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We establish the applicability of a microscopic coupled-channel theory to pion inelastic scattering
from rotational nuclei for the purpose of studying details of neutron and proton densities. The theory
is completely specified as a result of our taking the second-order pion-nucleus optical potential from
previous phenomenological studies of elastic and charge-exchange data on spherical nuclei and of
our using nuclear wave functions obtained from a Hartree-Fock + BCS calculation with the Skyrme
SKM" interaction. Making multipole expansions leads to a set of coupled equations, which is
solved for the scattering cross sections in a standard manner. Numerical studies are presented
for the specific nucleus ***Sm. The theory is shown to be stable with respect to truncation of
the expansions: we find rapid convergence of the cross sections for elastic scattering and inelastic
scattering to the first 2% and 47 states as transition densities of successively higher multipolarity are
added, and as the number of coupled rotational nuclear levels is increased. Medium modifications
are included and have a small but significant effect on the cross section: for scattering to the 2%
state, their effect is about 10% for both 7~ and 7. We also quantify the extent of sensitivity of pion
scattering cross sections to variations in the size and shape of the neutron and proton distribution
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using parametrized Woods-Saxon forms for the density.

PACS number(s): 25.80.Ek, 24.10.Eq

I. INTRODUCTION

The use of the pion as a selective probe of the nu-
clear neutron density is suggested by the fact that for
pions of energy near 180 MeV (i.e., in the vicinity of
the strong A3z resonance that occurs in the p-wave pion-
nucleon scattering amplitude), the negative pions scatter
more strongly from neutrons and the positive pions more
strongly from protons. Such studies have been made pos-
sible as a result of the development of the intense beams
of pions available at the meson factories. Sensitivity of
resonance-energy pions to the neutron distribution in the
nuclear surface was substantiated by early studies of total
cross sections [1] and of cross sections for elastic scatter-
ing [2]. Experimental studies of pion inelastic [3] and
charge exchange [4] scattering on the deformed nuclei
1528m and %°Ho, respectively, were motivated by inter-
est in the shape of neutron deunsities.

A theoretical framework for describing pion scattering
from deformed nuclei was proposed earlier [5] in connec-
tion with measurements [4] of charge exchange on aligned
165Ho. It is the purpose of the present paper to apply the
same theory to inelastic scattering from deformed nuclei
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and to document its applicability for the purpose of dis-
tinguishing details of densities from such measurements
in the particular case of 1%2Sm [3].

In extending the theory from spherical to deformed nu-
clei, a new level of complexity arises having to do with
the pion’s ability to couple the ground and excited states
through the off-diagonal terms of the optical potential.
The manageability of the theory for exploring densities
with a given probe is very much dependent on knowing its
stability when this coupling is turned on. The concern is
well appreciated, but the importance of the coupling will
differ from probe to probe. Some of the intricacies have
been carefully studied for protons [6] and K* mesons [7].
The case of the pion at resonance is expected to be differ-
ent because of its substantially stronger coupling to the
nucleon. We are able to provide an absolute calibration
in this case by virtue of the facts that (1) the optical po-
tential we use is completely specified by earlier studies of
7% scattering from spherical nuclei, and (2) the nuclear
structure we use has been obtained from a Hartree-Fock
BCS theory using the SKM* interaction [8], which has
been carefully crafted especially with respect to surface
properties. Otherwise, the pion is favorably positioned
in comparison to the proton and K%t as a probe of nu-
clei, with extensive data sets available for elastic 7+ and
charge exchange on both nucleons and nuclei.

We stress that the use of realistic wave functions is
crucial to avoid a misleading assessment of the behavior
of the theory for resonance-energy pions, for which the
surface region of the nucleus is particularly emphasized.
As neutron densities are not measured, one must rely on
theory to provide the wave functions. For the particular
case of SKM*, the interaction has been designed to re-
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produce ground-state energies, root-mean-square charge
radii, isoscalar monopole and isovector electric dipole
(F1) giant resonance data as well as actinide fission
barriers. Furthermore, Hartree-Fock theories have done
an impressive job of explaining electron scattering data
throughout the periodic table, so we might reasonably
expect that the theory we use would give a reasonable
description of properties of neutrons and protons in the
surface of 1°2Sm. The technology for solving HF equa-
tions for nuclei has become standard, allowing ab initio
calculations of deformed nuclei for given effective inter-
actions (see Ref. [9] for a review).

Establishing the applicability of the theory [5] to in-
elastic scattering for the purpose of distinguishing details
of neutron and proton densities entails a careful study of
several issues. The issue of convergence arises because
various multipole expansions are made to obtain the cou-
pled equations. We will study in Sec. IV the convergence
of the theory with respect to the number of multipoles
included in the decomposition of the HF density as well
as with respect to the number of coupled intermediate
rotational states. In the model of Ref. [3] excited ro-
tational levels were important even for the 2+, and our
work was motivated in part by this observation. In addi-
tion, we want to understand the impact of the medium
modifications, which occur in the optical potential that
we use [5] but were not available for the earlier study
[3]; we present our discussion of the medium modifica-
tions in Sec. V. Having established the importance of
these effects, we finally study in Sec. VI the sensitivity
of the cross section to variation of the density in our the-
ory. Application of the theory to the experimental data
on pion scattering from !52Sm is presented in a separate
publication [10].

II. THEORY

The theory on which we base the current investigation
was described in Ref. [5], and we refer the reader to this
paper for the details. It utilizes a microscopic optical
model of the form originally suggested by Ericson and
Ericson [11], and it has been applied to pion elastic and
charge-exchange scattering both at low energy [12] and
in the region of the 3-3 resonance [13] for spherical nuclei.
The theory is based on an optical model theory for closed-
shell nuclei and assumes that the nucleon motion inside
the nucleus is well described in the mean-field approach.

The use of microscopic pion scattering theory to study
nucleon densities is complicated by the fact that the pions
may interact with collections of two-or-more nucleons in
nuclei. This gives rise to corrections to the simple picture
of multiple scattering as a succession of pion interactions
with individual neutrons and protons. These corrections
appear in the optical potential as terms nonlinear in the
neutron and proton densities. The strengths of these
corrections are difficult to calculate from first principles,
but they can be quite important because they modify
the relative sensitivity of pions to neutrons and protons.
The framework that we apply here [5] addresses this issue
through phenomenological isoscalar and isovector terms
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quadratic in the nuclear density. In the resonance re-
gion, the quadratic isovector terms must be quite large
to agree with the single-charge-exchange data [13]. Such
corrections were not available for the earlier studies [3],
and we have been particularly interested in quantifying
their effect for inelastic scattering.

For the current application, only the isoscalar U, and
isovector optical potential U; are required,

¢-T
2T

U=Up+U, (2.1)
Here, ¢ is the isospin operator for the pion and T is the
isospin operator of the nuclear ground state. A density
expansion [14] has been used to express the optical po-
tential as a series in powers of the total density p(r) =
pn(r) + pp(r) (here pn(r) and pp(r) are the neutron and
proton densities, respectively) and Ap(r) = pn(r)—pp(7).
For charge-exchange scattering, Ap(r) is defined as the
excess neutron density, defined below [see Eq. (2.7)]. In
our HF + BCS model the neutron and proton density is

pq(r) = Z |‘I,iq(r)|2vi2q7 q=n,p, (2'2)

where the sum runs over all the orbitals ¢ which are occu-
pied with an occupation probability vg. These densities
have a deformed shape, so the optical potential employ-
ing these densities is also deformed. In order to solve the
corresponding Klein-Gordon scattering equation, we ex-
pand both the densities and the scattering wave function
in multipoles. Thus, each density p (neutron, proton, or
excess neutron density) can be expressed as

p(r) = p9 + ép(r)

=p® 4 Z P (7) Y204 /42X + 1), (2.3a)
A>0
where
1 2T Ed
p(’\)(r) = ———/ d¢/ d@sinfp(r, ) Py(cosh). (2.3b)
4 Jo 0

Here p(®)(r) is the monopole component of the density,
and dp(r) [whose explicit form follows directly from Eqgs.
(2.3a) and (2.3b)] is one piece of the transition density
appearing in Eq. (2.5) below.

The rotational model, which is valid for strongly de-
formed nuclei such as 52Sm, allows us to identify the
multipole components of the nuclear density with tran-
sition densities to rotational levels of the target nucleus.
Corresponding to the substitution in Eq. (2.3a) the op-
tical potential undergoes a change,

U—-U+4U. (2:4)
The optical potential U now describes scattering from
the monopole piece of the density and dU the piece of the
pion-nucleus interaction that induces transitions among
the rotational levels. The effect of the U enters into
both the elastic and inelastic scattering. When it oc-
curs in the diagonal (elastic) channels, it is referred to as
reorientation coupling.
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Since U is a functional of p and Ap, we can find §U
in Eq. (2.4) by taking derivatives of U with respect to
density. If the transition optical potential for inelastic
scattering is taken to be linear in the small quantities dp,
Ap, and §(Ap) [15,16], then

o _¢-T
(9(Ap)U12 ’

§U = 5”(9%[]" +8(Ap) (2.5)

where we have used the fact that U; has all the depen-
dence on Ap.
The transition potential for single charge exchange,
which we do not calculate here, is given by
0 ¢-T

SU = 6(8p) g Ur o

5A7) (2.6)

where in this case Ap is the transition density to the iso-
baric analog state. This is given in terms of the Hartree-
Fock wave functions and occupation probabilities [5] as

Dp(r) =Y (vF, — v3,) U3 (r) Cin(r). (2.7)

We see from Egs. (2.5) and (2.6) that the optical po-
tential for inelastic scattering of 77 and 7~ is sensitive
to a linear combination of both the neutron and the pro-
ton density. For scattering near the 3-3 resonance, if we
ignore the medium modifications, one finds that U, is
proportional to p and U; to Ap with coefficients that are
about the same size. Since ¢ - T/2T is —1/2 for 7 and
+1/2 for w~, we then see that for 7+ the protons domi-
nate by about a factor of 3 and for 7~ the neutrons dom-
inate by the same amount. Moreover, we also see from
Egs. (2.3) and (2.5) that it is not the full density that
enters §U, but rather the multipole densities, so that the
optical potential for inelastic scattering is proportional
to the respective deformation parameter 3 of that den-
sity. Thus, to the extent that coupled-channel effects
are small, the inelastic cross section for 7+ is selectively
sensitive to multipole density of protons and 7w~ to the
multipole density of neutrons. In contrast, the charge-
exchange scattering is driven by the multipole density
of the excess neutrons [see Egs. (2.6) and (2.7)], which
according to the above discussion gives another closely
related piece of information about the nuclear structure.
Later we shall assess numerically the extent to which
these conclusions hold when medium modifications and
channel-coupling effects are considered.

ITI. DENSITIES

For the scattering calculations that we present in Sec.
IV and V below, we use the numerical HF densities. How-
ever, for our study in Sec. VI of the sensitivity of cross
sections to changes in the density, we will not be able
to use the HF densities because we do not have freedom
to vary the size or shape of the nucleus in the SKM*
HF theory. Instead, we will be making variations using
a parametrized representation of the density in terms of
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Fermi functions (Woods-Saxon form). Next we compare
the multipole decomposition of the HF densities and the
corresponding Woods-Saxon parametrization obtained as
described below. This will form the basis of the study in
Sec. VI

In Figs. 1-3 we illustrate the multipole densities for
the case of the neutrons. The solid lines are the SKM*
HF densities calculated from Eq. (2.3c) for 12Sm. The
long dashed curves are the multipole decomposition of
the equivalent Woods-Saxon densities,

— Po
p(l‘) - 1 4 e(,.__R)/a’ (313’)
with
R=Ro |1+ Z BaYxo (6, ¢’)} . (3.1b)
A>0

Here a is the surface thickness, assumed to be indepen-
dent of §. The deformation parameters 3, were deter-
mined through the condition that the distribution in Eq.
(3.1) has multipole moments @ identical to those ob-
tained self-consistently in the HF approach. The corre-
sponding central density pp, half-density radius Ry, and
a were then adjusted to match the Woods-Saxon distri-
bution to the (three-dimensional) HF density. Particle-
number conservation, which amounts to a constraint be-
tween pg, Ry, and a, was imposed in making the fit. The
resulting density parameters and multipole moments are
shown in Table I [17]. The Woods-Saxon multipole de-
composition given by the long-dashed curve is evaluated
numerically with Eq. (2.3b). Finally, the dotted line is
the lowest-order Taylor expansion approximation of the
multipole decomposition of the Woods-Saxon density,

/) =

T (3.22)

T T T T T T T T T T T T T T T

(fm”~
L

(0)

p n

r (fm)

FIG. 1. Monopole part p$,°’ of the SKM™ HF neutron den-
sity for *2Sm (solid line) in comparison with the monopole
density obtained with Eq. (2.3c) from the Woods-Saxon den-
sity fitted to the HF density (dashed line) and the approxi-
mation of Eq. (3.2) (dotted line).
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From these figures, we see that the lowest-order Taylor
expansion is not a good approximation to the shape of
the full numerical multipole decomposition [Eq. (2.3b)]
at least for highly deformed nuclei [18]; for this reason,
we will not make use of the Taylor expansion in this work.

According to the figures, the exact multipole decom-
position of the Woods-Saxon densities of Eq. (3.1a) ap-
pears to be a good representation of the corresponding
Hartree-Fock densities, particularly in the nuclear sur-
face. For the purpose of pion scattering in the resonance
region (corresponding to the experiment in Ref. [3]), the
two densities will give very similar angular distributions.
It is clear, for example, that the pattern of diffraction
oscillations will be nearly identical because for these the
important densities are those beyond the 10% density
point [2], which is essentially the same for the HF and
Woods-Saxon distributions.

o™ = _ © (). (3.2b)
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FIG. 3. Same as Fig. 1 for the hexadecapole density ps.q).

TABLE I. Parameters of the equivalent Woods-Saxon den-
sities.

B2 Ba Be
Q: (fm®) Q4 (fm*) Qe (fm®)

Ry (fm) a (fm)

Neutrons 0.2578 0.0790 0.0030 6.05 0.55
810.04 14406 242170

Protons 0.2897 0.0747 0.0032 5.95 0.5
603.40 9699 162420

IV. CONVERGENCE OF MULTIPLE
SCATTERING THEORY

The use of HF densities gives us a complete model of
the nuclear size and shape and thus provides the oppor-
tunity to study the convergence of the multiple scattering
expansion in the rotational model. There are two aspects
to the study of the convergence. One of these concerns
the convergence with respect to the number of rotational
nuclear states coupled together. The other concerns the
convergence as the number of multipoles included in Eq.
(2.3) is increased. The results we give below are for 7~
scattering, but similar calculations have been performed
for 7*, and we find effects following the same trend with
regard to sign and magnitude.

A. Convergence with respect to number of nuclear
states

We will first look at the convergence for a given ro-
tational final state F' characterized by total angular mo-
mentum J and parity P (denoted by JF) as a function of
the selection of coupled rotational states C' (designated
by JE). For this purpose we have retained the first four of
the multipole densities (A = 0, 2, 4, 6) for the off-diagonal
transitions. As we will see in Sec. IV B, the convergence
with increasing A is rather rapid for a nucleus as strongly
deformed as 1°2Sm. We have not included the reorienta-
tion couplings for this study (for a discussion of the size
of the reorientation coupling see Sec. IVB1).

We will discuss results for the cross sections for the
JE = 0%, 2%, and 4" final states. To study the con-
vergence we coupled successively (as appropriate) the
JE = 2%, 4%, and 6% rotational states. We had some
difficulty in carrying out the complete J§ = 6% calcula-
tion, because the storage and running time requirements
became quite demanding. We have found that there is
very little change in either the elastic scattering or the
inelastic scattering to the 2% final state as these inter-
mediate states are coupled. We do not show figures for
these cases because they all look the same on graph pa-
per. The 4™ final state is interesting, and the results are
shown in Fig. 4. Note that there is a strong destructive
interference between the direct excitation of the 41 state
(dotted curve) and the indirect coupling through the 2+
state, the dashed curve giving the sum of these two am-
plitudes. Similar types of interference have been noted
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FIG. 4. Study of the rate of convergence of the m~ 4" cross
section with respect to the number of states coupled (see in-
sets).

as possible explanations of a-particle scattering angular
distributions [19]. Addition to the 6™ intermediate state
(solid curve) makes less than 10% additional change.

It would be interesting to measure the scattering to the
4% state because of the destructive interference between
the direct scattering to this state through the A = 4 den-
sity multipole and the two-step scattering through 2+
state as seen in Fig. 4. Because of the resulting can-
cellations, the experimental results are quite sensitive to
details and will provide an interesting test to the underly-
ing nuclear structure and reaction theory. This sensitiv-
ity has been exploited for the case of a-particle scattering
on the Ti isotopes to test shell-model selection rules [20].

B. Convergence with respect to the number
of multipoles

There are two aspects of the convergence with respect
to the number of multipoles, and we will look at these
separately. One is the convergence with respect to the
number of multipoles in the diagonal (reorientation) cou-
pling, and the other with respect to the number of off-
diagonal couplings.

1. Diagonal (Reorientation) Coupling

We have found that elastic scattering is rather insensi-
tive to whether or not reorientation coupling is included.
Because its effect on elastic scattering is so small, we do
not present a figure showing the results. Reorientation
coupling is somewhat more important for scattering to
the 27 state, and the result of this calculation is shown
in Fig. 5(a). The results for the reorientation coupling
corresponding to the A = 2 multipole and A = 2 + 4
multipoles are shown separately. The largest effect is for
A = 2, which gives a 20% decrease of the peak cross sec-

tion. Adding the A = 4 multipole leads to an additional
10% decrease.

In Fig. 5(b) we show the effect of the reorientation
coupling on the scattering to the 41 final state. We have
already seen that a strong destructive interference occurs
between direct scattering to the 41 and scattering to the
4% through the intermediate 2% state. Thus, we present
separately results showing the influence of reorientation
coupling on the 4 and on the 2% states involved in this
transition. The dotted curve in Fig. 5(b) is the case with
no reorientation coupling, and as such it is the same as
the solid curve in Fig. 4. Including reorientation coupling
only in the intermediate 2% state gives the short-dashed
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FIG. 5. Study of the importance of reorientation coupling
in the 7~ (a) 2% cross section and the (b) 4% cross section. In
(a) the short-dashed curve is obtained without reorientation
coupling, the dashed curve has A = 2 orientation coupling
included and the continuous curve has in addition A = 4 in-
cluded. In (b) the dotted curve is obtained without reori-
entation coupling. The short-dashed curve has reorientation
coupling in the 2% state but not the 4% state. The remaining
curves have reorientation coupling in the 2% state and various
multipoles ) in the 41 state: the long-dashed curve has A = 2
in the 4T state, and the continuous curve A = 2 +4; including
X = 6 in the 47 leads to no further change.
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curve. This gives rise to a small increase in the cross
section to the 4% final state.

The remaining curves of Fig. 5(b) show the effect of
including the reorientation coupling in the 471 state suc-
cessively throughthe A\ =2, A =2+4andtoA =2+4+6
multipoles as indicated in the figure caption. Here, we
see that the sequence of calculations converges rather
rapidly. The final result, including full reorientation cou-
pling in the 2% and 4% states involved in the transi-
tion, resembles (except near the cross section minima)
the short-dotted calculation, which included no reorien-
tation coupling.

2. Off-diagonal coupling

Given the results described in Sec. IV A above, namely
that the coupling of excited rotational states JZ does
not have an appreciable effect on the ground state and
first excited 2 state, it is clear that the differential cross
section cannot be sensitive to the off-diagonal couplings,
which are responsible for the transitions among these ex-
cited rotational states.

We have seen in Fig. 4 that the 4™ state is sensitive to
the coupling scheme, so the off-diagonal couplings have
their first chance to be important for this state. The
results are shown in Fig. 6. We see here that the \' = 4
multipole is relatively important for the 4* state, but
that the A’ = 6 multipole is not.

C. Discussion

We have found that the importance of the diagonal
and off-diagonal couplings decrease with increasing mul-
tipolarity. Thus, we find as an approximate rule that the
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FIG. 6. Off-diagonal coupling. Study of the convergence
of the 4% cross section with respect to the multipolarities
A’ included in the 27-4% coupling scheme (see inset). The
dotted curve has no coupling between the 2 and 4% states.
The short-dashed curve has A’ = 2, the long-dashed curve
X' =2+ 4, and the solid curve A’ = 2 4 4 + 6.
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convergence is about as fast as can be expected: states
up to JE = JE are the most important diagonal and
off-diagonal term in the interaction. We refer to this as
the minimal coupling scheme. We tried to check the rule
for the case of the 61 final state, but because of time
and storage limitations we were unable to reach a firm
conclusion for this case.

The coupling to excited rotational states does not influ-
ence very strongly the calculation of the cross section for
pion scattering from the ground state or 2%, and in this
sense the coupled-channel approach is equivalent to the
DWIA theory for the 2% state. However, because of the
importance of reorientation coupling for the 2%, a stan-
dard DWIA-type calculation would not provide quanti-
tatively accurate values for the cross sections. In general
the coupling to excited states is necessary, as illustrated
by the case of pion scattering to the 41 state, where this
aspect was shown to be very important.

Although part of our original motivation arose from the
observation in Ref. [3] that coupling of excited rotational
levels is important for the calculation of the cross section
to the 27 final state, we have concluded that in our the-
ory convergence is sufficiently rapid so that this coupling
is in fact unimportant [21]. Nevertheless, in line with
the discussion of the previous paragraph, we still need
to retain the coupled-channels capability in order to take
account of the moderately important reorientation cou-

pling.

V. EFFECT OF MEDIUM-MODIFICATIONS
IN THE OPTICAL POTENTIAL

The sources of medium-modifications in the optical po-
tential are the terms that are nonlinear in density, de-
scribed in Sec. II. The coefficient of the isoscalar p? term
is relatively small, but the coefficient of the isovector pAp
term is quite large. The small size of the isoscalar piece
has been explained in Ref. [22] as the result of an ap-
proximate cancellation between the Pauli effect, which ef-
fectively narrows the resonance, and collision-broadening
terms. Corrections arising from kinetic and potential en-
ergies of the nucleon and delta also occur. Some cancel-
lations among these take place [22]; in the present the-
ory, the net effect is included as a shift in the energy of
the pion-nucleon scattering amplitude rather than as a
density-dependent term.

In previous studies of pion inelastic scattering one has
tended to use the lowest-order optical potential to de-
termine the inelastic scattering. Ignoring the medium
modifications may lead to spurious conclusions regard-
ing both the absolute and relative sizes of the neutron
and proton densities, depending of course on the size of
the medium effects. For example, as much as a 10%
change in the relative size of the cross section for scat-
tering of 7+ and 7~ to the 2% state can be significant
in an attempt to ascertain whether there is a difference
between the neutron and proton deformation, since dif-
ferences between the deformations are of this same size
[10]. The relative cross section is of course influenced by
the isovector rather than the isoscalar terms. Our cur-
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rent theory provides us with an opportunity to quantify
the importance of these medium modifications in the de-
termination of the neutron distributions from inelastic
excitation of rotational levels in *2Sm.

Figures 7(a) and 7(c) show the net influence of both
the isoscalar and isovector medium modifications on elas-
tic scattering, and Figs. 7(b) and 7(d) show their effect
on inelastic scattering to the 2 state. We see that the
medium modifications have a significant effect, increas-
ing the scattering to the 2% state by about 10% (except
in the minima, where the effect is quite a bit larger). Be-
cause the medium modifications change 71 and 7~ in
much the same way, one sees that the dominant source
of the differences between the solid (with medium mod-
ifications) and dashed (without medium modifications)
curves can be traced to the nonlinear terms contributing
to the isoscalar piece of the optical potential. For this
reason, they will not have much impact on the conclusion
about the relative size of neutron and proton deforma-
tions. We find medium modifications have a substantially
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larger effect (about a factor of 2) on the scattering to
the 4 state. The isoscalar medium modifications again
dominate.

For single charge exchange, in contrast to Fig. 7, the
effect of the isovector medium modifications is to increase
the overall cross sections by roughly a factor of two [5,13].
Isovector medium modifications thus have, perhaps, a
surprisingly small effect on inelastic scattering. One rea-
son for the difference is that single-charge-exchange scat-
tering occurs entirely through the isovector pieces of the
optical potential. On the other hand, in Fig. 7 the opti-
cal potential is dominated by the N = Z core, where the
isoscalar optical potential dominates, with the isovector
terms not contributing at all.

For the case of scattering to the 2% state, an additional
reason can be found for the medium modifications being
small, namely that the transition density is peaked rather
far out in the nuclear surface, near the half-density point.
One can see how far out in the surface the 2% transi-
tion density extends by comparing the monopole and 2+
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FIG. 7. Illustrating the importance of medium modifications in the optical potential for (a) [and (c)] the elastic and (b)
[and (d)] 2% the cross section for 7~ (and 7*). No coupled excited states are taken into account, but reorientation coupling is
fully included. The dashed curves are for the first-order optical potential, and the full curves take account of the isoscalar and

isovector (density-dependent) medium modifications.
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transition densities given in Figs. 1 and 2, respectively.
We see that a substantial contribution comes from radii
greater than the 10% density, where the medium modifi-
cations are small due to the extra factor of density com-
pared to the lowest-order terms of the optical potential.

Suppression of the medium modifications by this mech-
anism is even more pronounced for the 4t multipole. Re-
call that the scattering amplitude for the 4* final state
results from a strong destructive interference between di-
rect excitation and a two-step excitation through the 2+
(Fig. 4). Presumably the influence of medium modifica-
tions on the 4% transition is magnified by the destructive
interference between these two amplitudes and is respon-
sible for the large effect that we have found here.

VI. SENSITIVITY TO VARIATIONS
OF DENSITIES

As we explained in Sec. ITI, we do not have a means to
vary the radius, diffuseness, and deformation of the nu-
cleus independently and will therefore use the collective
parameterization of the Woods-Saxon densities given in
Eq. (3.1) for the studies of the sensitivity to variation
of the densities. The parameters of the Woods-Saxon
density are found in Table I. For the results presented
in this section we include the medium modifications and
work within the “minimal” coupling scheme defined at
the end of Sec. IV.

It is known from previous studies of diffractive elastic
scatteirng that the location of the minima and the rate of
falloff of the angular distribution are determined, respec-
tively, by the “black-disk” size of the nucleus b and the
slope of the density in the nuclear surface, respectively.
For pions, b corresponds to the distance from the center
of the nucleus at which the density has fallen to about
10% of its central value [2], which is in turn determined
by both the radius and diffuseness of the density. Thus,
the diffractive pattern of the elastic scattering angular
distribution provides a means to assess gross properties
of the density distribution, as demonstrated in Ref. [23].
The sensitivity of the elastic scattering to changes in the
radius is shown in Fig. 8(a), which confirms the general
trends expected. Changing the radius has a similar effect
on the diffraction pattern for excitation of the 2+ state,
as shown in Fig. 8(b).

Additionally, the scattering to the 2% state is quite sen-
sitive to the neutron and proton deformation parameters.
The main purpose of this section is to provide a quantita-
tive measure of the relative sensitivity of the 2+ angular
distribution to the radius and deformation properties of
the density.

Sensitivity to changes in (3, is shown in Fig. 9 for scat-
tering to the first 2+ state. We find that the deformation
parameters have negligible effect on the elastic scattering
angular distribution, consistent with the findings in Sec.
IV that the elastic scattering is insensitive to the cou-
pling of the excited rotational levels. The results we find
here are similar to the sensitivity studies made in Ref.
[24] using the Eikonal approximation with the density
expansion given in our Eq. (3.2).
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We see from Figs. 8(b) and 9 that the overall magni-
tude of the inelastic scattering of 7~ to the 2% state will
be determined predominantly by the neutron deforma-
tion. Excitation of the 2% by the 7+ will be similarly de-
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FIG. 8. Sensitivity of the 7~ (a) elastic and (b) 2% cross
section to changes in the neutron radius constant Ron of the
parametrized Woods-Saxon density used.
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FIG. 9. Sensitivity of the 7~2% cross section to changes in
the quadrupole deformation parameter B2, of the parameter-
ized Woods-Saxon density used.

termined largely by the proton deformation. This sensi-
tivity can be understood in terms of the discussion at the
end of Sec. II, where it was observed that the strength of
the transition potential to the 2% state is proportional to
the A = 2 multipole component of the optical potential,
to the extent that channel-coupling effects and medium
modifications can be ignored. (We showed in Secs. III
and V that the reorientation coupling and medium mod-
ifications each constitute about a 10% correction to this
picture.) On the other hand, scattering to the 4% state
would not cleanly reflect the 3, parameter because of the
strong interference between the different amplitudes pre-
viously noted in Sec. IV and because of the sensitivity to
medium modifications displayed in this channel, noted in
Sec. V.

We have not separately studied the sensitivity to the
diffuseness, but we know from previous studies of diffrac-
tive scattering [23] that changing the diffuseness will af-
fect both the apparent radius of the nucleus (increasing
the diffuseness moves out the 10% density point, making
the nucleus look larger) and at the same time smooth out
the shape of the density, so that the cross section falls off
more rapidly with momentum transfer [25].

The results of this section are in qualitative agreement
with the earlier results of Ref. [3]. At the quantitative
level there are differences. Two significant improvements
in the present work are the inclusion of medium modifi-
cations and reorientation coupling. Additionally, as we
have remarked already, excited states play a less signifi-
cant role in our theory than they did in Ref. [3].
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VII. SUMMARY AND CONCLUSIONS

We undertook the current investigation to establish
the applicability of our microscopic coupled-channel the-
ory of pion inelastic scattering for the purpose of dis-
tinguishing details of neutron and proton densities. The
theoretical framework is based upon a microscopic op-
tical model for the form originally suggested by Eric-
son and Ericson [11]. The optical potential for elastic
and charge exchange [14] is expressed as a functional
of the neutron, proton, and transition densities with
the isoscalar and isovector potentials consisting of terms
linear and quadratic in the appropriate nuclear densi-
ties. The strengths of the various terms were determined
from theoretical arguments and from phenomenological
studies of elastic and charge-exchange data. The same
optical-potential parameters are to be used in applying
the theory to rotational nuclei as described in this paper.

The nuclear densities that we use in the current pa-
per are taken from the Hartree-Fock theory of deformed
nuclei using the SKM* interaction [8]. This theory com-
pletely determines the ground-state and transition den-
sities that are needed in order to calculate elastic and
inelastic cross sections. Thus, with this additional infor-
mation we have a complete theory with which to make
our study of inelastic scattering.

To solve the three-dimensional Klein-Gordon equation
for pion scattering on deformed nuclei, we first make a
multipole expansion of the HF densities and pion wave
functions. We obtain an equivalent set of coupled one-
dimensional radial equations expressed in terms of these
quantities, which we solve to obtain the scattering from
the ground state and to the excited rotational levels of
152 Sm.

In our study of the convergence of the theory, we found:
(1) convergence in terms of multipole components of the
HF densities is favorable. Results for the elastic scat-
tering change by less than a percent and cross sections
to the 2% decrease by about 30% at the maxima when
higher multipoles are added. (2) Convergence of the cross
sections for elastic and inelastic scattering to the first 2
state with respect to the number of intermediate rota-
tional coupled nuclear levels is also rapid and more fa-
vorable than that found in previous work [3]. Contrary
to what is found for pion single charge exchange [5], the
medium modifications have a moderately small effect,
raising the inelastic cross sections by about 10% for 7w~
and 7t for the scattering to the 2% state. We also stud-
ied inelastic scattering to the 41 state, which we found
to be quite sensitive to both medium modifications and
to coupling through the 2% channel; we conclude that
the experimental study of the 41 state would be quite
interesting for these reasons. Our study also confirms
the expected sensitivity of pion scattering cross sections
to variations in the size and shape of the neutron and
proton distribution.

Our overall conclusion is that the microscopic coupled-
channel theory is well behaved for applications to inelas-
tic scattering. For the purpose of applying the theory
to assess models of nuclear densities one must be aware
that the differences between models are relatively small,



so that 10% effects must be considered significant. Since
we have found that for scattering to the 2% state medium
modifications are of this size, and the reorientation cou-
pling is substantially larger, a theory such as the one we
use must be employed in such applications. However,
since they affect 7+ and 7~ in the same way, they are
much more important for assessing isoscalar properties
than isovector properties, such as neutron/proton defor-
mations differences. We have made use of the results
presented in this work for such a study of Hartree-Fock
densities using the experimental data [3] in Ref. [10].
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