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Total neutron-nucleus cross sections and color transparency
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The neutron-nucleus cross section at Fermi lab energies is computed using Glauber-Gribov mul-

tiple scattering theory. The effects of higher moments in the cross section Buctuations are included
and their physical origin discussed. The validity of the frozen approximation is critically examined.
These studies of the nucleon-nucleus total cross sections provide a test of the pp —+ Xp diffractive
amplitudes used in calculations of color transparency effects.

PACS number(s): 24.85.+p, 12.38.gk, 25.30.Fj

Color transparency has been the subject of much re-
cent experimental [1—3] and theoretical attention, see
e.g. , Refs. [4—9]; for reviews see Refs. [10, 11]. Color
transparency is the suppression of initial- or final-state
interactions of a hadron in high momentum transfer ex-
clusive reactions on a nuclear target. This novel effect
is a consequence of the proposition that a small object
(ejected wave packet or ejectile) is produced in a high
momentum transfer reaction.

Color transparency efFects were first postulated [12,13]
and evaluated [5] using a quark basis, but can also be ex-
pressed in terms of a hadronic basis [8, 9]. In this case,
one treats the ejectile as a coherent sum (or integral)
of baryonic states. The ejectile-nucleus interaction then
depends on the baryon-nucleon amplitudes for diffrac-
tive dissociation (DD) (pp~ Xp). Such cross sections
have been measured (see e.g. , the review [14]), and have
been used as inputs in calculations [9, 15] of color trans-
parency efFects. In particular, a recent calculation [15]
using the measured DD cross sections has had reason-
able success in reproducing the measured (p, pp) data
of Ref. [1]. Even so, the need to consider ofF-shell ex-
trapolations and unmeasured phases causes uncertainties
in calculations of color transparency effects. Thus it is
worthwhile to search for further tests of the inputs to
such calculations.

The total nucleon-nucleus cross sections provide an-
other set of observables that are sensitive to the effects
of these very same diffractive dissociation cross sections.
This sensitivity arises from the importance of inelastic
shadowing processes [16] in which the incident nucleon
can be converted to an excited or resonant state, N',
by its interaction with a nucleon in the target and de-
excited by another. The forward diffractive dissociation
cross sections are used as input in computations of the
efFects of inelastic shadowing, Ref. [17]. Thus the total
nucleon nucleus cross section can provide a test of the
inputs and (as we shall see) the approximations used in
color transparency calculations.

The inelastic shadowing corrections to the neutron-
nucleus total cross section are also of interest in their
own right. Questions related to the convergence of the
moment expansion and the validity of the &ozen approx-
imation can be examined.

Our purpose here is to study the various &equently
used approximations and show that the neutron-nucleus
total cross sections can indeed be described in a model
that is consistent with our color transparency calcula-
tions [15, 9]. However, the standard nucleonic multiple
scattering series gives the dominant contribution to the
total cross section, so the present comparison with data
is not a very severe test.

Our approach is based on combining the standard
Glauber multiple-scattering contribution with the inelas-
tic shadowing terin of Karmanov and Kondratyuk [17].
Thus, the present calculation starts with an approach
very similar to the work of Murthy et al. [18] except
that we use modern versions of the input data, : nuclear
densities, nucleon-nucleon forward scattering amplitude,
and diffraction dissociation cross sections. These changes
in input cause substantial changes in the results, so it is
necessary to recheck the original conclusion that inelas-
tic shadowing terms are necessary. We also extend the
model by allowing the N'N total cross section to be dif-
ferent than the NN total cross section.

There is a more recent calculation of neutron-nucleus
scattering by Nikolaev [19],claiming that the total cross
section data cannot be reproduced without allowing the
nucleon-nucleon total cross section to be significantly (5—
15%) larger for bound target nucleons than for free target
nucleons. In contrast, we find that such an enhancement
does not seem to be required. We comment more on this
below.

We now describe our calculation in detaii. We include
two contributions to the total cross section. The first is
the ordinary Glauber term oG. which includes the efFects
of multiple scattering series of nucleons:
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The above expression is obtained in the first-order op-
tical potential approximation in which the effects of cor-
relations between bound nucleons are neglected. The
density p is obtained by removing the effects of the nu-
cleon charge densities from the nuclear charge distribu-
tions measured in low energy electron nuclear scattering
[20] and then performing a convolution integral between
the resulting density and the range of the interaction,
represented by the size of the scattering neutron-nucleon
system. This size was obtained &om the t dependence of
the proton-proton elastic scattering cross section and is
energy dependent. The total proton-nucleon cross section
oT is taken from the parametrized form in the Particle
Data Book [21] and the ratio of real to imaginary part
of the forward amplitude n was taken &om Block et at.
[22]. At high energies n goes to = 0.2. Murthy et al. [18]
took the ratio of real to imaginary part of the forward
amplitude to go to zero for high energy (s) while there
is some evidence that it changes sign and remains finite
[21, 22]. The computed value of oa is sensitive to the
value of o.. For example, setting o. to zero at our lowest

I

energies (of a few GeV) causes a change in the computed
value of the total cross section roughly equal to that of
the inelastic scattering correction.

The integrand in Eq. (1) is &equently replaced
by the exponential approximation 1 —exp[ —(1
ia)o'/2 Idzp(r)]. The use of the exponential expression
can cause up to 5%%uo errors for light nuclei. This is signif-
icant at the precision we are working in this calculation
but is probably not significant for the color transparency
calculations which currently require less accuracy.

The second contribution to the total cross section
comes from the inelastic scattering correction 6;„,~ in
which the projectile nucleon is diffractively excited in its
interaction with a target nucleon and then de-excited in
a second scattering. We find that the total nuclear cross
section ot q(A) is then given by

o„,(A) = a.~ —6;„,(

with:
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where b is the impact parameter, and d cr(t = 0)/dM2 dt
is the diffractive differential cross section for the pro-
cess X+ N ~ N + X evaluated at t = 0. The quan-
tity o„represents total cross section for excited state-
nucleon scattering and can depend on M . It is useful
to define the difference between the two cross sections as
Ao = a„—mT . In the limit Ao = 0, 6;„,~ reduces to the
expression given by Karmanov and Kondratyuk [17]:

6;„,) ——4~ d b dM ,d'o(t = 0)
dM2 dt

f 1
x exp

I
~TT(b)

~
I+(qr. , b)~',

2 )
(4)

where T(b) = f p(b, z)dz, qL, = p~~b

—QMz —M2+ p&2 b = (M —M )M/s is the longi-
tudinal momentum transfer in the production of mass
M (the nucleon mass is M) and I" is the form factor
F(ql. , b) = I p(b, z) exp(iqI. z) dz. The approximate form
of qL, was found not to be of sufIicient accuracy for low
values of the laboratory momentum p~ b.

The density used in Eq. (3) is the same as for
the Glauber contribution. The difFerential cross-section
d o (t = 0)/dM2 dt was taken &om the collection of Gou-

[

lianos [14]. This consists of pp m Xp data taken at five
energies. We interpolated the total cross section to ob-
tain results at other energies. These data are newer than
those used by Murthy and are significantly different. In
particular, there is a strong S dependence; Murthy, in
contrast, used a d20(t = 0)/dM2 dt that was indepen-
dent of energy. This is an important point because a
successful calculation should reproduce the energy de-
pendence of the observed total cross-section data. The
Goulianos cross sections are used as input in computing
color transparency effects in [15], so determining if their
use would produce the observed value of 6;„,~ is an im-
portant test of that calculation. Indeed an earlier version
of the color transparency calculation [8] used a single ex-
cited state which yields values of 4;„ i that are too large
by more than a factor of 4 at the higher energies.

The data given by Goulianos [14] is for t = 0.042 GeV2,
not for t = 0 GeV . To extrapolate to t = 0 GeV
we have used the t dependence given by Goulianos [14].
Thus the value of d u(t = 0)/dM dt is 31% higher than
shown in the figures of Goulianos. The difFerential cross
section given is not just the diffractive cross section but
rather the total contribution to the pp m pX cross sec-
tion. Since the inelastic correction needs the diffractive
cross-section we have extrapolated from the 1/M2 re-
gion with a M fall-off instead of using the data for
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pp ~ pX. For those lower energies where the = 1/M2
behavior is not obtained we have extrapolated &om the
last point given. Whenever the value of M is greater
than about 0.15 S, there is a possibility of contamination
by nondiffractive contributions.

An examination of Eq. (2) shows that the nuclear form
factors F(ql„b) play an essential role in reducing the con-
tributions &om large M2; M2 ) s/(5R~/I'm) Ind. eed if
we assume that the diffractive cross section falls as M
then it is the form factors that make the M~2 integral
in 4;„,~ convergent. Even with realistic cross sections
that fall-ofF slightly faster (M2 ~s) the form factors play
a large role and cannot be set to unity unless another cut-
off mechanism is found. Setting the nuclear form factors
to unity, also known as the &ozen approximation, im-
plies qL, 0 and assumes that all the important nucleon
excited states are at the same energy.

The &ozen approximation is of considerable interest
as it is &equently used to simplify calculations of high
energy nuclear reactions. Furthermore, its approximate
validity is one of the three requirements for color trans-
parency to occur [13, 12, 8, 5]. In the &ozen approxima-
tion the general expression (3) for the inelastic contribu-
tion reduces to:

2

T'(5)
2

Note that the integral over M2 can be performed imme-
diately so that 6;„,~ is proportional to

der(t = 0) 2d2cr(t = 0)
dt * dM2 dt

This quantity has been measured and can be interpreted
using the difFractive-eigenstate formalism of Feinberg and
Pomeranchuk [23] and Good and Walker [24], to account
for coherence effects arising at high energies. In particu-
lar, the projectile can be treated as a coherent superpo-
sition of scattering eigenstates, each with an eigenvalue
o. The probability that a given con6guration interacts
with a nucleon with a total cross-section 0' is P(o). Then
crT = i docrP(n)—:o and [25—27]

der(t = 0) 1

dt 16' do P(o )(o—0)2. . (7)

The right-hand side is measured and we use the value
0.25 o&2 of Ref. [25, 26]. The left-hand side is deter-
mined by integration of d2o (t = 0)/dt dM up to a value
of M such that the left- and right-hand sides of the
equation are equal. This leads to values of the maxi-
mum M (max) —0.2s. This is actually fairly close to
the sharp-cut off used in the color transparency calcula-
tions[9] but less strongly 8 dependent. With this upper
limit, the use of the &ozen approximation causes an error
in the computed value of b„,~ of about 5 to 10%%uo for light
nuclei and about 25%%uo for heavy nuclei even at p~ b =256
GeV/e. Such errors are a very small percentage of the
measured total cross section. The imperfect accuracy

of the frozen approximation occurs because M2(max) is

proportional to 8. As 8 gets larger, larger values of M
become important and qL, is not small. [Using lower val-

ues of M2 (max) would increase the accuracy of the &ozen
approximation. ]

In the diffraction eigenstates formalism (which requires
the &ozen approximation) the inelastic shadowing correc-
tion is the difference between the total cross section eval-
uated as an integral over o and the integrand evaluated
at cr = 0 [28, 29]:

d~P 0- (8)

The equations (5) and (8) represent two expressions for
the same quantity. Thus one may relate cr„ to moments
of cr. This is done by making power series expansion in
T(B). Equating powers of T(B) leads to the result:

dM '
Acr = doP(o)(o —o) +'.

dt dM2 16m

TABLE I. The values of the o /oq need to fit the various
moments of the cross section distributions. The three columns
correspond to three diferent momentum distributions used in
Ref. [29j.

Moment St
Third
Fourth
Fifth
Sixth

4.2
3.7
3.5
3.3

CTg

4.0
3.5
3.3
3.2

&r3 ~t
4.0
3.5
3.3
3.2

(9)

Thus we see that choosing a nonzero value of Ao allows
one to reproduce the effects of the higher moments on
6;,~. The values of cr„necessary to reproduce the higher
moments in the cross-section distribution used by [29]
are presented in Table I. In most cases cr„ is between
3 and 4 0T. Presumably even more moments could be
reproduced by allowing 0', to depend on M2, but we shall
show that b,;„,~ is very insensitive to the values of 0„
between 3 and 4 oT . Thus we treat 0'„as independent of
M2.

The above gives us an idea about the value of o„and
the value of Mz(max). In Fig. 1, we present results using
0 = 30T obtained &om Eqs. (1) and (5) by integrat-
ing over M to M2(max). The data are from Refs. [18,
30, 31]. The solid curve is shows the Glauber approxima-
tion Eq. (1) with no inelastic correction. The dashed and
dot-dashed curves show the effects of including inelastic
shadowing using either all of the moments (dashed) or
up to the fourth moment (dot-dashed). The Glauber ap-
proximation Eq.(1) lies above the data. Most of that dif-
ference is accounted for by including the effects of b„. ,i,
but some discrepancy between the theory and the data
remains. The error due to using the moment expansion
increases for heavier nuclei. Although the error is rel-
atively large for 6;„,~ it causes little effect in the total
cross section since the total inelastic correction is small
compared to the total cross section.
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FIG. 1. Total cross sections for an Al target in the frozen
approximation. The data are from Refs. [18,30,31]. The solid
curve includes only the Glauber contribution of Eq. (1). The
dashed (dot-dashed) curve includes also the effects of inelastic
shadowing of Eq. (5) with sll the moments (up to the fourth
moment) generated by using o = 3az.

FIG. 2. Total cross sections for an Al target. The data
are from Refs. [18, 30, 31]. The solid curve includes only
the Glauber contribution of Eq. (1). The dot-dashed curve
includes also the effects of inelastic shadowing of Eq. (5) with
a. = az (o..= 3', a„=4ap).
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FIG. 3. Final calculation of the total cross sections for Be, C, Al, Cu, and Pb targets. The data are from Refs. [18,30, 31].
The solid curve includes only the Glauber contribution of Eq. (1). The dot-dashed curve includes also the effects of inelastic
shadowing of Eq. (3) with a = ar (a = 3az, a = 4ar).
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FIG. 3 (Continued)

We wish to clarify a significant difFerence between the
assumptions used in deriving Eqs. (8) and (5). In the
derivation of Eq. (5) we have assumed that the nucleon
is excited to a given state, stays in that state (while
possibly interacting with the nucleus through a„) and
is then de-excited into a nucleon. Multistep processes in
which an intermediate resonant state is difFractively ex-
cited into another excited state before being de-excited
are not included. On the other hand Eq. (8) includes all
such multistep process. By taking o„difFerent from the
f'ree resonance-nucleon scattering cross section we can ap-
proximately take such effects into account —at least in
the frozen limit. Thus a cr„empirically determined from
total neutron-nucleus scattering may not correspond to
the real resonance-nucleon scattering cross section.

To the extent that the higher moments for the left-
hand side of Eq. (9) are known we can estimate the im-
portance of multistep processes. If we take the higher
moments from Ref. [29] and use our result that the to-
tal cross section is insensitive to variations in cr„given in
the table we can conclude that the multistep processes
are not very important. The downside of this is that the
contributions of higher moments cannot be determined
very well from the total cross-section data.

The sensitivity to cr„ is shown in Fig. 2. Adding the

inelastic contribution with u„= +T gives the dotted line
which tends to lie below the data. The long dashed-
dotted line is obtained with o„= 307 while the short
dashed-dotted line uses cr„= 4crT. These last two lines
are close together in all cases. The exact choice of o„ is,
thus, not crucial.

Having determined 0.„&om the consideration of the
moment expansion in the frozen approximation we can
use it in the general expression Eq. (3). Note, however,
that our final result does not use the frozen approxima-
tion and includes all moments. This is our best calcula-
tion. The agreement shown in Fig. 3 is good except for
carbon. For lead the energy dependence appears wrong
but the inelastic total correction is comparable to the ex-
perimental error bars. But the difFerences between Figs. 2
and 3 are small. In either case, it seems that relatively
little physics is missing. A reasonable description of the
total cross-section data (except perhaps for carbon) is
obtained without exotic effects.

We next compare our approach to that of Ref. [19]. It
is assumed there that the total projectile-nucleon cross
section is enhanced for bound nucleon targets. Then any
small difFerences between the standard calculation (nu-
cleon multiple-scattering plus inelastic shadowing) are
ascribed to such enhancements. But the total neutron-
nucleus cross section is not very sensitive to the total
nucleon cross section, so that relatively large medium ef-
fects are required. We find fairly good (but not perfect)
agreement without such effects. The small differences be-
tween our calculations and the data could be due to any
number of other effects such as the M~2 dependence of
o„or the effects of nucleon-nucleon correlations.

Our final comment concerns color transparency (Ct).
We note that the size of Ct and inelastic shadowing ef-
fects depends on similar inputs. The size of the DD
amplitudes and value of M2(max) used in our two cal-
culations are found to be similar; this is reassuring.
Here, as in Ct calculations, the validity of the frozen
approximation depends on an imprecisely determined
value of M2(max). The good agreement between com-
puted and measured total neutron-nucleus cross sections
obtained here gives us some confidence in using the
d2o (t = 0)/dM2 dt of Ref. [14] to compute color trans-
parency efFects.
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