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Calculations have been made to explore the effect of configuration mixing in a large basis on the
fragmentation of "stretched" M6 strength in the sd-shell nuclei Mg and Si. This work extends
a study made for N = Z sd-shell nuclei to midshell N g 2 nuclei with the same Hamiltonian and
basis restriction, one particle in the 1fr~q orbit and unrestricted occupancy of the sd-shell orbits,
used in that earlier work. It is found that configuration mixing in this large basis gives a very good
description of the total isovector strength seen in Mg but fails to give a detailed description of the
experimental spectra. Results for fragmentation of the isoscalar response are less conclusive because
of con8icts between data sets.
PACS number(s): 21.60.Cs, 21.10.Re, 27.30.+t, 23.20.Js

I. INTRODUCTION

The 1hur stretched spin response observed with one-
step inelastic scattering reactions is of particular interest
because it provides a way to monitor the &agmentation
of a aingle particle-hole configuration. This particle-hole
configuration is called "stretched" to indicate that it cou-
ples the maximum possible hole and particle angular mo-
menta, jg ——8p + 2 and jz ——8„+2, in the valence shell
and the shell lying immediately above it to the maximum
total angular momentum J = jp +j„.This unique com-
ponent of a state's wave function is selectively excited in
MJ transitions provided single-particle excitations with
energies & 3hu can be neglected [1—4]; further, the scat-
tering cross section can be expressed in terms of a single
transition density for a variety of probes, simplifying the
comparison between data and theory [2, 5]. These fea-
tures are preserved even if the strength is &agmented
by configuration mixing within a (0+1)her model space
[4]. The stretched states in the sd-shell nuclei discussed
here are 6 states produced by an M6 excitation of the
1fr(21d~]2 configuration.

Historically, an overview of the experimental data [6]
suggested there was only one isovector stretched state in
a given nucleus and this state carried only a small frac-
tion (usually no more than 1/3) of the expected strength
in the many self-conjugate nuclei studied. Several inves-
tigators looked at difFerent ways that this strength could
be quenched by mixing with states far away in the spec-
trum so that the displaced strength could not be seen ex-
perixnentally. Calculations indicated that non-nucleonic
degrees of &eedom such as the 4 made a negligible contri-
bution to the reduction of observable stretched strength
[7—9]. The stretched configuration can also mix with
particle-hole excitations involving the core and high-
lying shells, which would also be expected to reduce the
observed M6 rate. Core-polarization calculations with
realistic interactions produce about half of the needed
strength reduction [10—15]; however, as emphasized in
Ref. [3], the large difFerence in the quenching of isoscalar
and isovector strength is not reproduced by this approach
[13,15].

An alternate mechanism for the reduction of the ob-
served stretched spin strength is that this reduction is a
result of &agmentation, where mixing with other 1hu
configurations causes the strength to be redistributed
with only the largest &agments being easily observable
[16—19]. Recent experiments performed with high res-
olution and good statistics have been able to identify
weak states carrying additional stretched strength [20,
21], and calculations showed that fragmentation in a suit-
ably large shell-model basis can explain many aspects
of the reduction and redistribution, relative to single-
particle estimates, of observed stretched spin strength in
N = Z sd-shell nuclei [19,22]. The calculations of Ref.
[19] were made in a basis that allowed one particle in the

1'/2 orbit with some restrictions in the sd shell; the fi-

nal results [22] had no restrictions in the sd shell. This
subset of the (0 + 1)hu basis proved quite successful in
explaining the strength distribution in midshell nuclei.
In particular, the prediction [19] of an observable con-
centration of M6 strength about 3 MeV above the yrast
6,T = 1 state in Si was later confirmed by results of
a (p, n) experiment [21].

It is the distribution of strength in the spectrum that
contains information crucial to understanding the role of
&agmentation on spin excitations, but often the weaker
&agments cannot be seen experimentally. For example,
the isoscalar strength is so heavily &agmented in N = Z
nuclei that only a few T = 0 states have ever been seen.
The situation can be difFerent in N g Z nuclei because
mixing between neutron and proton configurations leads
to an interference between isoscalar and isovector ampli-
tudes, sometimes enhancing our ability to observe states
carrying isoscalar stretched strength.

Fairly detailed analyses have been done in C by Ku-
rath (based on a variation of the Millener-Kurath inter-
action from Ref. [16]) for comparison to pion scattering
data in Ref. [23], and in 2sMg by Amusa and I awson
(with the Hamiltonian and basis described in Ref. [17])
for comparison to proton scattering data in Ref. [24].
The forxner used a (1p) s(2sld) space and gave a good
description of the three observed states, including the
neutron-isoscalar-proton pattern (as one goes up in ex-
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citation energy) of the isospin structure of the T = 1
states, although the strength is overestimated by a factor
of about 2. The latter used a fairly restrictive basis, lim-
iting active particles to the (1ds/21si/2) (1'/2) space,
and badly overestimated the strength in the lowest states
while getting some features of the spectrum correct.

Other analyses of N = Z + 2 nuclei include that of
Millener [25] applied to the data of Manley et al. [26]
for 0 and calculations in the g9/2f&&2 basis for Fe

[27]; these results are qualitatively similar to the ones
described above in that the observed stretched strength
is overestimated by the theory. In addition, a calcula-
tion for ssAr by Brown in an sdpf basis allowing up
to one-particle —three-hole (1p-3h) excitations has been
compared to (p, n) data in Ref. [28]; here we see good
agreement with the data although a detailed comparison
to states with different T was not possible.

The only study done for the nuclei of interest here was
performed for 2sMg in a very limited basis [24]. We have
already seen that extending this basis improves agree-
ment between theory and experiment for midshell N = Z
nuclei [22], so it is of interest to extend that work to in-
clude the neighboring N g Z nuclei of sMg and soSi

within the same (sd)" i
fq/2 basis truncation of the full

(0+ 1)hu space. In the remainder of this paper, Sec. II
presents a review of the methods employed in the calcu-
lation, Sec. III shows the results for Mg and compares
them to a wide variety of experimental data, predictions
for the Si M6 response appear in Sec. IV, and we close
with a summary of our conclusions.

II. METHODS

An earlier paper [22] gives a detailed description of
the methods used for this study. Here we give a short
summary of the key elements necessary to place these
results in the context of other work.

These calculations were performed in the (sd)" f7/2
basis, where n = A —16, so there are no restrictions in
the sd shell. The Hamiltonian consists of the Wildenthal
effective interaction for the full sd shell [29] and the "best
fit" Schiffer- True central spin-dependent interaction [30]
for the interaction between the sd and f configurations.
The latter is constructed &om the second set of entries in
Table XVI of Ref. [30] with ri ——1.45 fm and r2 ——2.0 fm
and is evaluated for harmonic-oscillator radial functions
with v = 0.293, corresponding to a size parameter b =
1.847 fm, to be consistent with our previous work [19,22]
and that of Amusa and Lawson [17,24]. The f7/2 single-
particle energy was held fixed at the value required [22]
to give the correct excitation energy for the lowest 6
T = 0 state in Si. There are no &ee parameters in these
calculations.

We are interested in matrix elements that measure the
M6 response seen in inelastic scattering (T = 0) or
charge exchange (T, = +1) reactions. It is particularly
convenient to use Raynal's Z coefficient, which is defined
by

ZT,T, (@6,T II &T,T (f7/» ds/2) II @s s. )

(reduced in spin space only) where

-6,M
(2)

In Eq. (2), o,t creates a particle, a annihilates one, and
the square brackets denote the Clebsch-Gordan coeffi-
cients and phase factors required [31] to couple these op-
erators to total angular momentum 6 and isospin T. Note
that 4, has J = 0+ and T = 1 so the isovector A&
operator connects it to states with isospin T+1 or T. The
simplicity of the "stretched" states guarantees that the
inelastic-scattering cross section is proportional to Z& for
all probes considered.

As described in detail in Ref. [22], the Lanczos algo-
rithm [32] is used to avoid performing a full diagonal-
ization in the very large vector spaces considered here.
In particular, we employ the "collective vector" method
[33], which exploits a special feature [34] of the Lanc-

zos method. Here one applies the operator A& & to the
model ground state and then forms a vector with good
isospin from the result. (This last step was not necessary
for the N = Z nuclei considered earlier. ) This collective
vector contains all of the M6 strength for isospin trans-
fer T to states with a given isospin, and can be used to
measure Z, a "sum rule" that gives the integral of Z&2

in our basis space. The collective vector is not an eigen-
state of the Hamiltonian; instead it is used to initiate the
I anczos iteration, making it particularly easy to compute
the M6 spectrum &om eigenenergies and widths of the
pseudoeigenstates formed after any arbitrary number of
iterations.

It is important to emphasize that we iterate until a
satisfactory level of convergence has been reached, but
that we never obtain the exact model eigenstate of the
Hamiltonian within our basis restriction. Because the
pseudoeigenstate is not an eigenstate of the model H,
it acquires a width reHecting the uncertainty in the ac-
tual energy where the M6 strength associated with that
pseudoeigenstate is located. However, as Whitehead has
shown [34], the strength distribution for the set of pseu-
doeigenvectors formed after N iterations gives a descrip-
tion of the M6 spectrum accurate to the (2N —1)th
moment; that is, it is a good approximation to the
excitation-energy distribution Rom the actual model re-
sult and contains the information we wish to compare to
the measured M6 response.

As before, the calculated spectra shown in the fig-

ures are based on the magnitude of Z for the individual
pseudoeigenstates spread by a Gaussian with the calcu-
lated width or 100 keV, whichever is larger. A spec-
trum generated in this way shows the envelope of the M6
strength distribution and is proportional to the inelastic-
scattering cross section at the peak of the angular distri-
bution; however, one must keep in mind that the broad
bumps represent a large number of small states with the
given distribution. The artificial width of 100 keV for
converged states helps make the spectrum resemble a real
one and facilitates comparison to experimental data.

The "data points" are placed at a height corresponding
to the top of a Gaussian of this same 100 keV width
and an area equal to the measured strength. The reader
should compare these data points to the extreme top &&
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the theoretical peak for converged states. We will also
find it convenient to display some data with histogram
bars. Provided the width of a rectangular bar is chosen
to be 250 keV, we can compare the height of the bar to
these "data points" and/or the area of the bar to the area
under the Gaussian curve.

As in previous work in this truncated basis, we can-
not do anything about the presence of spurious center-of-
mass motion in these wave functions. There is no prac-
tical way to separate spurious motion i.n anything less
than a full 1hu calculation. We do measure the spurios-
ity of the states of interest by evaluating the diagonal
matrix element of the center-of-mass Hamiltonian. The
measured spuriosities are typically only a few percent for
the states of interest.

All calculations were done with the vr ADIMIR system
of codes [35] adapted to UNIX and optimized for the
Cray Y-MP computer at Florida State.

6 T=2

6 T=1

6 T=O

7/i

0 T=1 g.s.

26AI
(p,n)

b,Tz = -1
26Mg

(n,p)

hTz =+1

FIG. 1. Schematic diagram showing the isovector transi-
tions for A = 26 nuclei considered in this work and the ES-
PHM estimate of the transition strength for each. The double
line for the T = 1 level is intended to denote the presence of
both T& and T& parentage.

III. ~eMg

The situation in Mg is that the ds/2 neutron level is
filled but the d5y2 proton level is not. Transfer reaction
data [36] indicate that neutron and proton pickup reac-

tions on Mg each populate a single 2 state, just as in
the neighboring self-conjugate nuclei. Thus the neutron
response might be expected to resemble the situation in
2 Si, where there is a strong yrast state with a cluster
of strength about 3 MeV higher in good agreement with
theory [22], while the proton response might resemble
the situation in 24Mg, where much more &agmentation
is seen than is predicted by theory. The latter situation
can be attributed to 1p ~ Sd transitions excluded by
our truncation of the 1hu basis, as indicated by a test
calculation done for Ne [37].

Discussion of stretched transitions in N g Z nuclei
is complicated by the nonzero ground-state isospin. Be-
cause we have a T = 1 ground state in Mg, an isovector
transition can connect to T = 0, T = 1, or T = 2 states
depending on the change in T, in the reaction. Further,
the value of Zq T. is related to that for the other values of
T, by a Clebsch-Gordan coefficient ratio [31] that, unlike
the situation when T~, = 0, is not typically unity. It is
most convenient to use a diagram to present the relation-
ships between the Z coefficients for difFerent reactions,
and it will also prove advantageous to use the same dia-
gram to show the magnitude of Z& T expected &om the
simplest model for these stretched transitions. Figure 1
shows the value of Z for the possible stretched tran-
sitions built on a simple shell-model ground state, the
so-called extreme single particle-hole model (ESPHM).
Although this nomenclature is technically incorrect (ex-
tremely simple might be a better choice of words), we will
use ESPHM to denote results &om the naive shell model
for consistency with the notation of other authors. The
absolute magnitude of the rate depends on the d5~2 oc-
cupancy for pure states built on T& (T = 1/2) and T&
(T = 3/2) configurations coupled to an fr~2 particle. We
use a double line for the T = 1 level in the figure as a
mnemonic to indicate that it has both T& and T& parent-
age.

There is a wide variety of data, &om many difFerent
kinds of experiments, available for the stretched 6 states
in 2sMg. Electron scattering data taken by Plum [38]
have been analyzed [39] to provide accurate information
on those transitions that are predominantly isovector in
character. Additional information on isovector transi-
tions is available from the study of the (p, n) reaction at
135 MeV [40], which is the only source of information
concerning the T = 0 states in 26A1. Unfortunately, the
authors of Ref. [40] quote a ratio of their fitted value of
Zy y to an ESPHM value that is only applicable when
both the neutron and proton d5/2 levels are fully occu-
pied; their tabulated numbers must be converted back
to Zy y before they can be compared to calculations or
other data.

Data for the (p, p') reaction [24], when analyzed in con-
juction with the electron-scattering data, provide infor-
mation about the isoscalar response and thus the proton-
neutron structure of a transition. Pion scattering data,
such as the very limited set in Ref. [41] or the rather
complete set of Ref. [42], have the virtue of providing an
independent measure of the proton-neutron composition
of those transitions where cross sections were measured
for both sr+ and vr

Calculations were done as described in the previous
section. The number of iterations required was different
for each isospin T because of differences in the size of
the basis space and in the complexity of the spectrum.
In particular, many more iterations are required when
there are a number of observable fragments that we wish
to isolate. A total of 35 iterations were made for the
T = 0 states, 56 for the T = 1 states, and 26 for the
T = 2 states. Separate calculations were made for the
proton and neutron response for T = 1 states in addition
to those made for the isoscalar and isovector response.

Tables I and II show the lowest converged states in this
calculation and compare their properties with the results
of several inelastic-scattering experiments. Of particu-
lar note is that we get approximately the correct total
strength (0.16 versus 0.17 + 0.02) for the T = 0 strength
localized near E = 7 MeV, as shown in Table I and
the graphs described below. The predicted strength for
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TABLE I. Results for a few of the lowest isovector M6
transitions in A = 26 nuclei. The first two columns give the
theoretical predictions from this work, which are compared to
data shorn in the remaining columns. Typical experimental
uncertainties for Z are in the 15—20% range. The theoretical
excitation energies Et,h are all measured relative to the ground
state of Mg.

T = 0 states
Egg(MeV) Z,

(p, n) data
E ( Al) Zg

6.82
7.42
8.50

0.147
0.017
0.001

6.9 0.123
7.5 0.047

T = 2 states
Et,g(MeV) Z~ p

(e, e') data
E ( Mg) Zgp

(p, n) dsts'
E ("Al) Z'

18.84
21.05

0.200
0.002

18.0 0.146 18.2 0.135

Reference [40].
Reference [39].

'Reference [40] with Zz z converted to Z~p by applying the
isospin Clebsch factor of 3.

T = 2 states is about 30% too large and too high in ex-
citation by almost 1 MeV, but the calculation does place
the strength mainly in a single observable state (consis-
tent with experiment) as we will see when we look at the
spectra below. The lowest T = 1 state (see Table II) is
predicted to be a neutron state, in agreement with the
pion analysis [41,42] but in disagreement with the proton
analysis [24]. The isoscalar strength in the T = 1 states
above 12 MeV excitation is badly overestimated based
on comparison to the pion data (but not the proton data
as will be clear below), a feature that can be discussed
more easily in terms of the spectra.

Figure 2 shows the isovector M6 response in compari-
son to data from the (p, n) and (e, e') experiments. The
shaded histogram represents strengths deduced from the

(p, n) reaction [40], displayed as described near the end
of Sec. II. (The height of the histogram bar can be com-
pared to the peak of the theory curve and the shaded
area of the bar can be compared to the area under the

theoretical curve. ) Note that the isovector strength in
the 9.3 MeV peak has been divided between T = 1 and
T = 0 states in the proportion described in Ref. [40].
The solid "data points" represent strengths deduced from
electron scattering [38] (as fit in Ref. [39]) in the anal-
ysis of pion scattering data [42], while the open circles
denote the strength deduced from the analysis of these
same electron data in conjuction with proton scattering
data [24]. (These points, displayed as described in Sec.
II, should be compared to the top of the peak in the the-
oretical spectrum or the top of the histogram bars. ) The
strength deduced for the T = 2 states from the (e, e')
data has been converted &om Z& o to Z& z for display
in Fig. 2 to facilitate comparison to the (p, n) data.

The isovector response shown in Fig. 2 agrees rather
well with the theoretical prediction for T = 0 and T = 2
states. Speci6cally, the strength in T = 0 states is con-
centrated near 7 MeV excitation with the total strength
predicted in the lowest two states rather close to that
measured in the (p, n) experiment, although the distribu-
tion of strength between these two states is not correct.
Both theory and experiment get a single T = 2 state,
with the amount of strength and the excitation energy
somewhat overpredicted by theory as noted above. The
isovector response for the T = 1 states shows some qual-
itative differences between theory and experiment. The
strength in the yrast state is overpredicted by about a
factor of 2, and the strength in the cluster about 3 —7
MeV higher appears to be spread more broadly than pre-
dicted. There are some disagreements between the elec-
tron scattering and (p, n) data in this higher excitation
region (where the charge exchange experiment could have
misassigned some T = 0 states as T = 1 states), but none
that would alter our overall conclusions that this calcu-
lation still underestimates the fragmentation in T = 1
states.

Figure 3 shows the isoscalar M6 response for T = 1
states in the upper panel. The isoscalar response should
be compared to the isovector response already displayed
in the middle panel of Fig. 2; the experimental results
from pion data (solid points) [42] and proton data (open
circles) [24] are shown in the same way in both figures.
(It happens that Zz~o ——Zz z for T = 1 states, so it is
correct to compare directly the isoscalar strength with

TABLE II. Results for low-lying 6 T = 1 states in Mg. Theoretical predictions from this
work are given in the first three columns and compared to the data for corresponding levels in the
remaining columns. Typical experimental uncertainties in Z sre +0.01 with larger (up to +0.03)
errors in some Zo values.

T = 1 states
Eth (MeV) Zp Zg

Pion and electron data
E ( Mg) Zp Zg

(p, n) data
E ( Al) Zg

9.94
11.64
12.20

13.10

0.260
0.011
0.110

0.356

0.311
0.046
0.070

—0.078

9.2
12.0
12.5
12.9
13.0

0.15
—0.16
0.06

—0.13
0.03

0.21
0.00
0.22
0.11
0.11

9.3

12.5

13.1

0.200

0.201

0.161

Reference [42] harmonic-oscillstor analysis.
Reference [40] results converted to T, = 0.
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T, = 0 in Fig. 3 to the isovector strength with T, = —1
in Fig. 2.) Note the concentration of isoscalar strength
predicted near 13 MeV excitation, which is not seen in
the pion results [42] but is seen in the proton scatter-
ing analysis [24]. This proton analysis gives Zo2 = 0.12
compared to the prediction of 0.13 in the region near 13
MeV. Since the proton data give the wrong answer for the
neutron-proton composition of the lowest T = 1 state, it
is difficult to know how much weight to give to this last
result. We note in passing that there is an alternate fit
in Ref. [24] that does give the lowest T = 1 state a
neutron character, albeit not a very good one, and these
authors discuss concerns about the relative phase of the
isoscalar and isovector parts of the NN interaction. It is
important that the source of this disagreement between
proton and pion analyses be identified so that an accurate
isoscalar spectrum can be obtained from data for N g Z

nuclei. Several ongoing studies are looking closely at the
properties of the isoscalar tensor NN interaction, which
is dominated by exchange and has not been tested as
extensively as the direct-dominated isovector tensor NN
interaction [43].

Figure 3 shows the neutron-proton decomposition of
the response for the T = 1 states in the lower two panels.
Here the theory is compared to a histogram showing the
strengths deduced from analysis of recent pion data [42].
The distribution &om the analysis of proton data is not
shown because that work gives the suspect result that
the lowest state is a proton excitation. Notice that the
neutron response shows much strength in the yrast state
as expected, although this strength is overestimated and
the neutron strength in the cluster about 4 MeV higher
is correspondingly underestimated. The proton response
is much weaker and more widely fragmented than we
predict.
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FIG. 2. Isovector M6 response functions in A = 26 nu-

clei for T = 0 (top), 1 (middle), and 2 (bottom) transitions
from this work are shown with a solid curve. In all cases the
strength is for AT, = —1. The shaded histograms denote
the (p, n) strength [40] while the solid data points show the
strength deduced from electron data [39] with some minor
(about 10%) corrections from the pion data [42]. The open
circles for the T = 1 states are data points for the isovector
strength deduced from the analysis of proton scattering data
[24]. As discussed in Sec. II, the data points should be com-
pared to the peak of the strength-function curve and the top
of the histogram bar; the shaded area of the histogram bar
also can be compared to the area under the strength-function
curve.

Ex (MeV)

FIG. 3. Additional M6 response functions (all with
b,T, = 0) for T = 1 states in Mg. The top panel shows
the isoscalar strength from this calculation (solid curve) com-
pared to solid data points that denote the result of an analysis
of pion scattering data [42] and open circles that denote the
result of the proton scattering analysis [24]. The lower two
panels show the neutron and proton decomposition of the
strength distributions compared to a histogram that denotes
the result of the pion analysis of Ref. [42]. The curves and
histograms in the lower two panels contain the same informa-
tion as the curves and solid data points in the top panel of
this Sgure and the middle panel of Fig. 2.
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These results represent quite an improvement over
those of Amusa and Lawson reported in Ref. [24] for
the T = 1 states in Mg. The easiest comparison we
can make is for the lowest state, where they obtained
Zg ——0.39 and Zp = 0.30. The larger basis used for this
study gives 0.31 and 0.26 for these amplitudes, which are
to be compared to experimental values of 0.20 and 0.15,
respectively. The improvement in the isovector strength
has eliminated more than half of the discrepancy between
theory and experiment. Further, unlike Ref. [24], we do
not see an observable T = 2 state a few MeV above the
known level.

Another way to look at these results, one that empha-
sizes the fraction of the ESPHM strength expected in a
certain region of E, is to examine integrals of the M6
strength distribution. Figure 4 shows the sequence of
partial sums of the strength in each part of the response;
that is, we plot

f theory

ESPHM
Z

This work

T=0
0.389
0.313
0.229

Isovector
T=1
0.500
0.402
0.320'

0.333
0.267
0.200

Isoscalar
T=1
0.833
0,668
0.440'

f data

(e, e') Ref.
(p, n) Ref. [

(p, p') Ref.
(vr, 7r') Ref.

[»]
40]
[24]
[42]

T=0

0.205

Isovector
T=1
0.267
0.290
0.16?
0.270

0.146
0.135
0.122
0.144

Isoscalar
T=1

0.250
0.095

TABLE III. Integrals of M6 strength for A = 26. The
theory entries give the total sum (Z is the value for the basis
truncation used in this work) as well as the integral over the
specified region of excitation energy. Typical uncertainties in
the integrated experimental strength are about 15%.

) Z'(E)
E=O

as a function of E . Table III gives the relevant total
sums and compares them to the integrated experimental
strength as well as the integral of the theoretical strength
over roughly the range of excitation where the data ex-
ist. As Fig. 4 makes clear, there can be as much as 25%
of the strength shifted to high excitation where it is not
seen by experiment. It is important that experimental
values for the integrated strength be compared to a sim-
ilar integral of the theoretical response and not just to Z
or the ESPHM value.

The results shown in Fig. 4 demonstrate that we have
excellent agreement between this theoretical calculation
and the (p, n) data for the T = 0 and T = 1 states up to
the maximum E probed by the experiment. The the-
ory is too high for the lowest state and too low for the
next states, another indication that all features of the
&agmentation are not described in detail, but the total
strength in this region is correct. Further, the results for

Naive shell-model result.
Integral of Z~ T for T, = —1 up to 12 MeV excitation; value

is 0.28 if integrated to 17 MeV excitation.
'Integral of Zi T for T, = 0 up to 17 MeV excitation; note
that T = —1 integral is the same number.

Integral of Z~ T for T, = 0 up to 20 MeV excitation; note
that T = —1 integral is a factor of 3 smaller.
'Integral of Zo o up to 17 MeV excitation.

the isovector strength in T = 1 states from the proton
analysis, which are essentially the same as the pion analy-
sis because both are dominated by the electron-scattering
data, also agree on average with the integrated (p, n) data
in the region where both exist. The T = 2 integral is not
very informative because only one state is seen.

The integrated strength for T = 1 states in the re-
gion E ( 17 MeV obtained by Amusa and Lawson [24]
does not show nearly the same level of agreement. Their
isovector strength gives 0.39, in comparison to the re-
sult of 0.32 &om this study and the experimental value
of about 0.28. Their isoscalar strength gives an integral
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hausted over a given energy re-
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of 0.56, in comparison to the present result of 0.44 and
an experimental value that falls somewhere in the range
from 0.10 to 0.25. The ixnportant conclusion we reach is
that this larger basis is sufficient to describe the fragmen-
tation of isovector strength but inadequate to explain the
isoscalar fragmentation.

As already noted above, the big disagreement between
the results of the pion [42] and proton [24] analyses con-
cerns the isoscalar strength. The problem is quite clear
in the lower right panel of Fig. 4. It is interesting that
the proton results agree rather well with the theoretical
prediction. The proton analysis gives the wrong rela-
tive phase between isoscalar and isovector, misidentifying
the lowest state as a proton excitation, so there must be
doubts about this analysis. However, the proton exper-
ixnent clearly does see more scattering strength around
12—13 MeV excitation, so a simple phase problem with
the NN interaction may not explain this discrepancy. It
is important that the source of this problexn, which is
seen for other nuclei as well, be identified and corrected.
In addition, there is a significant con6ict concerning the
isovector strength at E = 12.0 and 15.0 MeV between
the (p, n) data [40] and the electron scattering analy-
sis [39] that affects our conclusions and needs resolution.
There is an unanalyzed peak near 15.0 MeV in the pro-
ton scattering spectrum [24] that could have a bearing
on this matter. Further, there are as-yet-unpublished
claims based on high resolution electron scattering [44]
that some transitions reported in these published papers
are incorrectly identified or contaminated by lower mul-
tipole transitions.

We can summarize the theoretical results for both
isospin transfers as follows: about 20%%uo of the strength
is lost because of depletion of the d&g2 orbit (Z = 0.668
instead of 0.833) in the ground state; another 20—25%
cannot be seen because it is scattered at high excitation,
beyond the range explored in the experixnents. The theo-
retical prediction for the isovector strength is about 20%
above the experimental result in the same region of exci-
tation energy, but some of the difference between theory
and experiment is no doubt due to small unobservable
kagments that are included in our integrated strength.
The calculation does not have sufficient detail to identify
which parts of the response might be too weak to see
in these experiments. Theory predicts more than four
times more isoscalar strength than is seen in the pion
experiment, but is only about 75% above that claimed
in the proton scattering experiment. We do expect frag-
mentation of isoscalar strength to be underestixnated by
our calculations based on earlier results [22], but the dif-
ference between these two experiments is large and must
be resolved to clarify this situation. Nonetheless, theory
does predict larger fragxnentation effects for the isoscalar
transitions, albeit not large enough to explain the data.

Overall, we get a very clear picture of the fragmenta-
tion of the M6 strength in Mg &om the comparison
of these calculations to the data. The isovector strength
distribution and integrated strength in T = 0 and T = 2
states is in good agreement with the data. The inte-
grated isovector strength agrees well with the data for
T = 1 states although its distribution in E does not.

The isoscalar strength appears to be much xnore frag-
mented than we predict, although this last conclusion
should await a resolution of the conHict between the anal-
yses of pion and proton data for these states.

IV. 3oSi

6 T=1

6 T=O

0 T=1 g.s.

/Op 30SI 3OA(
aTz =+~

FIG. 5. Schematic diagram showing the isovector transi-
tions for A = 30 nuclei considered in this study and the ES-
PHM estimate of the transition strength for each. The double
line for the T = 1 level is intended to denote the presence of
both T~ and T& parentage.

The situation in Si is that both the neutron and pro-
ton d5/2 levels are filled and a pair of neutrons occupies
the sq/2 level. Thus the proton response might be ex-
pected to resemble the situation in Si, where there is
a strong state with a cluster of strength about 3 MeV
higher in good agreement with theory [22], while the neu-
tron response might resemble the situation in S, where
there is much more fragmentation predicted by theory
and seen in the experiments because of fragmentation of
the ds~2 level [20]. The distribution of levels populated by
pickup reactions on Si support this assertion that the
d5y2 neutrons are more fragmented than the d5y2 protons
[36].

As in the previous section, it is convenient to use a
diagram to display the magnitude of Zz & expected &om
the simplest model for these stretched transitions and
to show the relationships between the Z coefficients for
diferent reactions. Figure 5 shows the value of Z for
the possible stretched transitions built on a simple shell-
model ground state, the so-called ESPHM. The absolute
magnitude of the rate depends on the d5g2 occupancy for
pure states built on T~ and T& configurations coupled to
an fr/2 particle. We use a double line for the T = 1 level
in the figure as a mnemonic to indicate that it has both
T& and T~ parentage.

The only published data available for the 6 states
in Si are the excitation energies obtained &om the

Al(n, pp) Si reaction [45]. Experiments, as yet unpub-
lished, also have been performed with electron scattering
[46] and the (p,n) reaction [47].

Calculations were done as described in Sec. II. Once
again the number of iterations made for each isospin T
varied depending on the number of observable fragments
that had to be isolated. A total of 26 iterations were
made for the T = 0 states, 56 for the T = 1 states,
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TABLE IV. Theoretical results for a few of the lowest 6 states in A = 30 nuclei. The excitation
energies Eth are all measured relative to the ground state of Si.

T = 0 states
E,h (MeV) Z,

T = 1 states
Egg (MeV) Zo

T = 2 states
R,I, (MeV)

5.8
6.7
8.0

0.038
0.089
0.038

8.7
8.8

0.157
0.179

0.142
0.191

16.2
17.8

0.185
0.052

and 36 for the T = 2 states. The proton and neutron
response was calculated for T = 1 states in addition to
the isoscalar and isovector response.

Table IV shows the spectroscopic amplitudes for the
lowest converged states in this calculation. Figure 6
shows the isovector M6 response for T = 0, 1, and 2
states, which is essentially the spectrum predicted for
the (p, n) or (e, e') reactions. (All excitation energies are
relative to the ground state of soSi ) Of particular note
is the prediction that the lowest T = 0 and T = 1 states
will not be the strongest, and the suggestion that a sec-
ond T = 2 state might be observable about 2 MeV above
the yrast state.

The 6, T = 1 states from this calculation are in rea-
sonable agreement with those seen in the (u, pp) reac-
tion [45]. The lowest state, at 9.1 MeV, matches up with
the doublet we predict at 8.7 and 8.8 MeV. We do not
have any state near 9.8 MeV, which is identified with a
K = 3 band. This is plausible because this calcula-
tion would not be expected to describe a predominantly
collective state, which might not carry any M6 strength

unless mixing with a rotational state splits the doublet
predicted at lower E . The states seen at 10.6 and 11.5
MeV can be identified with several states that are pre-
dicted around 11 MeV.

Preliminary results from the (p, n) reaction [47] are
also encouraging. Agreement with the spectrum of T = 0
states appears to be excellent, but the T = 2 strength is
overestimated by a factor of 2. The situation for T = 1
states is less clear because the (p, n) [47] and electron-
scattering [46] experiments do not see all of the same
states. Any detailed conclusions must await publication
of the final results of both experiments, and for this rea-
son no data are shown in the figure.

Figure 7 shows the isoscalar M6 spectrum for T = 1
states as well as the proton-neutron decomposition of the
response. The latter is important when considering pion-
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FIG. 6. Isovector M6 response functions in A = 30 nuclei
for T = 0 (top), 1 (middle), and 2 (bottom) transitions from
this calculation are shown with a solid curve. In all cases the
strength is for AT = —1.

FIG. ?. Additional M6 response functions (all with
bT, = 0) for T = 1 states in Si. The top panel shows the
isoscalar strength from this study while the lower two panels
show the neutron and proton decomposition of the strength
distribution. The curves in the lower two panels contain the
same information as the curves in the top panel of this figure
and the middle panel of Fig. 6.
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TABLE V. Integrals of M6 strength for A = 30. The
theory entries give the total sum (Z is the value for the basis
used in this work) as well as the integral over the specified
region of excitation energy.

j theory

ESPHM
Z

This work

T=0
0.333
0.312
0.197

Isovector
T=1
0.500
0.452
0.364'

0.500
0.420
0.319

Isoscalar
T=1
1.000
0.873
0.516'

Naive shell-model result.
Integral of Z~ T for T, = —1 up to 10 MeV excitation; value

is 0.26 if integrated to 15 MeV excitation.
'Integral of Z~ T for T, = 0 up to 15 MeV excitation; note
that T, = —1 integral is the same number.

Integral of Z» T for T, = 0 up to 20 MeV excitation; note
that T, = —1 integral is a factor of 3 smaller.
'Integral of Zo 0 up to 15 MeV excitation.

scattering experiments. It is clear that the lowest T = 1
state is again predicted to be a neutron excitation, but
that it will not carry as much strength as the comparable
level in Mg, Fig. 3. More strength has been moved to
higher excitation and the neutron strength is broken into
large, observable pieces. The proton strength is clustered
in the region about 2—3 MeV above the lowest T = 1
state.

The distribution of strength in various regions of exci-
tation can also be seen in Fig. 8, where running integrals
of the strength distribution are shown. Again we set the
maximum value in each panel at the ESPHM value. Ta-
ble V gives the total sums and corresponding integrals
over the region of excitation covered by the experiments.
On average, about 60% of the ESPHM strength is pre-
dicted to be observable by these experiments, with im-
portant contributions coming from a broad distribution
of weak states.

V. SUMMARY

The particular emphasis in this paper has been on
the information that can be obtained by examining the
isospin structure of "stretched" strength in N P Z nuclei.
A variety of one-step reactions can be used to identify
the &agrnentation of the unique stretched configuration
amongst the many 6 states. In N P Z nuclei, mix-
ing between proton and neutron configurations provides
a way to increase the visibility of the elusive isoscalar M6
strength distribution.

We see that the main features of the reduction and re-
distribution of M6 strength in Mg can be described well

by large-basis shell-model calculations: the loss of M6
strength results from fragmentation of the "stretched"
configuration by conventional configuration mixing. In
particular, the results for isovector transitions are quite
good. The spectra for T = 0 and T = 2 states are
described rather well and the integrated strength for
T = 1 states is in very good agreement with theory
over the range studied experimentally. The model shows
greater fragmentation of isoscalar strength than isovector
strength, the key result (emphasized in Ref. [3]) that can-
not be obtained in core-polarization models, but signifi-
cantly underestimates the isoscalar fragmentation. There
is substantial uncertainty about this last conclusion be-
cause the integrated isoscalar strength does agree well
with that extracted &om proton scattering data [24] but
the reliability of this analysis is uncertain.

The key ingredients in these calculations appear to be
the use of a basis with sufBciently many degrees of &ee-
dom and an effective Hamiltonian that gives a reasonably
correct description of ground-state correlations in the sd
shell. Both are important because it is the admixture
of other 6 configurations by mixing within the ad shell
that has &agmented the "stretched" configuration. We
emphasize that it is the full spectrum of the M6 response
that provides the most stringent test of any model.

Predictions are made for soSi. The M6 response for
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A = 30 nuclei should have similar features to that seen
in A = 26, with the model predicting that the number of
large, observable fragments should increase. A detailed
comparison of the results of the (p, n) experiment done
on this target [47] with the predictions from the present
study should be most interesting.

The most important theoretical and/or experimental
issue is the resolution of the large disagreement between
the proton and pion analyses concerning the neutron-
proton or isovector-isoscalar composition of T = 1 states
in K g Z nuclei. There are a number of other theo-
retical issues. The most important of these is that the
failure to use a full 1hur basis omits p and fp configura-
tions that become important away &om the middle of the
shell and make it impossible to remove spurious center-
of-mass effects &om the calculation. The latter are only
a few % effect in the strong transitions examined here,
but it would be better if they were not present. The
crude choice of Hamiltonian, made so that these results

will be consistent with the other calculations made for
the M6 response in Sd-shell nuclei, also leaves room for
improvement. Finally, most of the states discussed here
are unbound, and continuum effects can produce signif-
icant changes in the distribution of proton and neutron
strength [48].
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