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The effect of Coulomb interaction in quasifree scattering and quasifree reactions has been in-
vestigated under different kinematical conditions for the processes involving up to two charges per
particle and a total of six nucleons in the incoming channel, and three particles in the outgoing
channel. The differential cross section was calculated using the plane wave impulse approximation.
The influence of the Coulomb interaction on the magnitude and shape of these spectra were deter-
mined and compared with experimental data. It has been found that for the quasifree peak of the
Coulomb effect within this model depends only on the outgoing particles in quasifree vertex and on
energy between them. At low energies the influence of the Coulomb interaction cannot account for
the discrepancy between the quasifree data and the impulse approximation predictions, although
it can produce effects of several orders of magnitude, depending on the energy and the charges of
particles. The Coulomb interaction changes only the magnitude, and has a very weak influence on
the shape of the quasifree spectra. At high energies the Coulomb influence on the maxima of the
spectra is in the 5-20% range. When those Coulomb effects are taken into account and when a
proper wave function for the spectator-transfer particle system is used, then at energies above 200
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MeV this model agrees with data.

PACS number(s): 25.10.+s, 24.10.—i, 27.10.+h, 03.65.Nk

I. INTRODUCTION

Quasifree scattering (QFS) [1-4] and quasifree reac-
tions (QFR) [5,6] can be described by the spectator
model, using the plane or distorted wave impulse ap-
proximation (PWIA) [7-9]. It is known [10] that PWIA
in general fits the shape of energy spectra (better fit can
be obtained by, e.g., introducing a cutoff radius), but
at incident energies below 100 MeV PWIA cross section
is much larger than the magnitude of the experimental
data. A normalization factor N is introduced:

N= d30exp

(1)

d3 Opwia

and its value depends on the quasifree (QF) process, it
decreases when the energy of the incoming particle is re-
duced [11-15] and it is always smaller than one, e.g., for
2H(p, 2p)n at E;, = 15 MeV, N = 0.1 [16], while at 85
MeV, N = 0.72 [17], for *He(3He,pt)2p at E;, = 65 MeV,
N = 0.07 [18]. This discrepancy between theory and ex-
periment cannot be explained completely by uncertain-
ties in the target wave function, nor by the half-shell cross
section [9].

Many papers [19-26] pointed out the importance of
the Coulomb effect in quasifree processes. Kok and van
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Haeringen have shown [27] that the relation
Ohalt = Oon(E,q°)C5 (1) D?(p, k) (2)

holds true for the case when, in addition to Coulomb,
there is also a short-range potential. Here k and p are
final and initial relative momenta and q = p — k is the
momentum transfer. The quantity D(p, k) is given by

1 p>k,
peb={,., 72 Q

where v = ze?/2k is the Sommerfeld parameter and

2w
Col) = oy g (4)
is the Coulomb penetrability. It has been also shown that
the difference between o515 and o,, can be large for low
incident energies or for small momentum transfer [28].
Therefore, one must introduce the Coulomb interaction
into PWIA .

Bajzer included the Coulomb effect in the quasifree
processes treated as a three-body process with two or
three charged bodies in the final state [29]. His approach
is based on the exact three-body treatment [30-34] and
the factorization of the exact breakup amplitude Tp; into
a directly calculable Coulomb interaction dependent fac-
tor and the part which requires the solution of the Alt-
Grassberger-Sandhas (AGS) equations:

|To:|? = |T(1 — in)T'(1 — i©;)| 2

x lim [(p}, 4}|Uoi (B} + i€) ¥iqi) | gy =, - (5)
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Here index 7 € {1,2,3} denotes the initial channel and
W;, FE; are the bound-state wave function and the to-
tal energy in this channel. Index 0 denotes the final
(breakup) channel. p; and q; are relative momentum
variables invariant to the choice of coordinate system,

defined as

Pi = €jk(mjki — mik;)/(m; + mx),
€ij = —€jis (6)
q; = [mi(kj + ki) — (m; + me)ki]/(mi +m; + my),

€12 = €23 = €31 = 1,

where k; are the momenta of the particles in three body
c.m. (or laboratory) system and ¢, j, and k are the cyclic
channel indexes (having values 1, 2, 3). p} and q; in
Eq. (5) are the final-state relative momentum variables
with the corresponding kinetic energy E; The gamma
functions in Eq. (5) describe the long-range nature of the
Coulomb interaction and

3
n=>Y_ mi), 7:(P;) = ejerpi/pi,
i=1

0; = ei(e; + ex)vr/q,
v; = mi(mj +mg)/(m; + m; + my),

pi = mimy/(mj + my),

where e; is the charge of the particle i. The operator
Uy; is the breakup AGS operator [30] defined as Up;(z) =
(z— Ho)(z— H)™Y(2 — H;), Im z # 0, where H = Hy +
Vi+ Vo 4+ Vs and H; = Hy + V; are the total and the
channel Hamiltonians of the system. [We wish to note
here that in the corresponding definition for the AGS
operator in paper [29] Eq. (12) is incorrect and Uyg
should be replaced by Up,. However, this mistake is not
propagated in the paper.]

For the quasifree conditions, Bajzer applied the im-
pulse approximation to formula (5) and found that the
Coulomb effect, besides the already mentioned Kok-
van Haeringen factor, contains also an additional factor
resulting from the Coulomb interaction in the incom-
ing channel. Assuming that kg is the laboratory mo-
mentum of the incident particle and that ki, ks, and
ks = k, (spectator particle) are the laboratory momenta
of three outgoing particles with corresponding solid an-
gles Q;, Q2, and Q3, and E; is the energy of the outgoing
particle 1, the following explicit formula for differential
cross section was obtained [29]:

d30' dUpt

= /] ks 2 2 )
dQ,dQ.dE, fes F7e) |¥1 (ke )|*| fxu|® fre (7

Here fps is phase space factor:

fps = ma(mq + m2)%kZki/[mi|ka(1 + ma/my)
+k; cos 013 — ko cos O2]],

(8)

where cos 6,5 =R1-ﬁ2, cosfy = Ro-ﬁz, and ¥,(k,) =
(ks|¥,) is the bound-state wave function of the spec-
tator particle “s” and the transfer particle “¢” calculated
at the final momentum of the spectator particle. In Eq.
(7) the dope/dS? is a two body differential cross section
at the energy F and at the scattering angle 6 between
the transfer particle and projectile “p,”

E= P%*(my + my)/(2myms), cosf = Q- P,
P= pg = (mlkg - mgkl)/(ml + mz), (9)
Q= —ko + my(k; + kz)/(m1 + m2),

that is, between the particles taking part in QFS. The
factor fxu in Eq. (7) is the Kok-van Haeringen factor
[see (3) and (4)]:

fxu(P,Q) = Co(n3)D(P,Q), nm3 = ereaus/P, (10)

which together with Coulomb distortion factor in inci-
dent channel f;c,

f]C(ko) = |F(1 - i@1)1~2 = Sil’lhﬂ'@l/ﬂ'gl,
(11)

0, = elezml/ko,
represents the whole Coulomb distortion factor,
fe = | fxu(P, Q) frc (ko). (12)

Both f;¢ and fkxy appear as multiplicative factors in
Eq. (7) for the QF cross section. The factor fr¢ is greater
than 1 and it tends to 1 when incident energy increases.
The factor fxy is smaller than 1.

The aim of this work is to determine the Coulomb ef-
fects using Eqs. (12) and (7) for many different processes
and a broad set of kinematical conditions. The purpose
is to determine under which conditions this inclusion of
Coulomb effects tends to eliminate the discrepancy be-
tween the PWIA and the experimental cross section.

As it has been emphasized by Bajzer [29] this treat-
ment of the Coulomb effect is expected to be applicable
for QF processes with a neutral particle as a spectator.
If the spectator particle is charged, possibly important
Coulomb effects are not taken into account by the pre-
sented formulae. However, for comparison we included
several such processes in our considerations.

II. RESULTS AND DISCUSSION

We restricted our study to energies less than 600 MeV.
At energies higher than 600 MeV, the PWIA explains
the magnitude of the QFS data quite well [17,35,36] and
Coulomb effects are negligible. Our interest here is pri-
marily on the few-body systems and consequently we lim-
ited ourselves to systems with less than 6 nucleons.

Our model has been developed for QFS processes and
it is strictly valid only when the spectator particle is neu-
tral and therefore, there is no Coulomb interaction be-
tween the QFS pair and the spectator. Nevertheless, we
will apply our model also to those QF processes where
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FIG. 1. Coulomb distortion factor for ?H(t, pt)n QFS.

the spectator is a charged particle, and also to QFR. We
will show later that our model is about equally success-
ful for true QFS processes as well as for those with a
charged spectator and for QFR processes. This result,
maybe, provides an a posteriors justification for applying
our model so broadly.

Differential cross section for QF processes is given by
Eq. (7), and specifically, the Coulomb correction is given
by two factors fxy and frc. The absolute square of the
two body amplitude is replaced by an experimental two
body cross section d—:ﬁi at the energies and angles given
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FIG. 2. Coulomb distortion factor for 2H(t, pt)n QFS.

by formula (9). Experimental two-body cross sections
are those from [37].

From Egs. (7)-(12) one sees that the Coulomb cor-
rection increases as the incident energy decreases (i.e.,
factor fc becomes smaller and smaller) and that it de-
pends only on the outgoing particles at the QF vertex
and on energy T;2 between them (see Table I). For exam-
ple, the Coulomb correction factors fo for the processes
“He(p, pt)'H and *H(?H, pt)n with T}, energies (relative
energy of two detected particle 1 and 2 in the exit chan-
nel) of 5 MeV for the two QF particles, are identical,

TABLE 1. Coulomb distortion factor at energies 5, 10, 20, and 40 MeV for various QFS and

QFR.
Ti2=35 T2 =10 T2 = 20 Tiz = 40
Quasifree process (MeV) (MeV) (MeV) (MeV)
*H(p, pp)n 0.853 0.895 0.925 0.947
3H(p, pp)2n 0.853 0.895 0.925 0.947
*He(p, pp)*H 0.853 0.895 0.925 0.947
“He(p, pp)*H 0.853 0.895 0.925 0.947
2H(*H, pd)n 0.832 0.879 0.914 0.939
3H(*H, pd)2n 0.832 0.879 0.914 0.939
3He(*H, pd)*H 0.832 0.879 0.914 0.939
*He(*H, pd)*H 0.832 0.879 0.914 0.939
*He(p, pd)*H 0.832 0.879 0.914 0.939
3He(p, pd)'H 0.832 0.879 0.914 0.939
*H(p, pd)n 0.832 0.879 0.914 0.939
“He(p, pt)'H 0.821 0.872 0.909 0.935
3H(H, pt)n 0.821 0.872 0.909 0.935
2H(t, pt)n 0.821 0.872 0.909 0.935
3H(t,pt)2n 0.821 0.872 0.909 0.935
3He(t, pt)*H 0.821 0.872 0.909 0.935
*He(*H, pt)°H 0.821 0.872 0.909 0.935
“He(t, pt)*H 0.821 0.872 0.909 0.935
‘He(p, p*He)n 0.667 0.756 0.823 0.873
2H(*He,p*He)n 0.667 0.756 0.823 0.873
3H(’He,p’He)2n 0.667 0.756 0.823 0.873
3He(®He, p®He)?H 0.667 0.756 0.823 0.873
‘He(*He,p*He)*H 0.667 0.756 0.823 0.873
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TABLE II. Coulomb distortion factor at various T;2 for different QF processes.

T12 =0.1 T12 =0.5 le =1.0 T12 = 5.0 le =10 T12 =20 T12 =40 T12 = 50

QFS (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
p-p 0.272 0.589 0.694 0.853 0.895 0.925 0.947 0.952
p-d 0.215 0.536 0.651 0.832 0.879 0.914 0.939 0.945
p-t 0.192 0.513 0.632 0.821 0.872 0.909 0.935 0.942
d-d 0.143 0.460 0.588 0.798 0.854 0.895 0.925 0.933
d-t 0.115 0.422 0.555 0.778 0.839 0.885 0.918 0.926
t-t 0.0847 0.377 0.514 0.755 0.822 0.872 0.909 0.918
p-3He 0.024 0.236 0.377 0.667 0.756 0.823 0.873 0.886
d-*He 0.0072 0.151 0.282 0.596 0.700 0.780 0.841 0.857
t-*He 0.0036 0.116 0.238 0.559 0.671 0.758 0.824 0.842
3He-*He 3.0x107¢ 0.008 0.040 0.290 0.435 0.568 0.677 0.706
‘He-*He 7.0x1077 0.005 0.034 0.271 0.406 0.533 0.642 0.673

TABLE III. Influence of the Coulomb factor fc on the normalization factor N for different QF processes and different
kinematical conditions.

QF process Ei, (MeV) 6, 6, fc N N' = N/fc
p-p QFS 14.45 30.0 30.0 0.814 0.206 0.253
2H(p, 2p)n 65.00 43.6 43.6 0.938 0.560 0.597
85.00 43.6 43.6 0.946 0.720 0.761
100.0 43.6 43.6 0.951 0.770 0.810
p-d — p-d QFS 19.8 32.0 23.9 0.821 0.232 0.283
2H(*H,pd)n 24.8 25.0 25.0 0.844 0.260 0.308
24.8 32.0 25.2 0.844 0.255 0.302
30.6 32.0 26.0 0.864 0.223 0.258
d-d QFS 35.0 32.0 32.0 0.837 0.170 0.203
3H(%*H, dd)n 35.0 34.0 43.3 0.862 0.160 0.186
3He(*H, dd)'H 35.0 32.0 32.0 0.838 0.130 0.155
d-d — p-t QFR 35.0 34.0 43.3 0.862 0.060 0.070
3H(*H, pt)n
3He-p QFS 50.0 20.0 20.0 0.735 0.078 0.106
3H(*He,p*He)2n
3He-d QFS 50.0 37.5 30.0 0.737 0.160 0.217
SH(®He,d*He)n
3He-n — p-t QFR 50.0 37.0 18.18 0.762 0.530 0.690
2H(*He, pt)'H
*He-d — p-a QFR 50.0 37.5 30.0 0.768 0.100 0.130
3H(®He,pa)n

TABLE IV. Normalization factors [17,35,36,39] N and N’ with and without factor fc, respec-
tively, and factor N” that includes D state of deuteron.

*H(p, 2p)n
QFS
N" obtained after correction
Ein (MeV) N fc N' = ?% of N' by 7% D state
65 0.56 0.938 0.60 0.64
85 0.72 0.946 0.76 0.81
100 0.77 0.950 0.81 0.87
145 0.82 0.960 0.85 0.91
200 0.86 0.965 0.89 0.95

600 0.92 0.980 0.94 1.00
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FIG. 3. Coulomb distortion factor as a function of the rela-
tive energy between particles 1 and 2. Several distinct families
correspond to charges e; and ez of particles 1 and 2 in the exit
channel: (e1,e2)=(1,1), (1,2), and (2,2), from top to bottom.
Arrows with labels 1, 2, and 3, respectively, encompass each
family. Each family is composed of various mass combina-
tions [m,, mz]. For family (1,1) charge combination, [m;, m2]
= (1,1}, [1,2], [1,3], [1,4], [2,2], [2,3], [2,4], and [3,3]. For family
(1,2) charge combination, [mi,m2] = [1,2], [1,3], [1,4], [2,2],
[2,3], [2,4], [3,3], and [3,4], and for family (2,2) charge combi-
nation, [m1, m2] = [2,3], [2,4],[3,3], [3,4], and [4,4].

fc = 0.821, though the two QF processes are totally
different: one is p-t elastic scattering and the other is a
2H(d, p)3H reaction (see Table I). Also, the factor fc
for kinematics conditions corresponding to the QF peak
(i-e., zero momentum transfer for the spectator) does not
depend on angles 6, and 6, of the two outgoing detected
particles. In Figs. 1 and 2 we show the factor fc as
a function of detected particle energy for the reaction
2H(3H, pt)n at two different angles. Although the factor
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FIG. 4. Comparison between experimental data,

PWIAXN data (N = 0.232 dotted line) and PWIAXN x fc
data (fc = 0.82, N’ = 0.282 solid line).
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PWIAxN data (N = 0.255 dotted line) and PWIAXN x fc
data (fc = 0.84, N’ = 0.303 solid line).

fc varies with the detected particle energy we see that
at the exact QF conditions labeled by the arrow, the fo
factor has the same value for both cases.

Since at the quasifree peak the Coulomb contribution
factor fc depends only on the particles in the exit chan-
nel and energy between them, we present fc in Fig. 3 as
a function of T7;. Several distinct families of fo vs T12
curves can be seen in Fig. 3, depending on the charges
in the incident channel. Each family is composed of the
curves describing fc for various masses in the exit chan-
nel (see also Tables I and II). Figures 1 and 2 show
that fc varies with relative energy of particles 1 and 2
and therefore it is possible that fc appreciably modifies
the theoretically predicted spectra, not only their magni-
tude, but also their shape. However, the dependence of
fc on the relative momentum of the outgoing particles
in all cases close to the QF process is almost constant as
can be seen in Figs. 4 and 5. At energies higher than 100
MeV, factor fc changes so slowly with the energy of a
detected particle that it does not influence the spectra at
all.

Table III summarizes the effect of the Coulomb correc-
tion factor fc on the PWIA predicted cross section. The
inclusion of the factor fo changes the overall normaliza-
tion factor N that has to be used to match the calculation
to the data. Two columns N and N' give values without
and with the factor fc for several QFS and QFR and for
various incident energies. One concludes from Table III
that the inclusion of the factor fc always improves the

TABLE V. Energy dependency of the Coulomb factor fc
for the 2H(*He,p*He)n QFS.

2H(*He, p°He)n

QFS

Eim (MeV) fo
100 0.832
200 0.883
400 0.918
600 0.934
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TABLE VI. Coulomb factor f¢ for different QF processes
at energy projectile Ej, = 600 MeV.

fc

QF Process at Ei, = 600 MeV
3H(p, pd)n 0.981
3H(*He,pa)n 0.947
3He(p, p*He)n 0.963
3He(*He, p*He)*H 0.934
*He(H,p’He)n 0.963
‘He(*He,p*He)*H 0.930

agreement between the PWIA and the data. However,
at energies below 100 MeV the multiple scattering series
does not converge and the PWIA is a very poor descrip-
tion of the data, and consequently the correction fc does
not bring the calculation close enough to the data.

At energies higher than 100 MeV, the assumptions
built into the PWIA are more and more satisfied [7,38].
Therefore, it is of interest to study how well the PWIA
with Coulomb factors fc describes the data and whether
the Coulomb correction f¢ eliminates all differences be-
tween the PWIA and the experiment. For this purpose
we considered the QF processes where for the target we
chose 2H, 3H, 3He, *He and for the projectile p and 3He
with energies from 65 (or 100 for 3He) to 600 MeV. Table
IV lists Coulomb and normalization factors for 2H(p, 2p)n
QF'S from 65 to 600 MeV, Table V lists factor fc for the
reaction 2H(3He, p 3He)n from 100 to 600 MeV and Ta-
ble VI for reactions with 3H, 3He, and *He targets at
600 MeV energy. At energies higher than 100 MeV the
PWIA almost accounts for the data, i.e., the predicted
cross section is only 10-22% larger than the measured
one [17,38,39]. Coulomb factors fc account for a part of
this difference 2-7 %, the rest of difference is related to

the fact that the ground state of the nucleus containing
the spectator is not only the S state, but it contains the
D state: 4-7% in 2H, 4-11% in 3H, and 5-15% in 3He
and *He, depending on the potential for which the wave
function is being calculated. When the correct ground-
state function is used then the PWIA together with the
present Coulomb correction factor f¢ fully accounts for
the data at higher energies N/ = 1 at 600 MeV for the
process 2H(p, 2p)n (see Table IV).

III. CONCLUSION

We conclude that at low energies the Coulomb correc-
tion factor fo can change the spectator model predicted
values even for several orders of magnitude without, how-
ever, appreciably changing the shapes of the spectra. For
the QFS conditions, the factor fc will depend only on the
incident particle energy and on the outgoing particles in
the QF vertex. The Coulomb effect cannot explain the
entire discrepancy between the spectator model and the
experiment at energies below 100 MeV. At higher ener-
gies the inclusion of the Coulomb corrections brings the
spectator model into full agreement with the experiment
if the proper partial wave components of the wave func-
tion (describing the spectator-transfer particle system)
are taken into account.
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