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C+ C elastic scattering potentials obtained by unifying phase-shift analysis
with the modified Newton-Sabatier inverse method
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A procedure to connect a model-independent phase-shift analysis with the solution of the inverse
quantum scattering problem has been developed and applied to experimental differential cross sec-
tions of C+ C elastic scattering in the energy range E, =8—12 MeV. The minimization of the
error square function y is performed with respect to the spectral coeKcients involved in the inverse
procedure. Input quantities are measured differential cross sections; output results are complex
potentials. The real part of the potentials, so obtained, is characterized by a pronounced minimum
value of —(7—14) MeV at relative distances in the range 2.4—3 fm and by a Coulomb barrier of
height 6—7 MeV in the outer region around r —8—9 fm. In addition a second minimum, very shal-
low or vanishing at some incident energies, is found to exist in the region 5—6 fm. The imaginary
part of the potential exhibits positive maxima in those regions of radial distances where the real
part has minimum values indicating a possible feedback effect of Qux to the elastic channel. The
overall energy dependence of the potentials shows a shape transition resulting in diminishing the
outer potential minimum between E, of 9 and 12 MeV. The inverted (real) potentials yield phase
shifts of 7r/2 in those partial waves where resonances are known to exist. The procedure is tested
by recalculating differential cross sections from the inverted energy-dependent potentials with the
result that consistent agreement with the experimental input data is found.

PACS number(s): 03.65.Nk, 24.10.—i, 25.70.—z

I. INTRODUCTION

Traditionally the inverse scattering problem of elastic
scattering in quantum mechanics [1] at fixed energy is
solved in two steps. First the differential scattering cross
section is analyzed by a minimization procedure [2] which
leads to an appropriate set of phase shifts. Then these
phase shifts are used in the inversion procedure to provide
the optical potential [3]. A consistency test is performed
in each case in order to control the accuracy of the poten-
tial by ensuring that its use in the Schrodinger equation
reproduces the input phase shift data and, thereby, the
underlying cross section.

In this paper we study the possibility of unifying these
two separate steps of the inverse quantum scattering
problem. As a basic method for the inversion proce-
dure we use the modified Newton-Sabatier method [3,4].
The idea of the suggested new method is to perform the
minimization search for the spectral coefficients (c~) in-
volved in the Newton-Sabatier procedure, rather than
for the phase shifts (h~} obtained by conventional anal-
yses. The method proposed has the benefit of determin-
ing the potential for the case of collisions of identical
particles with zero spin, where only even phase shifts
b~ (l = 0, 2, 4, . . . , f ) contribute to the cross section.
In the usual inversion calculation one has to carry out
an arbitrary interpolation procedure in order to obtain
the odd phase shifts ht (i = 1, 3, 5, . . . , f „—1) needed
as additional input quantities for the usual method.
In the present case the primary quantities to be var-

ied are the entire set of the spectral coefficients (c~)
(t = 0, 1, 2, . . . , t „) which determine uniquely the po-
tentials via the modified Newton-Sabatier method [3,4].
As a by-product, the whole set of scattering phase shifts
(bt j (I = 0, 1, 2, . . . , t „) is obtained within this new
method. The set of odd phase shifts can be compared
with the interpolated ones of the conventional method.

For the practical application of our method we have
chosen elastic scattering data of C on C in a range
of F, kom 8 to 12 MeV out of a larger set of mea-
sured angular distributions. They belong to a set of 320
angular distributions of the C+ C elastic scattering
measured at the Erlangen tandem accelerator between
E, =6 and 14 MeV in energy steps of 25 keV. Of this
set of data, we inverted the differential cross sections at
E, =9.50 and 11.38 MeV previously [5], with the usual
two-step procedure, applying a phase-shift analysis and
the modified Newton-Sabatier method separately. Some
of these data have been used already in the publications
given in Ref. [6] to deduce the total reaction cross section
and to determine C+ C resonances and their widths.

In Sec. II the model independent phase-shift analysis
and the unified method of the inverse scattering problem
are described together with the traditional procedure. In
Sec. IlIA, the results of an exploratory calculation at
a selected energy of E =7.988 MeV are given. The
results obtained for the inverted elastic scattering poten-
tial of the C+ C system are presented and discussed
in Sec. IIIB for incident energies between E, ~ =8 and
12 MeV. The summary and comments are given in Sec.
IV.
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II. METHODS

A. Phase-shiS analysis

The scattering amplitude f can be written as

f(8) = fc(8) + f.(8), (2)

where fc is the Coulomb-scattering amplitude

The differential cross section of the elastic scattering
of two identical particles with zero spin is given by [7]

f„(8)= ) (2l+ 1)e ' '(Si —l)Pi(cos8).
2ik

l

In the equations above the Sommerfeld parameter g is
given by g = Z~ZT e /hv where v is the relative ve-
locity between projectile and target with charges Z~
and ZT, respectively; the wave number k is expressed
by k = (2pE, )i~ /5 where the center-of-mass scatter-
ing energy is denoted by E, and the reduced mass by
p = m~mT /(mJ + mT ). The Coulomb scattering phase
shifts are defined by oi = argI'(1 + 1+irl). The S-matrix
elements S~ can be expressed by the nuclear phase shifts
hi as

2i8)
i ——e

'9 8'i
f, (8) = —

z exp 2iao —2ii) ln
~

sin —
~

2k sin (8/2) 2)

and f„ the nuclear scattering amplitude

As the nuclear phase shifts are complex numbers,

h, = hp+ibil,

the Si matrix elements can be written in the form

(6a)
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FIG. 1. DifFerential cross
sections (o o o) measured by
Voit and co-workers at the c.rn.
scattering energies indicated.
Reproduction ( ) of the ex-
perimental data by the inverted
potentials shown in Fig. 5.
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St —pie
can be calculated from the equation

with the absorption coeKcients defined by

7/l
——6

—28 (6c)

The method of model independent phase-shift analysis
consists of minimizing the error square function for N
data points,

1 ). (do (8;)/dO], » —do (8;)/dOi, i )
N . -, ( b.do(8, )/dO j

1 ) (do'(8;)/dO~, » —do(8, )/&O~. )l
(N, - i do(8;)/dOi, » )

To distinguish between the conventional phase-shift
analysis (carried out by minimizing ys or y's with re-
spect to the phase shifts) and the one used in this pa-

per, we introduce the error squares y, and g', . These
are defined by the expressions of Eqs. (7a) and (7b)
with do (8;)/dO], ~ evaluated in our unified inverse scat-
tering procedure using a set of spectral coefficients (c~}
(l = 0, 1, . . . , l ), as indicated by the suffix c. This
procedure will be explained later.

To measure the quality of the inverted potentials we
calculate a square error function g, defined by Eq. (7a)
save that do'(8;)/dO[, ~ is replaced by the differential
cross sections do'(8;)/dO~~ t calculated with the inverted
potential V.

Since the minimization procedures are very time con-
suming and might depend sensitively on the starting
point of the calculation, use has been made [8] of two
searching methods. The first is the controlled random
search (CRS) procedure [9] which determines the global
minimum of a given function of n variables. The other
is the pattern search (PS) method [10] which searches
for the relative minima of a given function of n variables.
This latter method depends very sensitively on the initial
starting point of the search.

with respect to the sets (S~}or (b~} (l = 0, 2, 4, . . . , l „)
contained in the expression do(8;)/dO~, ~. The quantities
der(8, )/dO~, » and Ado(8;)/dO denote, respectively, the
experimental differential cross sections and the absolute
errors. These data are shown by circles in Fig. 1 for the
energies considered in this paper.

The error square expression (7a) is constructed in such
a way that terms with large relative errors are suppressed.
Therefore, sometimes it proved useful to work with a
modified error square function giving large weights to the
small values of the differential cross sections which are the
most interesting ones from the standpoint of quasimolec-
ular resonances. This modified error square function is
defined as

U(p) = Up(p) ———) ci 0'( (p)pl (p)Ip
P ~P

where the functions &p& '(p) are the regular solutions of
the radial Schrodinger equation for a given reference po-
tential Up(p). The spectral coefficients c& satisfy a sys-
tem of coupled equations for the functions, Ip& (p), that
are the solutions of the radial Schrodinger equation with
the potential U. Those solutions are given by

, (P) = Pt '(P) —) c, , Ltt (P)A, (P)
l~=O

in which the matrix is specified by

P

~t '(p') pl '(p') dp'I p".
0

(10)

The functions p& (p) obey the asymptotic condition

p, (p i oo) = A, »n(p —l~/2 + ht + o ~
—rl ln 2p), (11)

where Al are normalization constants set by the inver-
sion procedure and b~ + ai are the total phase shifts due
to the potential U(p). The logarithmic term in the ar-
gument is because of the Coulomb interaction, which we
include for nuclear heavy ion collisions. In the Eqs. (8)—
(11),p and U are dimensionless quantities from which the
radius r and the physical potential V(r) can be obtained
by setting r = p/k and V(r) = E, U(p).

The modification of the method defined by Eqs. (8)—
(11) is based on the fact that in heavy ion collisions the
potential is known from a finite radius r0 up to infinity.
In such cases it is convenient to set

U(p) = Up(p) for p & pp = krp (12)

and to replace the infinite sum in Eq. (9) by a finite
one running up to l ~ that has a correspondence with
the distance pp. As proven by Miinchow and Scheid [3],
the solution for U(p) becomes then unique in the class of
potentials (8) defined by the Newton-Sabatier method.
In this modified method the solution functions

y&+ (p) are
known for p & p0 and can be written as

p~ (p & pp) = A& p[cos h& Fl(p) + sin bl Gl(p)], (13)

where Fl and Gl denote the regular and irregular
Coulomb functions [11],respectively.

For the reference potential, a natural choice is Up(p) =
2'/pp for p ( pp and Up(p) = 2i1/p for p & pp. But it is
more convenient [4,12] to require Up(p) = 2q/pp ——const
on the whole axis 0 & p & oo and to shift the scattering
energy E, to E = E, —2i1/pp. Then we have to
transform the input phase shifts bl to bl by equating the
logarithmic derivatives

B. The modi6ed Newton-Sabatier method

As shown by Newton [1], the reduced (dimensionless)
potential of a scattering process with spherical symmetry

—inp, (r)
dT

d Uin', (r)
dT

where the transformed functions

T:Tp
(14)
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yi (p —pp) = APkIIr[cosbl jl(kBI')
—sinb, nl(kIIr)]

correspond to the solution functions of the shifted prob-
lem in the outer region, and klan = (2pE+)Il2/h.

Then the set of equations of the inverse quantum scat-
tering problem used in the modified Newton-Sabatier
method reads (p = kIIr),

in each partial wave l = 0, 1, . . . , l . Then the phase
shifts can be determined as hP =arctan(y/x)mode.
The other possibility, which we designate as "method 2"

(M2), consists of solving the overdetermined system of
equations (p; & pp)

Lmax

) Mll'(P )Pjl (P ')*I'
l'=O, l, ...

&max

U p() = —= d—- ) .cp V I (p )V p(p )/P
P~P )

&max

P(p) = p, (P) —) c, , LPI(P)(pP(P),
l'=0

(16) ~max). MIP(p )p'Ill'(p* )yl' ='pi (p*)'
t'=o, i, ...

c = 1) ~ ~ ~ ) N, l = 0) 1) ~ ~ 0
$ lm~„

for the 2(l + 1) unknowns

(22a)

P

LPV(p) = yl (p)lpli(p)dp/p,
0

with yl (P) = pjl(p) being the regular solutions belonging
to the (shifted) reference potential Ug = 0.

C. The uni8ed procedure

One starts by rewriting Eq. (17) in the form

&max

) Mll'(p)pl'(p) Vl (p), l = 0&1»lmsx
L'=0

(19)

by introducing the matrix

Mll'(P) bll' + Lll'(P)cl' ' (20)

i = 1, . . . , N. (21a)

Equation (21a) represents N equations for the two un-
knowns (l is fixed)

x = Al cosbl ~ y = Al sinbl (21b)

By giving a set of coefficients fcP) (l = 0, 1,2, . . . , lm~),
the matrix M+ is specified and one can calculate the
unknown functions pP(P;) from Eq. (19) at any point
of P; = k~r, . If the calculation is performed at
N & 2 points of p & pp, the obtained values of

lpP(p;; cg, CP, . . . , CP ) can be applied to determine the

phase shifts bP (l = 0, 1,2, . . . , l ~) by using Eq. (15).
One may then transform bP to bl [by virtue of Eq. (14)]
and calculate the cross sections do'(8;)/dO~, I [via Eq.

(1)] which should be used to minimize either yz or y',
introduced in Sec. II A in connection with Eqs. (7).

There are two methods one may use to calculate the
phase shifts b& with the modified Newton-Sabatier equa-
tions given in Eq. (19). The first possibility, identified
hereafter as "method 1" (Ml), is to solve (P; & pp)

B
Pi jl(pi)& Pi&l(pi)y pl (pit Cp ) Ci ~ ) Cl~ )&

Xl = Al COSh) ) yl = Ap Slilhp,B B

l = 0, 1, . . . , l „, (22b)

and of calculating the phase shifts &om hP
=arctan(yl/zl)mod(nz'). The two methods coincide for
N=2.

We applied the optimization procedures CRS [9] and
PS [10], to determine an optimum set of the spectral
coefFicients (cP). In the case of the PS procedure it is
useful to start with a set of (CP) obtained by the con-
ventional inverse scattering calculation with interpolated
values for the odd phase shifts. That set of values sub-
sequently is optimized by the search. In the case of the
CRS optimization no convergence of the search has been
found within a reasonable interval of computational time
(several hours on an IBM 3090-60J machine), mainly be-
cause the error square functions defined by Eqs. (7) for

C+ C scattering are not sensitive to the odd l-value
phase shifts and thence upon their effect in the spectral
coefficients (CP) (l = 0, 1, . . . , l ). A way out of this
dilemma would be to introduce restrictions on the values
of hl, &&, but we do not intend to explore this possibility
in the present work. Therefore, we used the PS proce-
dure in the applications of the unified method that are
described herein.

To make a distinction between methods M1 and M2
which are based on the minimization of y, and those
based on y', respectively, we designate results found us-
ing these latter methods by a prime, i.e., as M'1 and
M'2.

III. RESULTS

A. The optical potential of the scattering system
C+ ~C at E . .=7.998 MeV calculated by using

diferent inverse scattering methods

First we made a conventional calculation at one se-
lected energy (E, =7.988 MeV). The minimization of
the error square y2s. yielded a set of phase shifts {hl)
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(l = 0, 2, . . . , 1~ ) which were then used in the inverse
scattering calculation to obtain potentials. This test cal-
culation served also as a starting point for the unified
method in which an initial guess of the spectral coeffi-
cients (ci} (t = 0, 1, . . . , l „) is required. We have ap-
plied both CRS and PS methods to the phase-shift anal-
ysis and obtained different values of y&

——6.56 and 6.79
with those methods, respectively. The initial S matrix for
the PS procedure was taken to be ReS~ ——1 and ImS~ ——0
for the even values of I. With this choice for the initial
point of the PS procedure we found agreement with the
CRS results at the considered energies E, = 8.535,
10.954, and 11.503 MeV. In order that the results of the
phase-shift analysis correspond to the global minimum
point of the 2l „+2 dimensional space of the parame-
ters ReSt and ImS~ (t = 0, 2, . . . , l „),we used the CRS
method whenever a conventional phase-shift analysis of
the scattering data was made.

The procedure consisting of the search for the phase
shifts with even I's and of the subsequent conventional
inversion calculation (with interpolated phase shifts for
odd l's) will be designated "method Cl" to distinguish
it &om the unified methods investigated in this work.

The matrix elements Si (t = 0, 2, . . . , t „)determined
by the CRS phase-shift analysis of the C+ C scatter-
ing data at E, =7.988 MeV are given in columns 2 and
3 of Table I. In columns 4 and 5 of Table I the real part of
the phase shifts bP and the absorption coefFicients g~ are
listed together with the interpolated values for the odd
partial waves as are needed in the conventional inversion
calculation. The condition of getting a smooth poten-
tial shape has made it necessary to set Reb7 —87 ——1.5
and g7

——0.2. They are not interpolated values. A similar
setting was found previously when we inverted scattering
data at E, = 9.50 MeV [5]. Note that the proximity of
the scattering energy E, = 7.988 MeV to the energy
region of 7—8 MeV of the observed 4+ shape resonances
of the i2C+i2C system [13] would also allow us to tune

the phase shift and absorption coefficient belonging to
the I = 5 partial wave. However, the variation of b&,
and g5 instead of b7, and g7 did not result in a smooth
potential shape upon inversion.

Figure 2 exhibits the inverted potentials together with
the recalculated differential cross sections. There is a
deviation from the measured (input) data at angles be-
tween 70' and 90 and, therefore, the potential cannot
be considered to be consistent with the input data. This
is also refIected by the large value of y~ ——609.8. A
closer inspection of the data shows that the reproduc-
tion is unsatisfactory in those angular regions where the
relative errors of the data are the largest. This fact en-

ables us to introduce the modified error expression y's as
given by Eq. (7b), with which the data with larger rel-
ative errors are allowed to contribute more significantly.
Although the S-matrix elements obtained by minimizing
y'& are quite diferent from those found before (compare
columns 6 and 7 of Table I with columns 2 and 3 of Table
I), the potential shown in Fig. 2(c) that results from the
conventional inversion calculation differs from the pre-
ceding one [see Fig. 2(a)] only in the internal region, a
region which does not contribute too much in cross sec-
tion calculations. However, the difference is sufficient for
a better reproduction of the experimental cross section
data [see Fig. 2(d)]. That is confirmed also by the cor-
responding smaller error square value of y&

——60.8. A
further advantage is that only 6'p, but not iraq, had to be
varied to get a smooth potential shape (see columns 8
and 9 of Table I). We call this type of the conventional
inversion calculation as "method C'1." The technical pa-
rameters have been kept fixed at rp = 10 fm, p'=11.5,
12.5, 13.5, and I „=12for both methods Cl and C'1.

Figures 3(a), 3(c), and 4(a), 4(c), show the potentials
obtained by the unified' procedures M1, M'1, and M2,
M'2, respectively. The consistency of these calculations
is exhibited in Figs. 3(b), 3(d), and 4(b), 4(d) which
are characterized by the corresponding error square val-

TABLE I. Real and imaginary parts of the matrix elements S& obtained by the conventional phase-shift analyses Cl and
C'1 of the C+ C scattering dsts [6] st E, = 7.998 MeV snd based on the error square expressions gs snd y's given by
Eqs. (7). The real phase shifts, b&, snd absorption coefFicients, il&, sre listed as well, together with the interpolated values for
the odd partial waves. b7 has been treated as a free parameter in order to obtain a smooth potential. In the case of method
C1, gq has to be varied also. The potentials and cross sections corresponding to this table are shown in Fig. 2.

t

0
1

2

3
4

6
7
8
9

10
11
12

ReSt
—0.5060

—0.0190

0.6446

0.9745

0.8205

0.8551

0.9200

ImSt
—0.8626

—0.1607

0.5130

0.1550

0.2877

0.0609

—0.0431

gRa
t

8.3741
6.9065
5.4389
4.4583
3.4777
1.7783
0.0789

—1.5000
0.1686
0.1021
0.0356
0.0061

—0.0234

'gI,

1.0000
0.5809
0.1618
0.4928
0.8239
0.9053
0.9868
0.2000
0.8695
0.8634
0.8573
0.8891
0.9210

ReS)
0.2897

0.0237

0.2305

0.5984

0.7825

0.9809

0.9986

ImS&
—0.3257

—0.6545

—0.0706

—0.2771

—0.2094

—0.1944

—0.0522

(Rb
l

9.0029
7.2594
5.5159
4.2545
2.9931
1.3881

—0.2168
—1.5000
—0.1308
—0.1143
—0.0978
—0.0620
—0.0261

b
'gl

0.4359
0.5454
0.6549
0.4480
0.2410
0.4503
0.6595
0.7348
0.8100
0.9050
1.0000
1.0000
1.0000

Metliod C1: minimization of Xs (with the result Xs ——6.54; the corresponding inverted poteutisl gives Xv = 6 9. ).
Method C'1: minimization of X's (with the result X's ——0.00135; the corresponding inverted potential gives yv ——60.8).
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TABLE II. Real and imaginary parts of the matrix elements
C+ C scattering data [6] at E, .= 7.998 MeV. The search

Eqs. (7). The real phase shifts 6P and absorption coefficients rp
to this table are shown in Fig. 3.

S& obtained by the unified methods M1 and M'1 applied to the
was based on the error square expressions y, and y', given by
are listed also. The potentials and cross sections corresponding

0
1
2

3
4
5
6
7
8
9

10
11
12

ReS)
—0.5498

0.2262
—0.0136
—0.4646

0.6672
—0.8385

0.9556
—0.2206

0.8331
0.8699
0.8640
0.8782
0.9124

ImSt
—0.8353

0.3045
—0.1863
—0.0092

0.4959
—0.2553

0.1266
—0.0587

0.2858
0.1583
0.0450

—0.0257
—0.0482

)Ra

8.3483
6.7491
5.4614
4.7223
3.4612
1.7186
0.0659

—1.4408
0.1652
0.0900
0.0260

—0.0146
—0.0264

gl

1.0000
0.3793
0.1868
0.4647
0.8313
0.8765
0.9639
0.2283
0.8808
0.8842
0.8652
0.8786
0.9137

ReS)b
0.3129

—0.2394
0.0749

—0.4740
0.1875

—0.3929
0.6992

—0.8177
0.7684
0.8790
0.9454
0.9826
0.9994

ImS~b
—0.3108

0.3547
—0.5876

0.3819
—0.0927

0.0742
—0.2287
-0.0360
—0.2756
-0.2232
—0.1450
—0.0792
—0.0374

(Rb

9.0337
7.3655
5.5611
4.3733
2.9120
1.4775

—0.1581
-1.5488
—0.1722
—0.1243
—0.0761
—0.0402
-0.0187

b
'g)

0.4410
0.4279
0.5924
0.6087
0.2092
0.3998
0.7357
0.8185
0.8164
0.9069
0.9565
0.9858
1.0000

'Method Ml: minimization of y, (with the result y, = 6.56; the corresponding inverted potential gives yv ——275.0)
Method M'1: minimization of y', (with the result y', = 0.00149; the corresponding inverted potential gives yv = 61.9).

ues of y~ ——275.0, 61.9 for the Ml, M'1 methods, and of
y& ——597.1, 71.6 for the M2, M'2 methods, respectively.
In all cases the PS procedure has been applied to the
minimization of the expressions y, and y, with initial
spectral coeScients taken from the related conventional
calculations. The other parameters of the conventional
calculations have been adopted as well.

In Figs. 3 and 4 no dramatic change in the potential
shapes can be observed when compared to the results
shown in Fig. 2. All the potentials obtained by the
six methods Cl, C'1, Ml, M'1, M2, M'2 exhibit similar
structures. The real part of the potential is characterized
by two minima, a strong one at r —2.5—3.0 fm, and a
weaker one at r —5.5—6.0 fm. The maximum of the
Coulomb barrier resulting from all six methods lies in the

region of r 8.5 fm, a smaller radius than the matching
radius (ro) fixed at 10 fm. At this matching radius a
small mismatch of magnitude produced by the methods
Ml and M'1 [see Figs 3(a) and 3(c)] can be seen. Also the
imaginary parts of the potentials are similar, tending to
zero in the outer regions and exhibiting positive values in
the reaction zone suggesting a feed back of the probability
Aux from the inelastic and reaction channels to the elastic
one.

The similarity of the potential shapes can be explained
by the fact that the optimization of the spectral coeffi-
cients (by the PS procedure) yields no dramatic changes
of the corresponding phase shifts b~ (O, l, . . . , l „) pre-
sented in Tables II and III. This holds true for the values
belonging to the l = 7 partial wave as well which has

TABLE III. Real and imaginary parts of the matrix elements S& obtained by the unified methods M2 and M'2 applied to the
C+ C scattering data [6] at 8, .=7.998 MeV. The search was based on the error square expressions y, and y', given by

Eqs. (7). The real phase shifts h& and absorption coefficients ri& are listed also. The potentials and cross sections corresponding
to this table are shown in Fig. 4.

E

0
1
2

4

6
7
8
9

10
ll
12

ReS]
—0.4935

0.1742
—0.0244
—0.4547

0.6447
—0.8483

0.9727
—0.1904

0.8276
0.8513
0.8489
0.8867
0.9177

ImS)
—0.8697

0.6267
—0.1614

0.2432
0.5169

—0.3640
0.1680

—0.0398
0.2917
0.1703
0.0572
0.0089

—0.0364

gRa

8.3813
6.9330
5.4228
4.4668
3.4795
1.7735
0.0855

—1.4677
0.1695
0.0987
0.0336
0.0050

—0.0198

'gl

1.0000
0.6505
0.1633
0.5156
0.8264
0.9231
0.9871
0.1945
0.8775
0.8682
0.8508
0.8868
0.9184

ReS&b

0.1292
—0.1190

0.0844
—0.7885

0.2386
—0.4389

0.6665
—0.7276

0.7997
0.8493
0.9105
0.8448
0.9996

ImS&
—0.3426

0.1282
—0.6122

0.6148
—0.0906

0.1500
—0.2601
—0.1197
—0.2403
—0.1826
—0.1329
—0.1637
—0.0293

gRb

8.8197
7.4427
5.5663
4.3813
2.9602
1.4062

—0.1860
—1.4893
—0.1460
—0.1059
—0.0725
—0.0957
—0.0147

b
'gl

0.3662
0.1749
0.6180
0.9999
0.2552
0.4638
0.7154
0.7373
0.8350
0.8687
0.9201
0.8605
1.0000

Method M2: minimization of X, (with the result y, = 6.33; the corresponding inverted potential gives Xv = 597.1).
Method M'2: minimization of y' (with the result X', = 0.00224; the corresponding inverted potential gives yv ——71.6).
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been crucial i.n obtaining a smooth potential shape. The
arbitrary value of d7

———1.5 that was set by "hand" has
changed to —1.44 and —1.55 in the M1 and M'1 meth-
ods, and to —1.47 and —1.49 in the M2 and M'2 ones,
respectively. The changes in the absorption coefBcients
seem to affect the shape of the real potential only rather
weakly.

The task of selecting an optimal procedure out of six
methods C1,. . ., M'2 investigated cannot be solved un-
ambiguously. As shown by Figs. 2—4, all the six methods
give qualitatively the same results. Therefore, we follow
the principle of favoring that method which (i) results
in the smallest value of y2v, and (ii) provides a smooth
potential shape. The erst criterium is connected with
the consistency of the inverse calculation; the second one
is introduced since heavy ion potentials obtained so far
within diferent frameworks behave smoothly. Although
the inverse scattering calculation is unique, we note that
smaller values of y& can be obtained in some cases. But
then the potentials are very oscillatory and violate our
criterium (ii).

cal approximations that are always a feature of numerical
calculations.

The imaginary (absorptive) parts of the potentials
have the same range as the real ones. In all cases they
have a shallow absorbing (negative) part in the outer
region. They contain several positive maxima as well
which are located mainly at radii where the real parts
have minimum values. Positive imaginary parts of the
potentials mean a back-feeding of the probability current
from the inelastic channels into the elastic one, and they
are similar to those investigated by Wolf and Mosel [14]
for the same scattering system and using the Feshbach
formalism.

An interesting shape transition of the potentials occurs
as a function of the incident energy between E, = 9
and 10.5 MeV. This is shown in Fig. 5. Considering
the real part of the potentials, the main feature of this
shape transition is a gradual disappearance of the smaller
outer minimum at r 6.0 fm and a reappearance of the
strong internal minimum at radial distances r 2.4—3

B. The inverted potentials obtained by the uni6ed
methods for the scat tering system ~C+ ~ C in the

energy range of E . 8—12 MeV

10

-5
-10

5

8.0-
I I ) 1 1

- -5
- -10
)F

5
Figure 5 shows the potentials obtained by inver-

sion of the elastic C+ 2C data for scattering energies
E, 8—12 MeV. The real part of the inverted poten-
tials, ReV(B), is shown on the left side and the imaginary
part, ImV(r), on the right side of Fig. 5. Specifically
the calculations have been carried out at eight scattering
energies: viz. 7.988, 8.535, 9.057, 9.48, 10.533, 10.954,
11.503, and 12.077 MeV. These energies, rounded off to
one signi6cant decimal digit, are also indicated in the
middle part of Fig. 5. The potentials shown in Fig. 5 are
arranged vertically from top to bottom according to in-
creasing energy. With increasing energy these potentials
were obtained by the methods (indicated also in Table
IV) C'1, Cl, M'1, Cl, M2, M2, Ml, C'1, respectively, for
which the following values of y&, rounded ofF to integer
numbers, are 61, 101, 22, 16, 74, 53, 110, and 216. Note
that the results at E, =9.480 and 11.503 MeV compare
very well with those presented in Ref. [5] at E, = 9.5Q

and 11.38 MeV. The technical parameters used are listed
in Table IV.

In general, the inversion potentials differ in shape from
Woods-Saxon form. The real parts of the potentials vary
in value between —10 and 9 MeV, taking a maximum
value at distances r —8—8.5 fm. As a rule, the imag-
inary parts of the potentials are smaller in magnitude
than the real ones. The formation of a Coulomb bar-
rier of height 6.2 MeV at distances r 8.4—8.8 frn seems
to support the initial assumption that the scattering is
governed by a pure Coulomb potential beyond a rnatch-
ing radius (chosen to be 1Q fm). In two or three cases a
very small mismatch between the outer Coulomb poten-
tial and the inner inverted (complex) potentials can be
observed. These minor discontinuities may arise from the
neglect of higher partial waves and/or &om the numeri-
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-10;X
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L 0-
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~ -10.;

5
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0
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--1P X
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5

-10

5

-10

5

-10
-15
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, -10

5
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-5

-10

6 8 1Q Q
r {fm)

FIG. 5. Real part and imaginary part of the inverted po-
tentials obtained by various inverse methods as described in
the text for the eight energies indicated in the middle part of
the 6gure. Elastic angular distributions calculated mith these
potentials are shovrn by the solid lines in Fig. 1.
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fm. The inner minimum reappearing at E, = 10.5
MeV remains the dominant structure of the real part of
the potential at higher energies. According to the cal-
culation of May and Scheid [15], the inverted potential
at the scattering energy of E, = 18.5 MeV is char-
acterized by only one strong minimum at r 4.2 fm.
In this connection it would be interesting to study how
the real part of the potential evolves Rom the shape at
E, = 12.1 MeV (depicted on the bottom of Fig. 5)
into that given in Ref. [15] for E, = 18.5 MeV. One
can infer from Fig. 5 that the change might not be large
since the two forms of the real parts of the potentials
at E, = 12.1 MeV and E, = 18.5 MeV given in
Ref. [15] are similar. The main difference is the difFerent
position of the characteristic minimum.

At smaller and higher scattering energies (E, = 8.0,
8.5, 9.1, 12.1 MeV), the real part of the potential also
exhibits a secondary minimum at r 5.5—6.2 fm. This
minimum could be the reason why a double minimum
Woods-Saxon potential introduced by Ordonez et al. [16]
has been so successful in fitting the C+ C scattering
data at higher energies.

For very small relative distances, one observes a sin-
gularity in the potentials. That is of mathematical ori-
gin in the Newton-Sabatier method and well known to
arise because of the 1/p dependence of Eq. (16) for a
finite number of angular momenta. Fortunately, the in-
ner part of the potential does not contribute too much in
evaluations of the cross section as proved by numerical
calculations [15].

The inverted complex potentials shown in Fig. 5 can
be used to calculate phase shifts and cross sections over a
broader energy band around the incident energy to which
the potential itself belongs. With such calculations we
obtained an insight into the resonance structures of the
colliding nuclear system C+ C. We studied the res-
onances of the elastic cross sections and identi6ed the
partial waves responsible for them. In Table IV those
resonant partial waves l„, which provide phase shifts

bP„(E = E,')=x/2 in the corresponding inverted po-
tential belonging to E, are identi6ed. If one compares
these resonating partial waves with those given in Ref.
[13] close agreement is found. Also, the appearance of
the value t„, = 5 for E, = 8 MeV should be noted.

That coincides with the phase b5 that had to be fixed
in the conventional inverse calculation discussed in Sec.
III A.

IV. SUMMARY AND COMMENTS

The conventional inverse quantum scattering calcula-
tion starts with phase shifts obtained by a phase shift
analysis of experimental cross sections and then uses an
inversion scheme for which the phase shifts are input
data. The unified method investigated in this paper joins
the two separate steps of the conventional method. The
analysis of the experimental data is performed with re-
spect to the spectral coefficients (ci) (l = 0, 1, . . . , l )
of the modi6ed Newton-Sabatier inversion method. In
case of elastic scattering of identical particles with zero
spin, the unified method yields also the phase shifts of
odd partial waves which do not contribute to the cross
section. The input quantities are measured differential
cross sections with experimental errors, output results
are complex, energy dependent potentials. In practice
we recommend that the method starts with an initial set
of spectral coefficients obtained via a conventional calcu-
lation. Then application of the unified method gives an
improved inversion potential.

At present, a disadvantage of our program for the mod-
i6ed Newton-Sabatier method is the large square errors,
y2&, listed in Table IV. These large errors arise xnainly
from very small differential cross sections between 70'
and 90', and can have different origins, such as the choice
of the upper angular momentum l „, of the matching
radius ro, and of the radii ri, r2, r3. But we have tested
that the chosen i „is sufficient in the considered cases.
Also the selected radii have a negligible effect on the ac-
curacy of the results. However, this program has to solve
linear equations that are nearly singular.

The elastic potentials we have obtained for the
C+ C system and their systematic energy dependence

in a small interval of energy are novel. At nearly all en-
ergies a shallow minimum in the real potential has been
observed at internuclear distances of 5—6 fm. Possibly
that is caused by quasimolecular C cluster con6gura-
tions. The prominent minimum at 2—3 fm can be in-
terpreted as originating &om the con6gurations of the

TABLE IV. The values of the parameters used in the inverse calculations of the potentials presented in Fig. 5. The second
column identifies the method that was applied. Error squares yv characterizing the quality of the inverted potential V are
listed in the third column. The fourth column lists the angular momentum I,„,of the resonating partial waves where the real
phase shifts pass through x/2 in the vicinity of E, The fifth co. lumn gives the angular momentum /„; of the resonating
partial waves in the real potential. The remaining columns give information about the technical parameters l „, ro, and p,.

used. in the calculations.

E, (Me V)
7.988
8.535
9.057
9.48

10.533
10.954
11.503
12.077

Method
C'1
C1

M'1
C1
M2
M2
M1
C'1

2
Xv
61

101
22
16
74
53

110
216

&res

5,7
5,7
7
7
6

7,9
7
7

iReV
res
7

5,7
7
7
6

7,9
7

&xnax

12
12
12
14
12
14
14
14

rp (fm)
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.5

px
11.5
12.5
12.75
13.0
13.5
15.5
15.5
16.0

p2
12.5
13.5
13.75
14.0
14.5
16.5
16.5
17.0

ps
13.5
14.5
14.75
15.0
15.5
17.5
17.5
18.0

p4

16.0
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prolately deformed Mg nucleus. The situation with re-
spect to two potential minima found in this study is very
similar to the one already discussed by Ordonez et al.
[16] at higher energies, but it is different to the case at
E, =18.5 MeV where only one minimum at r = 4.2 fm
has been seen [15].

The real and imaginary parts of the potential relate
to each other. The structures of the imaginary part
are correlated with those of the real potential. At radii
where the real potential has its second (quasimolecular)
minimum, the imaginary potential is positive with the

consequence that it supports the existence of molecular
states of two touching C nuclei. Positive imaginary
parts mean a backfeeding &om inelastic channels to the
elastic one and absorptive potentials of that kind have
never been taken into account in potential fits of heavy
ion differential cross sections. Indeed, we believe that
such absorptive potentials must be considered in future
studies of heavy ion collisions.

This work was supported by GSI (Darmstadt),
DFG/MTA-45, and OTKA (517, 518, T 7283).
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