full to the resonating static limit (RSL) (see
text). The solid lines (unity) are plotted as reference. The
Pauli exchange contribution is not included.

full calculation, but we keep the rest of the SL current as
it is:
1 R 1
2MA(M — Mp) — p? — M2 4+ iMAT(s = p?)

with p?2 = (p; + q)2 = M?% + q% + 2p; - q. We refer to
a calculation of this type as the resonating static limit
(RSL). Note that a calculation of the RSL does not al-
low anymore for a reduction of the number of integration
dimensions to two; the calculation has to be performed
in seven dimensions. In Fig. 9 the dash-dotted line repre-
sents the ratio of the full calculation to this RSL, for both
kinematics I and II. For kinematics I the resulting ratio
is almost unity and the differences can hardly be seen at
the scale of the plot. For kinematics II there are clearly
still differences between the RSL and full calculation at
the 20% scale. This is to be expected since here the
higher-order terms in an expansion in |q|/M will be more
important. At this stage one can think of an even sim-
pler prescription to extend the SL calculation to account
for the resonating behavior: neglect of the initial nucleon
momentum p;. This would amount to a replacement as
the one given above, but with p> = M2?+¢?*+2Muw. Since
in that case the integrand still only depends on k; and
k,, the reduction procedure to two dimensions remains
applicable, which would make it a very useful approxi-
mation. It does not work in practice, however. The reso-
nance structure for kinematics I one obtains that way has
a considerably smaller width and larger maximum than
the results of the RSL and full calculations. We there-
fore conclude that this tentative way to approximate the
resonance behavior is unreliable.

In Fig. 10 we show the effect on the pion and isobar
currents separately for the two kinematics. For the pio-
nic current we see that the full result is generally larger
than the SL, and that the relative difference increases
with momentum transfer. For the isobar current alone,
the relative effects also increase with momentum transfer,
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FIG. 10. Ratio of the full pion MEC calculation results to
the SL results for the transverse response function at a mo-
mentum transfer of |q| = 550 MeV /c and |q| = 1140 MeV /¢,
respectively (dashed lines). The dash-dotted lines represent
the ratio of the full A-isobar current contribution to the res-
onating static limit (RSL) of the A isobar (see text), the solid
lines (unity) are plotted as reference.

although their behavior is more complex.

The evaluation of the exchange contribution was re-
stricted to the term which shows the resonance behav-
ior. We refer to this term as the s-channel Pauli ex-
change contribution. In Fig. 11 we show the importance
of this Pauli exchange contribution to the response func-
tion. The solid curve denotes the full result, whereas
the dotted curve shows the direct term only. The dif-
ference is thus due to the exchange contribution. The
dash-dotted and the dashed line show the same for the
SL. In the SL the exchange term is almost negligible.
Since the exchange term shows the resonance behavior,
its contribution in the full calculation, however, is pretty
large and, when it comes to quantitative results, cannot
be discarded.

One could raise the question whether it is sufficient
to consider only the pion contribution to the meson ex-
change currents. It is well known that the p meson, de-
spite its much larger mass, can play an important role

2_0 T T T T T l
sl q = 550 MeV/c q = 1140 MeV/c {

11

1.5
— 6 R
> >
>
F =
) S 1.0f
R =
o o

0.5

0.0 o . ! ! o
400 500 800 700 800 900
w [MeV]

4]

0 125 250 375 500
w [MeV]

FIG. 11. Effect of the s-channel Pauli exchange term on
the transverse response functions for both kinematics I and

II. The SL result is hardly affected, the full results decrease
considerably.
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in calculations that deal with meson exchange current
effects on nuclear properties. This is due to the large
anomalous coupling term (g,o**) of the p-meson vector-
field to the nucleon field. To get an idea of its importance
in the two-body knockout channel, we calculated the p
current contribution to W#¥ (thus ignoring the interfer-
ence terms with the two-body currents we discussed until
now). With the formalism of this section it is straight-
forward to evaluate this contribution, again without the
necessity to apply the static limit. To determine the p
MEC we used minimal substitution in the usual pNN
Lagrangian. At this point there are other model treat-
ments which can give differences in the resulting currents
up to a factor two [20]. For kinematics I, the resulting p
MEC (two-particle knockout) contribution to the trans-
verse response ranges from one-tenth at w = 200 MeV to
one-third at w = 500 MeV of the # MEC contribution.
For kinematics II, it ranges from one-fifth at w = 500
MeV to one-half at w = 1000 MeV of the # MEC contri-
bution. Since the 7 MEC itself gives only a small con-
tribution compared to the other reaction channels (for
instance, its contribution to Ry is 0.23 x 1072 MeV ™!
at w = 200 MeV in the full calculation), we can safely
ignore the p contribution in the rest of this work.
Finally a few words on the systematics of the calcu-
lations. We already noted that generally the relativistic
effects increase with momentum transfer. Furthermore,
if one decreases the Fermi momentum to 1.2 fm™!, the
results of the full calculation tend to decrease consider-
ably. The calculations are quite sensitive to the specific
values of the cutoffs appearing in the form factors. We
would like to stress however that, as is discussed in Ap-
pendix A, we determined all of these from independent
sources and did not treat them as free parameters.

VII. REAL-PION PRODUCTION

Since, for large energy transfer, the production of an
on-shell (real) pion becomes possible, the latter process
should also be considered before a meaningful comparison
with experimental data can be made. In this section we
describe the way we treat this important channel in our
calculations.

A. Effective Lagrangian vs isobar-model approaches

There exists a number of different ways to describe
real-pion electroproduction. From #wN scattering it is
a very well established fact that the 7N system has a
strong resonance in the spin- and isospin-% channel of
p-wave character, which is the A resonance that we dis-
cussed in much detail in the previous sections. The quan-
tum numbers of the photon allow for the excitation of this
nucleon resonance and this appears to be the dominant
mechanism for pion photoproduction and electroproduc-
tion [21,22]. It is the spirit of isobar models to use this
feature for a description of the nucleon and nuclear re-
sponse in the pion production region via the excitation
and propagation of a A isobar, which is treated as a sep-

arate degree of freedom. The A isobar cannot exist as an
asymptotic state, however. It mainly decays into a 7N
final state. In the isobar model this decay is implicitly
accounted for by the inclusion of a complex part in the
propagator (the width). In the case of nuclei the propa-
gation of the A isobar can be further modified to include
the effects of the interaction between the A isobar and
the nuclear environment. This is the main content of the
A hole model [23] which has been applied with success
in pion electroproduction and photoproduction as well as
pion absorption, which shows once more the underlying
idea that all these different scatterers essentially probe
the A resonance. In a forthcoming paper [24] we will
discuss the A hole model and its connection with the
approach of the previous sections in more detail.

A second approach is based on effective Lagrangians
[8]. There are two main differences between this approach
and the isobar model. First the decay of the A isobar is
explicitly accounted for, i.e., the pion and the nucleon de-
gree of freedom in the final state are treated as the final
state of the scattering process. In an inclusive calculation
this means that one has to sum explicitly over all possi-
ble final states which exist of a real pion and a nucleon.
This leads to the second important difference: there are
more processes than A isobar excitation alone that can
contribute to real-pion production. For instance, there
are (nucleon) Born terms present that are extremely im-
portant to obtain correct results at threshold, both from
an experimental (comparison with data) and a theoreti-
cal point of view (comparison with low-energy theorems).
In the resonance region, however, pion production via an
intermediate A isobar is the dominant process, although
the nonresonant Born terms give a background contribu-
tion that is nonnegligible. In summary: contrary to the
isobar model, the 7N final state is treated explicitly in
the effective Lagrangian approach.

We choose to follow the effective Lagrangian approach.
Since we are not interested in threshold effects, we only
consider the two diagrams of Fig. 12 where in both cases
an intermediate A isobar is formed. The second, crossed
diagram does not give a resonant contribution and al-
ready accounts for a considerable part of the background.
Because of our choice to neglect the Born diagrams, di-
rect comparisons with isobar models can and will be
made at several places.

B. Contribution of the real-pion production current
to W»v

It is now straightforward to write down the current for
real-pion production for the diagrams of Fig. 12. With
the aid of the rules given in the previous section we ob-
tain:

(a) (b)

FIG. 12. Feynman diagrams for the real-pion production
process via an intermediate A-isobar excitation.
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Jhe = cn (I“ka}“’BGAB‘, (p + q)G°*

- (IT)G g#(SGAsg (p, - q)]:ﬁaka)

=Cr (Iathir - (It)aFgoss> (71)
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The label a is the isospin label of the produced pion. The
momenta are defined in the diagrams, the form factors
in Appendix A. Applying the formalism of Sec. IV, we
find for the contribution of this current to W*

(7.2)

B By o0 ()0

OF g =cid (T&[Fsi,Aﬂp;)F;rA*(pl) 4 B AT (D) FE AT (P1)] — Tr[Fl e AT (P1) it AT (1)

+FdVirA+(p]I.)Fcl;ossA+ (pl)]) .

As in the previous section, the traces are evaluated with
the aid of FORM and confidence in the results was gained
through comparisons of parts of the results with [8,12].
The six-dimensional integral in Eq. (7.2) can be reduced
to a four-dimensional one which subsequently is evalu-
ated with Monte Carlo integration. Convergence is ob-
tained with a number of integration points of the order of
10*. Confidence in the numerical results was gained by a
comparison with the analysis of Van Orden and Donnelly.
In their analysis they neglect the three-momentum of the
initial nucleon in the expression of O#. This enables one
to integrate analytically over p and to reduce the number
of integration dimensions to two. This integration, which
for the angular part of the integral is rather cumbersome,
is, again much to our benefit, discussed in detail in [8].
We will refer to the amplitude obtained this way as the
reduced amplitude. In Fig. 13 we compare this calcula-
tion (dashed), which involves a Romberg integration in
two dimensions, with a Monte Carlo integration in four
dimensions where the same approximation with respect
to the initial nucleon momentum is made (dotted). In
this figure the solid curve is the Monte Carlo result with-
out the latter approximation. As one can see from the
figure, the effect of this simple, but, to obtain the re-
duced amplitude, essential approximation is a reduction
of the cross section in the resonance region of about 20%.
The two results are not completely identical since there
remains a subtle difference in the approximations that
are made with respect to the initial nucleon momentum
p: it is not possible to treat the Fermi gas phase-space
equally in both treatments.

The calculations that are displayed in Fig. 13 were all
performed with a fixed A-isobar decay width of 120 MeV.
The results change considerably if these calculations are
done with an energy-dependent width. In general the

f

cross section increases more rapidly at the low-w side of
the peak at the expense of producing a smaller cross sec-
tion at the high-w side of the peak. (This might seem
counterintuitive, but one must remember that, in the
present approach, the parametrization of the width only
influences the denominator of the A-isobar propagator.
The energy-dependent width is smaller than the fixed
width below the resonance peak, but larger above the
resonance peak. Thus the above effect can be under-
stood. For a consistent calculation, however, changes in
the decay width should also be reflected in the TN A ver-
tex which appears in the matrix element.) In the next
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FIG. 13. Comparison of real-pion production cross sec-
tions calculated with four-dimensional Monte Carlo integra-
tion (dashed curve) with a calculation of the two-dimensional
integration of the reduced amplitude (see text, dotted), where
in both cases the initial nucleon momentum is neglected. The
solid line denotes the Monte Carlo integration results without
the latter approximation.
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section we discuss the meaning and the importance of the
energy dependence of the A-isobar decay width in more
detail.

C. Comparison with the isobar model

As mentioned above, there exists an alternative way
to describe pion electroproduction: the isobar model, or,
extended to complex nuclei, the A-hole model. The main
difference with respect to our treatment is that one does
not treat the wN final state explicitly; the amplitude
squared that appears in the calculation of the response
tensor is simply the square of the yN — A transition
vertex. The decay into the w N final state is then implic-
itly accounted for either by the inclusion of an imaginary
part (the decay width) in the A-isobar propagator [23] or
by the convolution with a Breit-Wigner resonance shape
(25]. In this section we want to discuss the connection
between the latter treatment and ours.

1. Relation between isobar model and effective
Lagrangian approach

The key ingredient of this discussion is the following
relation, which can be obtained from Dyson’s equation
with self-energy ¥ for Gao and the complex conjugate
Dyson’s equation (suppressing Dirac indices):

Im(GA) = C‘-AIm(E)GA, (74)
where the bar denotes the Dirac adjoint of Ga. If we
apply this to the case under consideration, a shorthand

notation for the isobar model would be

W = %Im (T"GAF") ,

(7.5)

whereas a shorthand notation for our effective La-
grangian model would read

Wi — %f"@AIm(E,N)GAF“. (7.6)

Here I'* denotes the YN — A transition vertex. We
see that according to Eq. (7.4) both treatments should

give identical results provided the imaginary part of the
A-isobar propagator in the isobar model is generated dy-

d*p va
RHS = c2 o )4mg GAaﬁIm(

@ )4k5f<‘ﬂcp(p k)F<k, )GA G*Gu(p—9q)-

namically via Dyson’s equation.
We now work out this statement in more detail. We
start with the left-hand side (LHS) of Eq. (7.4), which

we write as (suppressing isospin)

LHS = Im[ ( 71\?) (27;;)4 Tr(GY*G ., (p)G**

xGp(p— q)]]
(7.7)

with Gp the density-dependent part of the Fermi gas
propagator [cf. Eq. (2.6)], G°* the yNA-vertex and
Ga,,(p) the isobar propagator which we write as

p? — M2 +il(s)Ma

Ga.s(p) = (P2 — M3)2 + [T(s)Ma)?

Aap (P)

Here we include the energy-dependent width as derived in

Sec. IIIB. Note that at this point an approximation has

been made, since, when we derived the energy-dependent

width, we averaged over spin. Multiplying with [ dsé(s—
p?) we can write Eq. (7.7) as

_ [ds I'(s)Ma dp
LHS = / 7 (% — M2)? + [[(s) Mal? (27)250

x Tr [QMHAQ‘, ()GP* ——_iGDz(f - q)] (7.8)

with pp = /s +p2. Equatlon (7.8) is indeed the convo-

lution of the YN — A matrix element squared, where A
denotes a A isobar with invariant mass W = /s, with
a Breit-Wigner resonance shape. The latter contains
the energy-dependent width obtained from the imaginary
part of the self-energy .. The latter should include a
correction due to Pauli blocking of the nucleon in the
final state.

If we multlply Eq. (7.8) with -‘i we obtain the expres-
sion for W/” . in the isobar model [25]. (As has been
remarked wﬁen we derived the A isobar decay width, the
isospin factor in this case equals 1.)

The right-hand side (RHS) of Eq. (7.4) can be written

as

(7.9)

If we focus on the pole structure, performing the contour integrations over po and kg, we obtain

dpdk M?

HS = 2
RHS = v | 3myo2B7 Bp—aBpox

0<(p — q)8” (p — k)Tr[G"*Ga,, ks F¥P AT (p — K) F 7k, Ga,, G¥* A (p — q)].

(7.10)
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If we shift the integration variable p to p + q, multiply
with % and include the isospin factor § [cf. Eq. (7.3)],
we obtain the same expression as the direct contribution
in Eq. (7.2). We may now conclude that a convolution in
the isobar model with an energy-dependent width I'(s)
must give the same result as a calculation where one ex-
plicitly sums over all possible final pion states via di-
rect A-isobar production. In other words, the energy de-
pendence of the width effectively accounts for the phase
space that is available to the produced pion. This then
raises the question why one would do a calculation of our
type, since it is technically much more involved than the
isobar model calculation. An advantage of the effective
Lagrangian approach is that it is clear from the outset
how to incorporate other production mechanisms (like
the Born diagrams) and the interferences with the direct
A-isobar contribution [interference term of diagrams (a)
and (b) in Fig. 12] are consistently taken into account.
At threshold these effects are presumably very impor-
tant. Although we do not include the Born terms, the
argument in favor of the effective Lagrangian approach
already applies in our case, since we include besides the
A-isobar direct term, also the A-isobar crossed term and
their interference term. Still, the present analysis is a
strong argument to refrain from a complicated effective
Lagrangian calculation, especially in the resonance re-
gion and to apply the isobar model, provided one uses
the energy-dependent width.

2. Numerical results

For the YN A coupling of Jones and Scadron [15] that
has been used by Wehrberger, Bedau, and Beck [26]
we will explicitly (numerically) check the statements we
made above. There are a few reasons to do this. First,
we believe that a demonstration of the equivalence of the
two approaches described above is useful and illuminates
many statements in the literature that are often taken
for granted when it comes to the treatment of the reso-
nant nature of the A isobar. Second, this analysis will
give better insight into the importance of form factors
at high momentum transfer, especially the form factor
R(r?) that depends on the relative 7N momentum (for a
more detailed discussion of this form factor see Appendix
A).

In the present analysis we use the different YNA cou-
pling of [15] with respect to the previous section, in order
to facilitate comparison with the study in [25]. It is given
by

gﬁu - E[MA(—qﬂ'y“ + dgﬂ") + quu —q- kgﬁu] 75.

(7.11)

The differences are that the constraint of Eq. (3.9) is not
incorporated and the second term, proportional to the
A-isobar momentum k, is absent in Peccei’s coupling.
The coupling constant in this analysis is given by

. 1 2

with

2
1 1
o) = (——)( —)
1- (Ma+M)? 1 - 571 Geve

Ni=

1
(o)
1- 3.5 GeV

If the difference in isospin conventions is taken into ac-
count, this coupling is almost equal to the value of Pec-
cei: their ratio is given by 1.02. When these changes are
accounted for, all previous formulas still apply, and a nu-
merical evaluation is now straightforward to carry out.
The trace algebra is again carried out with FORM, the
numerical integrations with Monte Carlo methods. To
simplify the comparison we ignored the Pauli blocking in
both the isobar and effective Lagrangian approach.

In Fig. 14 we compare the results of the effective La-
grangian approach (dotted line) with the convolution ap-
proach of Wehrberger and Beck (solid line) for kinematics
I and II. The two curves are in both cases almost indis-
tinguishable. To achieve this, it is of vital importance to
have an energy-dependent width in the convolution ap-
proach that is consistent with the 7 NA vertex used in
the effective Lagrangian calculation.

By virtue of the present comparison, some extra in-
formation was gained in the case of kinematics II. If a
calculation in the effective Lagrangian approach is car-
ried out without the form factor R(r?) (see Appendix A),
but with a reasonable parametrization of the width like
the Bransden-Moorhause parametrization, the resulting
response at high energy transfer w is a factor four larger
than in the present treatment. This shows two things.
First, as emphasized earlier, a consistent treatment of
the TNA coupling and the decay width is essential in
an effective Lagrangian approach. Second, the form fac-
tor R(r?) is necessary to obtain reasonable results for the
real-pion production part of the response-functions in the
1 GeV region of kinematics II.

At this stage we finally want to point out that the

| | /A
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FIG. 14. Comparison of the effective Lagrangian approach
(dotted line, where the pion in the final state is explicitly ac-
counted for) with the convolution approach (solid line, where
the decay is treated implicitly through incorporation of the
energy-dependent width) of Wehrberger and Beck.
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discussion above has considerable consequences for the
results obtained by Rost, Price and Shepard in [27]. For
a detailed discussion of this issue, however, we refer to
our forthcoming paper [24] or to [28].

VIII. COMBINED MODEL RESULTS
A. The combined results

Here we present the combined response of the reaction
channels that we described extensively in the previous
sections and make a first comparison with experimental
data. We start with a short survey of the three channels
involved.

Quasifree knockout of a single nucleon, due to the one-
body nucleon current (to be represented by dash-dotted
lines). The (elementary) derivation of this contribution
will not be given in this paper (see, e.g., [28]). The results
are identical to those of Moniz [29]. The nucleon form
factors used are those of Gari and Kriimpelmann [30].

Two-nucleon knockout due to the full two-body cur-
rent, which includes the Pauli exchange contribution
(to be represented by short-dashed lines). Two-nucleon
knockout due to the static limit two-body current (to be
represented by long-dashed lines).

Knockout of a single nucleon together with the produc-
tion of an on-shell pion, through intermediate A-isobar
production (to be represented by dash-triple-dotted
lines).

As we explained in Sec. IV, at this level of approx-
imation where no one-particle-one-hole excitations are
accounted for in the nuclear ground state, we may add
these contributions to W#* incoherently. Our results ap-
ply strictly taken only to infinite systems. We have one
parameter that should be specified in this respect: the
Fermi momentum. It is chosen such that the density
(which is proportional to k%) is in reasonable agreement
with the average density of the nucleus under consider-
ation. For '2C a typical value is 1.1 fm™—!, for %¢Fe 1.3
fm~!, and for 2°8Pb 1.35 fm 1.

In Fig. 15 we compare the combined response of these
three channels (the solid line) with the data for the trans-
verse response function of 6Fe for kinematics I (|q| = 550
MeV). The most striking result is the large contribution
of the full two-body current in and beyond the dip re-
gion. This is, as we explained and discussed in the pre-
vious section, completely due to the resonating isobar
contribution. It is this effect that brings us a long way in
explaining the experimentally observed strength in the
dip region [2]. For comparison we show the result one
would obtain for the total response when, instead of the
full two-body current contribution, the SL result would
be used (dotted line). Apart from some minor details
this is what one obtains in the original analysis of Van
Orden. Clearly the discrepancy with the data is larger.
From these results we conclude that an important part
of the strength of the transverse response function in the
dip region is due to two-nucleon knockout via an inter-
mediate A-isobar excitation.

To our knowledge there are two analyses in the litera-
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FIG. 15. Comparison of the combined transverse response
(solid line) of the quasifree knockout (dash-dotted line),
the pion production (dash-triple dotted line) and the full
two-body knockout (dashed line) with the data of kinemat-
ics I for °Fe. Also displayed is the static-limit result for the
two-body knockout contribution (long-dashed line). Finally,
the dotted line shows the combined response one would ob-
tain replacing the full two-body results with the SL two-body
results. The data are taken from [5].

ture where the authors claim that two-body currents do
not or cannot play such an important role. In [27], on
the basis of a rather phenomenological treatment of the A
isobar, the authors conclude that one-body currents are
sufficient to get agreement between theory and experi-
ment in the dip region. As mentioned in Sec. VIIC2,
we will discuss this claim in more detail in a forthcoming
paper [24]. Here we note that the energy-independence
of the A-isobar decay width in their analysis has rather
large consequences for the conclusion drawn.

The second is described in two papers by Takaki [31],
where he claims that two-body currents are not capable
of accounting for the strength in the dip region [or for
the case he considers, the (e,e’p) reaction where one de-
tects one knocked out proton, the excess strength at large
missing energy]. His conclusion is that three-body pro-
cesses (of unspecified origin) are to be held responsible
for the missing strength. Takaki assumes that the matrix
element of the scattering process is essentially constant,
such that phase-space arguments apply. In the present
analysis, however, we have seen that the latter assump-
tion certainly does not hold for the isobar current as a
consequence of the resonance behavior. We therefore
believe that there is no contradiction between Takaki’s
conclusions and ours if this complication is taken into
account.

In Fig. 16 we show similar results as in Fig. 15, but
now at the much larger momentum transfer of kinemat-
ics IT (|q| = 1140 MeV). Although the comparison with
the data is fair, it is not obvious that one needs the two-
body current contribution that we calculate to obtain
a reasonable description of the data. At the large en-
ergy transfer of more than 700 MeV, it is possible that
the higher nucleon resonances that have a strong (trans-
verse) electromagnetic coupling [N(1520) and N (1535)]
start to become important. The continuous rise of the
data, combined with the disappearance of purely nucle-
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FIG. 16. Results as in Fig. 15, but now for kinematics II.
The data are taken from [10].

onic and A-isobar channels at least suggests that these
other resonances will play a role.

As mentioned in the general introduction, the simulta-
neous description of the longitudinal and transverse re-
sponse functions is one of the central goals one would like
to achieve. The model we discuss at present will mainly
affect the transverse response function. This is due to
the fact that we study the physics of the nuclear current.
Detailed studies of the longitudinal response functions
in various models have shown that other physics there
is important. For example, initial state correlations are
found to be responsible for its quenching. It is beyond the
scope of this paper to present “state of the art” results
for the longitudinal response. In this respect, however,
we have to consider the possibility that the large two-
body contribution in Ry would also manifest itself in the
longitudinal response. This could endanger the simul-
taneous understanding of the response functions, since,
experimentally, the longitudinal response is very small at
large energy transfer. Figure 17 is meant to show that
indeed the contribution of the two-body isobar current
to the longitudinal response remains small and stays, for
both kinematics, well within the bounds set by the data.
This figure is not meant, however, to present a full model
description of the longitudinal response. From this we
conclude that our predictions for the transverse response
functions do not affect the longitudinal one in any severe
way.

Finally, we present in Fig. 18 results of our calculations
for a different type of data set: the transverse response
(in mb) for fixed four-momentum ¢? = 0.1 GeVZ, which
constitutes another slice in w |q| space. Clearly the calcu-
lated response deviates considerably from the data at low
energy transfer, but is very reasonable in the A-isobar
resonance region. Without the full two-body contribu-
tion, the agreement would be much less. The discrep-
ancy at low energy transfer can be understood once one
examines the data for Ry (which we do not display, see
[32]). These show a long tail into the high energy transfer
region. Only beyond 300 MeV the data for Ry become
compatible with zero This indicates that, presumably,
one-body nucleon processes still play a role at w values
up to 300 MeV. On the other hand, in our simple Fermi
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FIG. 17. Comparison of the contribution of the resonat-
ing part of the A-isobar two-body current (solid lines) to the
longitudinal response, for kinematics I and II. These results
are not meant to give an account of full-model results for Ry,.
Only one channel (two-body knockout) is displayed here (see
text).

gas calculations, the latter contribution vanishes already
at w = 200 MeV. This clearly indicates one of the major
shortcomings of the model as it is, and this observation
leads us to the following.

B. Criticism

The present analysis would be incomplete without a
thorough discussion of its main shortcomings. The most
obvious one is the neglect of interactions of any type in
both initial and final states. These lead, for the ground
state, to particle-hole excitations, which give rise to high-
momentum components in the nuclear wave function, or,
equivalently, for an infinite system to depletion of the
Fermi sea. These high-momentum components tend to
enhance the tail of the response functions. The final-
state interactions are found to change the response func-
tions considerably [33]. In general they redistribute the
strength such that the peak values are diminished and the
tails of the quasifree knockout distributions broadened.
Furthermore, in a mean-field sense, the interactions in
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FIG. 18. Results as in Fig. 15, but now for the data of [32]
where the four-momentum transfer is kept fixed.



the hadronic medium will give rise to changes of the one-
body Green function and to changes of single-nucleon
properties. For a finite nucleus these effects will moreover
be density dependent and as such a local-density analy-
sis is necessary. In this respect the Fermi gas approx-
imation itself deserves more attention and an analysis
with more realistic single-particle wave functions could
be preferable. Finally one should worry about unitarity.
Simply adding reaction channels may violate probability
conservation and give completely wrong results. The fact
that in the present treatment there are two channels both
showing a resonance behavior strongly suggests that we
might be dealing with such a case.

All these effects and considerations are absent in the
model that we described up till now. At this point we
state that a comparison with the data of a model of the
present type is at best qualitatively reliable. A study of
several of the shortcomings mentioned above will be the
subject of a forthcoming paper [24].

IX. CONCLUSIONS

In this paper we reported on a study of the contribu-
tion of relativistic meson exchange and isobar currents to
the response of nuclei in electron scattering at intermedi-
ate energies in the noninteracting Fermi gas model. We
now summarize the conclusions which emerge from this
work.

The main result of this work is the apparent impor-
tance of the full two-body isobar current in the dip and
resonance region due to a resonance behavior. This large
qualitative effect is not obtained in the static limit pro-
cedure and cannot be found reliably in an approximate
way. When we compared the results of the full calcu-
lations with the SL ones we found that the quantita-
tive effects generally increase with increasing momentum
transfer and become large at the nucleon mass scale.

To be able to make meaningful comparisons with data
we studied the real-pion production process in the same
framework where we paid special attention to the physi-
cal meaning of the A-isobar decay width in relation with
the isobar model. We showed explicitly that the energy
dependence of the decay width effectively accounts for
the possible phase space of the produced pion. From
this analysis it is clear that a consistent treatment of
the 7 NA decay vertex in relation to the A-isobar decay
width is important, especially in an effective Lagrangian
approach. We draw the conclusion that one should be
careful to trust results that are obtained in a fixed-width
approximation to the A-isobar decay width.

Comparison of the results of our model calculations
with data are reasonable. The enhancement of the two-
body contribution improves the comparison in the dip
region considerably. The relativistic model studied in
this paper clearly neglects effects of the final-state inter-
actions and the detailed structure of the nucleus. There-
fore the above comparisons must be regarded as qualita-
tive. The noninteracting Fermi gas analysis can readily
be extended to a more realistic description when we also
include the effects of medium modifications. This will be
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done in a subsequent paper [24].

Finally, at a technical level, our work shows that, given
modern computing facilities, there is no reason to resort
to static approximations of two-body currents. Further-
more it appeared that a large class of numerical integra-
tions, which result in analyses of the type treated in this
paper, can be carried out straightforwardly and without
further approximations with the use of Monte Carlo tech-
niques. The amount of work that has been and still is
being devoted to approximations in relation to the treat-
ment of the current operator on the one hand and the
evaluation of the (Fermi gas) integrals on the other hand
makes this a nontrivial conclusion.
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APPENDIX A: FORM FACTORS AND
COUPLING CONSTANTS

In this appendix we describe the way current conser-
vation is maintained once form factors, both electromag-
netic and strong, are taken into account. Moreover, since
we want to perform calculations at high (|q| > 1 GeV/c)
momentum transfer, our results will be sensitive to de-
tails of the phenomenology. For that reason we discuss
the choice of form factors and coupling constants in more
detail.

For a long time it has been argued that the two-body
current, due to the continuity equation, should have the
same electromagnetic (EM) form factor as the charge

density operator. The latter is phenomenologically well
described by the dipole fit:

on)= (1)

with A% = 0.71 GeV?.

If one starts, however, from a microscopic picture there
is no other choice than the EM form factor that corre-
sponds to the photon vertex that is contained by the
respective diagrams. If one uses current conservation to
construct the two-body current in a relativistic frame-
work, like in the work of Hummel and Tjon [34], there is
no freedom either. For the m# MECs for instance, the non-
vanishing isovector commutator gives the isovector form
factor Fy = (F¥ — F}J') as EM form factor of the two-
body current. By fully exploiting the transverse freedom
in the construction of the two-body current, Gross and
Riska developed a method [35] to extrapolate the cur-
rent from g2 = 0 to finite g2, which allows one to use the

(A1)
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correct EM form factor for each filagram. ) Fy (k) = AZ —mZ (A2)
If strong form factors are to be included, things become " AZ — k2’

even more complicated. Gross and Riska [35] developed

a way to guarantee current conservation with the aid of = which is normalized to one for a physical pion (k? =
Ward identities, which we apply in our case. The strong  m2) 2. The final result we obtain that way can be written
form factor is chosen to be given by as

. gr \2
J{:;-ﬂight = Z("'(1) X T(z))3 (m) FEM(QZ)Fr(kf)Fw(kz%)(kz - kl)“(kﬂs)(l)(kﬂs)(z)

+

1 1 1
x ((kf —d) (R —m2) T (%~ mE) (k2 —AZ) T (& — 2 (R — Ai))' (43)

The static limit reduction of this current precisely gives the form of the pion in-flight MEC with the inclusion of
strong form factors as given by Mathiot [36]. If one interprets the factor 1/(k? — A2) as the propagator for a fictitious
A, particle, we can view the additional terms appearing in Eq. (A3) as resulting from diagrams where the photon

couples to the A, particle.
For the contact terms this procedure gives

©w
Jcontact

2M

The sum of the currents of Egs. (A3) and (A4) is the =
MEC J¥ we use to calculate the meson-exchange contri-
bution of pionic origin to the transverse response.

A phenomenological part of the # N A-coupling has yet
to be discussed. The width as given by Eq. (3.27) does
not reproduce the experimental phase shift §33 very well.
To improve this, an extra form factor R(r2) has to be
added to the vertices (3.13) and (3.14), depending on
the relative 7 /N-momentum r [16,37], which we choose to

be:
2 1
A% 2
R(,’.Z) = (——~—~A2 — 7‘2)

with 7% = (Ex — wy)? — 4k? and A% = 0.95M2. This
extra term emerges naturally if the A isobar is treated
as an interacting 7N system, where it is derived from the
7N interaction vertex, which is assumed to be of sepa-
rable form [37]. Form factors depending on the relative
three-momentum appear in many other phenomenologi-
cal works like Moniz [38] and Koch et al. [23]. We have
chosen its form [16] such that over a large range of ener-
gies /s the resulting energy-dependent width compares
well with the parametrization of Bransden and Moor-
house [39], which, in turn, gives a good fit to the phase-
shift d33. If one includes it in the isobar current, an ambi-
guity arises since there the pion is off-shell. We chose to
treat it, given the pion three-momentum, as if the pion
was on shell, which avoids possible kinematical singu-
larities. The influence of this ambiguity was found to be
small when we boosted the momenta from the laboratory
to the c.m. frame, applied the above mentioned choice
in both frames, and compared the results.

The YNA coupling strength is determined from data
for the M+ multipole contribution to pion photoproduc-
tion. This makes the determination model dependent
and rather large differences appear in the literature. We
adopt the original value of Peccei, fynya = 5.0. The ¢2

(A5)

- Fc(qz)i(‘r(l) X T(Z))a(g_") [F:(k%)n(kz)(g) (7#75)(1) - Ff(kf)ﬂ(kl)(l)('y“'ys)(z) .

(A4)

dependence of this coupling (the EM form factor) is ex-
perimentally poorly determined. In fact, one essentially
only knows that the EM form factor falls off faster with
increasing ¢2 than the dipole fit to the nucleon form fac-
tor, indicating that the A-isobar charge radius is larger
than that of the proton. Since we want to perform cal-
culations at high (|]q| > 1 GeV/c) momentum transfer,
our results will be sensitive to details of the phenomenol-
ogy. For that reason we will discuss these issues in more
detail.

To extract the momentum dependence of the coupling
constant at the effective Lagrangian level from the exper-
imental data for the M;+ multipole, kinematical factors
appear due to transitions from one set of invariants to
the other [15]. A similar case where this occurs is the
transition from Dirac to Sachs form factors of the nu-
cleon. If we follow [15], it appears that we only deal
with one of the invariants, which makes the comparison
straightforward.

We write the experimentally observable form factor as

G‘;\J(qz) = Gdipole(qz) Gextra(qz) GM(O)

(for ¢> = 0 we normalize all form factors to 1) and we
have the kinematical transformation [15,22]

1
. M(3Ma + M) g’ g*\ ?

X f;}l;llA F‘YNA(‘IZ)

(A6)

(A7)

2Typical values for the cutoff AZ in one-boson-exchange
(OBE) models range from 1 to 2 GeVZ2. The value we adopted
was taken from Van Faassen [18], which was determined in a
one-boson-exchange model which included the A isobar. The
value is given by AZ = 1.9M2.
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with A% = (3Ma + M)(Ma + M) and A% = (Ma+ M)z.
Combining these expressions, using the compilation of
data for G},(q?) from [22], we find, with G},(0) = 3.0:

fyna =48 and

2 2 q2 T2 q2 T2
2 3
(A8)

with A2 = 3.5 GeV2. Note that this value for f,na
differs only slightly from the one of Peccei.

Finally we have to address the strong form factor at
the N A vertex. For this we take the parametrization in
the one-boson-exchange model with A degrees of freedom
as given by Van Faassen:

F. k2 _ A‘IerA
wNa (k) = 50 (A9)

— k2
TNA k

This term is included at each TNA vertex. The cutoff
value A na is given by

AerA = 1.5M2.

We emphasize that the present form factor regularizes the
wNA vertex once the pion is far off-shell and therefore
has a different role compared with the previous one of
Eq. (A5), which is already important when the pion is
on-shell.

APPENDIX B: PAULI EXCHANGE
CONTRIBUTION TO wW#

In this appendix we derive the Pauli exchange part of
the two-particle-two-hole (2p2h) contribution to W+,
As mentioned in Sec. IV this is most easily done in the
second-quantization approach and will be demonstrated
below.

In the second-quantization approach, the 2p2h state is
written as

|

2669

|202h) = o}, a}, ap, 0, [FG),

(B1)

where |FG) denotes the Fermi gas ground state, and a,

and a;‘, the usual annihilation and creation operators, re-

spectively. To shorten notation, p; is understood to rep-
resent both the momentum p; and the spin and isospin
quantum numbers s; and ¢; of the one-particle state. The
two-body (2p2h) current is given by

— 1 7 t ot
JH = 3 Z J‘L(khkz’k;’ké)akéa’kia’kla’kg
ky...kj

x0<(k1)0< (k2)0” (k;)0” (k;)  (B2)
with

T# (ka, ka, ki, k) = Bz (Ry) () (k1) T#u ) (k1 )uz) (k)
Normal ordering we then find

(2p2h|J#|FG) = (f“(pl,pz,p’l,p'z) - f“(pl,pz,p'z,p'l))

x0<(p1)0<(p2)0” (p,)0” (P;)  (B3)
and
(2p2h|J"|FG)*
= (ja" (Pl,Pz,Pll,P;) - j‘v(pl,pZap;’pll))
x8<(p1)8<(p2)0” (p;)0” (P) (B4)

with
J* (p1, P2, P, Ph) = T2y (P2)T(a) (P1)T u(r) (P})u(2) ()

where one must use the Dirac adjoint 7 =
'y?l)'y?z).]"'y&)'y?z). The labels (1) and (2) represent the
particle labels. The first term in Eq. (B3) is the direct,
the second the exchange matrix element. Using the ex-
pression in Eq. (2.4) for W** we thus have

W = %2(27")3‘/ Z ﬂ(1)(1’1)5(2)(1’2)7’1‘(2)(1”'2)“(1)(1"1)[5(2)(P’z)ﬂ(l)(P'1) - ﬂ(l)(P’z)E(z)(Pi)]j“U(l)(Pl)u(z)(Pz)

P1-Ph

X0<(p1)0<(p2)0” (P1)0” (P2)8*(p1 + P2 + q — P, —

where the factor 2 is obtained from the equivalence of
terms after renaming the (dummy) particle labels and
the factor % accounts for the double counting of iden-
tical particle-hole pairs. For the first term in Eq. (B5)
we obtain, carrying out the spin summations, the result
of Eq. (4.6). The second, Pauli-exchange, term has the
difficulty that the indices are “at the wrong place” in the
expression:

P3), (B5)

Pe(P1,P3) = (2M)? ) u(z) (P2)uq) (P18 (1) (P2)T(2) (1),

’ o
8182

(B6)

where the factor (2M)?2 has been chosen such that this
operator equals the operator in Eq. (4.8). One commonly
used technique to treat this is the application of a Fierz
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transformation, which amounts to an effective transfor-
mation of the current operator. Since this is hard to im-
plement in the present case, we choose to explicitly carry
out the spin summations in the operator of Eq. (B6).
This is most easily done if we replace the spinors in
Eq. (B6) with the aid of

J

u(p, s) = _¢+__M_u(0,s)
V2M(Ep + M)
and then explicitly construct the 4 x 4 matrices for these

zero-momentum spinors and subsequently write them in
terms of v matrices. We then obtain

P.(0,0) = (2M)* Y~ u(z)(0, s5)u(1 (0, 81T (0, 85)T(2) (0, 81) = 3(I1,2) + 020 )3 +9°) )3 +1%) ) (BY)

8183
and

! 1 1
Pe ) = A
(P1,P>) (E,: + M)(E,, + M)

) (PA G (P2) Pe(0,0)AL,, (P2) Ay (1) (B®)

with AT (p) the usual positive-energy projection operators. Since this expression for P, is given completely in terms
of four-vectors and v matrices, it is suited to be evaluated with the same techniques (i.e., with the aid of FORM) as
the direct term and we can incorporate it in our evaluations of the response functions.
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