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P, T-violating nuclear matrix elements in the one-meson exchange approximation
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Expressions for the P, T-violating NN potentials are derived for vr, p, and u exchange. The
nuclear matrix elements for p and cu exchange are shown to be greatly suppressed, so that, under the
assumption of comparable coupling constants, x exchange would dominate by two orders of magni-
tude. The ratio of P, T-violating to P-violating matrix elements is found to remain approximately
constant across the nuclear mass table, thus establishing the proportionality between time-reversal-
violation and parity-violation matrix elements. The calculated values of this ratio suggest a need to
obtain an accuracy of order 5 x 10 for the ratio of the PT-violating to P-violating asymmetries
in neutron transmission experiments in order to improve on the present limits on the isovector pion
coupling constant.

PACS number(s): 11.30.Er, 13.75.Cs, 21.30.+y, 24.80.—x

I. INTRODUCTION

Simultaneous violation of parity conservation and time
reversal invariance (P, T violation) in the low-energy
nucleon-nucleon interaction can be described, in analogy
with the description of P violation, in terms of nonrel-
ativistic potentials derived &om single-meson exchange
diagrams involving the lightest pseudoscalar and vector
mesons [1]. We consider here s, p, and u mesons. The
strength of the P, T violation in the N-N interaction
is then parametized in terms of the coupling constants,

gM~~, characterizing the N m NM matrix elements
of the various isospin (I) components. We consider the
forms for the Lagrangian describing the N ~ NM vertex
and find in a calculation in nuclei described by a closed-
shell-plus-one configuration that the contribution to P, T
violation from all isospin components of p exchange are
identically zero for charge-symmetric (N = Z) closed-
shell cores. A similar result has been found [1,2] to hold
true for the I = 0, I = 2 components of m exchange. In
heavy nuclei with closed-shell cores that are not charge

—(I)'symmetric, assuming comparable couplings gM~~, these
terms together with the ur-exchange terms remain small
compared to the dominant term coming &om the I = 1
component of ~ exchange.

P, T violation may be studied in neutron transmission
[3] and gamma-decay [4—6] experiments on oriented nu-
clei. In both cases P, T violation is accompanied by P
violation alone. Consider a simple p-decay example [1,5]
where the initial nuclear state is of mixed parity due to
the presence of P violation and P, T violation in the NN
interaction, while the final state to a good approximation
remains a state of definite parity. Let la) and lb) denote
the initial and final nuclear states in the absence of P
and P, T violation. The potential, V + V ', has the
efFect of changing la) to a state IA) and lb) to a state IB),
which under these assumptions are given by

I

IA) = la)+). @a'

x((a'IV la)+(a'IV 'la))

IB) = Ib)

where the state la') is of the same angular momentum
as la) but of opposite parity. The P, T-violating efFect is
then proportional to

R (BI[A'L'IIA)

(BIll'L II A)
(4)

It is useful to consider the ratio of these effects, which
becomes proportional to the matrix elements of V and
V ', viz. [1]

A~ T . (a'IV Ia)
At (a'IV Ia)

Here the ellipsis indicates that effective T-violation con-
tributions induced by T-invariant higher-order processes
have been omitted. It is important that these be esti-
mated [6] before any comparison is made between theory
and experiment, but they are not relevant for the discus-
sion presented here. Herczeg [1] argues that if a calcu-
lation of (a'IV la) is not available, a rough estimate
of the ratio A~TiAJ combined with a measured value
of the P-violating effect may give a better estimate of

(Bile'L'IIA)

(BII«IIA)
'

where m'L' is the irregular multipole now available due to
P, T violation while xL is the regular multipole present
in the la) ~ lb) + p transition. A P-violating efFect in
the same transition is proportional to
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(a'~V ' ~a) than a rough estimate of (a'~V ' ~a) itself.
To this end, Herczeg defines

, (a'Iv ' la) „&1)9 NN
(a')V (a) QpNN

C~NN = g~NNNN
(I=o) (o) I

mNN gmNN
(I=1) {1)I

CN ——g NN(3 P — P), (7)

where g NN are coupling constants, N nucleon fields, and
—(I)I

pion fields. The Roman superscripts are Cartesian
isospin indices and a repeated index, a, is summed over,
but not the index, z. The strong interaction vertex is

Here it is assumed that P violation occurs primarily
through isoscalar (I = 0) p exchange characterized by

the coupling constant g NN. In the work of Desplanques,{o)~

Donoghue, and Holstein (DDH) [7], an isovector (I = 1)
vr-exchange term is shown potentially to be of compara-
ble importance in P violation. However, the limits on
measurements [8] of circular polarization of a selected p
transition in F, which is sensitive only to the isovec-
tor component of the P violation, is found to be smaller
than the DDH "best estimate" and at present there is
only an upper limit. Thus, in this analysis, we consider
only isoscalar p exchange contributing to P violation.

Our goal here is to derive the potentials for the p- and
u-exchange P, T-violating NN potentials and to deter-
mine the strength of their nuclear matrix elements rel-
ative to those for x exchange. We use these results to
estimate a reasonable range for the value of K( ). One
of our main interests is in studying the dependence of
the P, T-violating matrix elements, and hence K( ), on
nuclear mass. A somewhat similar undertaking has be
made by Griffiths and Vogel [9] for the one-pion exchange
potential. These authors follow Herczeg and express
the effective one-body interaction in terms of an asymp-
totic potential obtained assuming m ~ oo. The true
one-body P, T-violating potential is then related to the
asymptotic potential through a suppression factor F, and
F is shown to have a large dependence on nuclear mass.
In the present work we do not use this analytic approx-
imation as we find the assumption of large meson mass
not to be good, particularly in the case of the pion; rather
we perform exact numerical evaluations of the matrix el-

ements. We find both the P, T- or P-violating matrix el-

ements and consequently v. ( ) to be approximately mass
independent. Thus, we conclude that any strong mass de-
pendence obtained using asymptotic approximations do
not apply to the true potentials. In this regard there is
little advantage in choosing examples in heavy nuclei over
light as candidates for experimental study. Of course,
any advantage kom dynamical enhancements, such as
the smallness of the energy denominator in Eq. (1), re-
mains valid.

j:X. XHE S, r-VrOr, AX'mC IWVERACX'rue

In a meson-exchange model, the P, T-violating
nucleon-nucleon interaction is given by one weak P, T-
violating N ~ NM vertex and one strong P, T-
conserving N ~ NM vertex with a meson exchanged
between the two. For vr exchange the weak vertices are
described by Lagrangians:

~wNN ig~NNN'75N7 (8)

(I=0) (0)I
2

VPT —g NNgmNN &—'r&1'&2Y1(z )8~M

2„(I=l) (l) r

PT ANNg~NN [ + —+ —r +)Yi(z~)~
16vrM

2.,(I= ) ()VPT g NNg NN Mcr —r[3ri r2 7 1'T2]Y1(z )8+M

(9)

where a'+ ——o'l + o'2, cr = col —cr2 and similarly for 7+
and w, m is the pion mass, and M the nucleon mass.
Here r = ri —r2, z~ = m r, and Yi(z) = (1+1/z) Yp(z)
with Yp(z) = e /z. This result has been given before
[1 21

Likewise for the vector mesons, the P, T-violating La-
grangians are

(I=o) . (o)I 1 a a
g NN N+pvv+5 N+ p2M

{I=i) . (l)I
~pNN = 2gpNN MN+p, vvp5Np&s2M

1= ig&NN NO pvDvpSN(37 p —'T p~)~ (10)
2M

where p„are rho-meson fields and o„= (p„p
p„p„)/2i. We are using the Pauli metric for Dirac ma-
trices as discussed in DeWit and Smith [10]. Note that
the Lorentz form of these Lagrangians is that of an axial
vector that is odd under charge conjugation. They cor-
respond to second-class axial currents [11] in the termi-
nology of nuclear P decay. The strong interaction vertex

Kv
ZpNN = ~ p gNNN(7~ + 1 OpvDv)NT P2M P

where A"v is the ratio of tensor to vector coupling con-
stants. The corresponding P, T-violating potentials in
co-ordinate space are

with g NN the strong pion-nucleon coupling constant,
and ~ the Pauli isospin matrix. Combining one strong
and one weak vertex Lagrangian with the pion propaga-
tor, taking a nonrelativistic limit of the vertex functions,
and making a Fourier transform to coordinate space leads
to the following expressions for a P, T-violating potential:
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(I=o) (o)I
m2

P ~" ~VpT g ~~gpNN cr 'r'Tl r2Yi(z ),P 8vrM

2
(I=o) (o) m

4p
Vp z = —g ~rvguNN ~ 'rYj (+~) ~47 8+M

m2
Vp z = g ~rvgp~~ [0'+.rr —0' rr+]Yl(zp)p

m2———g &'&gpNN cr r(37)72 T] T 2)Y&(Zp).

The overall form of these potentials is the same as for
vr exchange except for one key difference in the isovector
potential. There the relative sign between the two terms
is minus for p exchange and plus for vr exchange. Lastly,
for u exchange we make substitutions v p„~ cu„ for
isoscalar and p„' ~ v'u„ for isovector Lagrangians and
obtain the following P, T-violating potentials:

m2
V& &

—— g—&~g ~~ [o'+.r&' + o' rr+]Yj (2:(ap).

Note in this case there is a relative plus sign between the
two isovector terms. There is no isotensor potential for
~ exchange.

To estimate which components of the P, T-violating
interaction are important, we compute matrix elements
of Vj ~ for closed-shell-plus-one configurations. This is
equivalent to determining efFective one-body potentials.
The computation boils down to an evaluation of two-
body matrix elements between the valence nucleon and
one of the nucleons in the closed-shell core summed over
all the nucleons in the core. Let a and a' be two quan-
tum states of the valence nucleon (of the same angular
momentum, j, but opposite parity), and c the quantum
states of the occupied orbits in the core, then for charge-
symmetric cores

(a'm ~V&&[am ) = )
c

J1JgT1 Tg

A A A A

U ( ITz', Tq z
-j-( 2 m IO~ 2m ) ((a'c) JqTq ~[Vp z,

~
[(ac)J2T2),4j +2 {14)

where J = (2J+1) ~2 and the U coefBcient is a recoupling
coeKcient of three angular momenta. Our notation is
that of Brink and Satchler [12) with the matrix elements
reduced in both spin and isospin spaces. The two-body
matrix element on the right-hand side of Eq. (14) is anti-
symmetrized; such that the sum over core states includes
both the direct and exchange terms. From selection rules,
the U coeKcient is zero when I = 2, thus there is no
contribution to the matrix element &om isotensor corn-

ponents of the interaction for charge-symmetric cores.
Furthermore, matrix elements of cr v'q a2 are zero, and
matrix elements of cr w+ and can+7' are equal when sum-
ming over charge-symmetric cores. Thus the p-exchange
interaction gives no contribution in this case. As noted
in [1,2] a similar result holds for the I=0,2 components
of the m-exchange interaction.

For a charge-nonsymmetric core (N g Z), Eq. (14) is
generalized to read

(a'm ~V&&~am ) = )
c

J1JgT1 Tg
~cM1 M2

A A

2 2(~m~ zm, [TqMq)(zm~ zm, ]T2M2)

x (T2M2IO[TgMg) ((a'c) JgTg ~]Vz r [~ (ac)JzTz),

where Clebsch-Gordan coefBcients replace the U coeH'-

icient. Here m is the z component of the valence nu-
cleon's isospin quantum number and is —1/2 for a neu-
tron and +1/2 for a proton. Now terms that gave zero
contribution for charge-symmetric cores give a finite but
generally small contribution in heavy nuclei. Some sam-
ple calculations are given in Table I for j = 1/2, p and
8 states.

Our calculations are made with harmonic oscillator
wave functions. However, there is one drawback to this
choice; the eigenfunctions of the harmonic oscillator po-
tential are not the eigenfunctions of the nucleon-nucleon
interaction. This is particularly important in the rela-
tive coordinate, r, where the nucleon-nucleon interaction

is known to have a strong short-range repulsion, which
makes the relative wave function go rapidly to zero as
r ~ 0, more rapidly than given by uncorrelated oscillator
functions. Thus to incorporate this piece of many-body
physics in a simple way it is quite common to modify
two-body operators by multiplying them by a short-range
correlation function. Thus we write

Vs, z, (r) = VJ r(")g(")
" (I) (I) (16)

where g(r) is some function that tends to zero as r ~ 0
and tends to unity for large r. The precise choice of
g(r) becomes part of the model dependence at short
distances. This choice is not critical if the operator is
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of long range, such as the pion-exchange interactions,
but is much more critical for the shorter-ranged, heavy-
meson exchange interactions. Our results in Table I
adopt the choice made by Adelberger and Haxton [13],
who in their work on parity violation in nuclei used
g(r) = [1 —exp( —ar )(1 —br2)] with a = 1.1 fm
and b = 0.68 fm obtained from the work of Miller
and Spencer [14]. It is evident from Table I that the
short-range correlation function significantly reduces the
contribution &om heavy mesons. Thus, providing all the
unknown couphng constants gMNN are of comparable-(I)I

magnitude, it can be asserted that the isovector pion-
exchange component will dominate P, T violation in nu-
clei.

An estimate of the coupling constants has recently
been provided by Gudkov, He, and MacKellar [15]. These
authors point out that, in general, a first principles calcu-
lation of P, T violation would be very diKcult. However,
beginning with an effective low-energy P, T-violating La-
grangian at the quark level for particular models of CP
violation, they have estimated the P, T-violating coupling

constants, gM&N, of the nucleon-nucleon interaction us-(I)I

ing a factorization approximation and the vector dom-

inance hypothesis. Their main conclusion is that for
all types of models of CP violation in the one-meson-
exchange approximation the contributions to the P, T-
violating nucleon-nucleon interaction &om pseudoscalar
mesons are larger than the contributions &om vector
mesons by about 1 order of magnitude.

III. THE RATIO ~(i)

We now return to the evaluation of the ratio of P, T
violation to P-violation matrix elements of Eq. (6). We
assume that P violation principally comes &om the
isoscalar p-exchange potential [7,13]

m2
V~ = igp~~(1—+ Kv) Micr& x rr2 r Ty'r2Yg(zp),(0)I P

4aM
(17)

where we have neglected a smaller nonlocal term. The
weak coupling constant g ~N is the same as h in the
notation of DDH [7]. The ratio therefore becomes

TABLE I. Contribution from each component of the two-body V&,T interaction to the P, T-violating matrix element in
closed-shell-plus-one configuration in units of 10 eV for six choices of the closed-shell core. Matrix elements were calculated
with harmonic oscillator wave functions with hu = 45A —25A MeV. The Miller-Spencer [14] short-range correlation
function was used. The weak interaction coupling constants, gM~N, were set at 1 x 10

160
N=8
Z=8

40C

N=20
Z=20

90z

N=50
Z=40

138B

N=82
Z=56

208Pb

N=126
Z=82

232Th

¹142
Z=90

Op-Os 1p-1s 2p-2 s 2p-2s 3p-3s

vr (I=O)
vr(I=1)
vr (I=2)

1.084 0.875

—0.059
0.708
0.000

—0.181
0.779

—0.275

—0.126
0.608

—0.190

—0.162
0.633

—0.179

p(I=O)

p(I=2)

0.000
—0.000

0.000

0.002
—0.001

0.001

0.001
—0.000

0.000

0.001
—0.001

0.000

u) (I=0)
u)(I =1)

0.020
—0.020

0.012
—0.012

0.007
—0.007

0.008
—0.008

0.006
—0.006

0.006
-0.006

Op-1s 1p-2s 2p-3$ 2p-3s 3p-4s

s (1=0)
~(I=1)
s (I=2)

—0.400 —0.378
0.054

—0.388
0.000

0.122
—0.465

0.181

0.097
—0.376

0.146

0.125
—0.409

0.138

p(I=0)
p(I=1)
p(I=2)

—0.000
0.000
0.000

—0.001
0.000

—0.000

—0.001
0.000

—0.001

—0.001
0.001

—0.001

—0.008
0.008

—0.003
0.003

—0.004
0.004

—0.005
0.005

—0.003
0.003

—0.004
0.004
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2
(~) 1 g NN

4 gpivx(l + Ev) m2

((o'+ rr + o r" r+)Yi(x )) z
X

(io'i x o'z r v"'i v2Yi(xp))
(18)

functions of length parameter, b. The exact value of the
integral is

(Yi(x)) = (s) ze' erfc(z)+2 1 2

where u, w~ are reduction factors accounting for short-
range correlations.

Our exact numerical results for the ratio of the P, T-
violating to P-violating matrix elements [incorporating
the reduction factors ur and up explicitly as decribed
in Eq. (16)], are summarized in Table II. There we
give some sample neutron matrix elements in closed-shell-
plus-one configurations for j = 1j2, p and s states. Sig-
nificantly, the ~( ) values display very little mass depen-
dence, and range from 2 to 5.

To understand our results summarized in Tables
I and II let us consider the simple case a neu-
tron in a closed-shell-plus-one configuration for charge-
symmetric cores, Eq. (14). Then, for the z'-exchange
term, the exchange component of the two-body ma-
trix elements is identically zero, while for the p-
exchange term the direct component is zero. The spin
and isospin sums are trivially evaluated: (cr+r )
(o' r+) = 12 and (io'i x o'2Ti'T2) = —18 and the angle
integral (r) cancels in the ratio to give

(i) 1 gsNjv m' (Yi(*~))~~
3 gpNN(1 + &v) mp (Yi(&p)) &p

It reinains to evaluate the radial integrals, (Yi(x)). Con-
sider the integral evaluated between Os and Op oscillator

47t. j' Z
(20)

where z = mb /~2 and m the meson mass. Thus, in the
limit of large meson mass the radial integrals (Yi(x ))
scale as 1jm . The short-range correlation function cuts
down matrix elements of p-meson range by roughly a
factor of 3 more than those of z-meson range, V jap 3.

The approximate scaling of the radial integrals with
1jm4 is largely responsible for the large difference in the
magnitudes of the z- and vector meson P, T-violating
matrix elements. We note, however, that for pion range,
m = 0.7 fm, the inequality z » 1 is not satisfied,
not even in heavy nuclei since b only varies gently with
nuclear mass as Ai~s. This results in the scaling approx-
imation, when taken at face value, leading to an overes-
timate in the ratio rc(i) by a factor of 3. More detailed
calculations reduce ~(i) even further, to give the values
listed in the Table II.

In addition to examining [9] the effective one-body
P, T-violating potential, GriKths and Vogel [5] have also
calculated +&i) for specific rare-earth nuclei, using the
quasiparticle random phase approximation. They find
e( ) values in the range 1 —6, which is similar to the
present range 2 —5. Since e( ) seems to be determined to
within quite a small range independent of nuclear struc-

TABLE II. Isovector vr-exchange, Vp, T, and isoscalar p-exchange, Vp, matrix elements evaluated for a closed-shell-plus-one
con6guration for six choices of the closed-shell core. The weak interaction coupling constants are g ~'~ ——1.0 x 10 and

QpNN1 1 4x 10.Matrix elements werecalculated with harmonic oscillator wave functions with ~ = 45A —25A

MeV. The Miller-Spencer [14] short-range correlation function was used. The ratio, a ', is defined in Eq. (6).

16g
N=8
Z=8

40'
N=20
Z=20

90z

N=50
Z=40

138B

N=82
Z=56

oepb

N=126
Z=82

N=142
Z=90

Op-Os 1p-ls 2P-2s 3P-3s

(V T) in 10 eV
i(Vp) in eV

1.084
1.513

0.875
1.550

0.708
1.535

0.779
1.576

0.608
1.581

0.633
1.600

—4.4

Op-1s 1p-2s 2p-3s 3p-4s 3p-4s

(Vj,T ) in 10 eV
i(Vp) in eV

—0.400
1.294

—0.378
1.435

—0.388
1.441

—0.465
1.485

—0.376
1.508

—0.409
1.527

3.5 3.0 3.1 3.6 2.8 3.0
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ture considerations, then a degree of proportionality be-
tween the matrix elements of the P, T- and P-violating
potentials seems to be established.

IV. P, T-VIOLATION IN NEUTRON
TRANSMISSION

l

W&'i l-'1.6 x10-', (24)

limits we consider La, where a very large P-violating
asymmetry (PJ 10 ~) has been observed C. ombining
Herczeg's limits with the values of K( ), K( ), and K( )

from Tables I and II for 2=138, and taking gpNN
—11.4 x 10 gives

(& Iv '
l&. ~)

(@.Iv~ly„)
(21)

where g, and @z are compound nuclear s- and p-wave
resonance wave functions. To first order the ratio of the
weak matrix elements between compound resonances can
be approximated by the ratio of single-particle matrix
elements, so that [1]

—(~)~
p(I) (I) gmNN

(o)
gpNN

(22)

Herczeg has reviewed the experimental searches of elec-
tric dipole moments in atoms, molecules, and the neu-

tron, and barring cancellations between the different
isospin amplitudes, deduces the following upper limits
for the P, T-violating mNN constants:

l
g~ ~~~

l
1.4 x 10

l

—( )'
l

10 (23)

lg ~~] 14x10

To get a rough estimate of the accuracy needed in the
neutron transmission experiments to improve on these

There is much interest in the possibility of probing
P, T violation in the transmission of polarized neutrons
through polarized nuclear targets [3]. Neutron transmis-
sion measurements on unpolarized targets have proved
to be powerful probes of P violation. There the scat-
tering cross sections of low-energy neutrons &om nuclei
at p-wave resonances exhibit very large parity-violating
longitudinal asymmetries. The P-violating asymmetries,
which are defined as the fractional difference of the res-
onance cross section for neutrons polarized parallel and
antiparallel to their momentum, PJ* = o'+ —u /0++0'
arise &om siy2 admixtures in the pzg2 resonances, and
can be as large as 10%. In the case of polarized targets
the asymmetry Pp z = o'~ —0'~/o'"+ o~, implies simulta-
neous P and T violation through a term in the scattering
amplitude proportional to (cr) (k x (J)). Here cr~ and o~
are the total scattering cross sections for neutrons polar-
ized parallel and antiparallel to (k x (J)), and cr and k
are the neutron spin and momentum and J is the target
spin.

In analogy with Eq. (5), the ratio of the P, T-violating
to P-violating asymmetries in the neutron measurements
can be related to the ratio of the matrix elements of the
corresponding weak NN potentials. In a two-state mix-
ing approximation the ratio is given by

l

A~'i
l

5x10 (25)

lA~i
l

25x10 (26)

The enhanced sensitivity to the isovector coupling arises
because the I = 1P, T-violating interaction is probed by
all A nucleons, whereas the isoscalar and isotensor in-
teractions are only probed by the excess neutrons [1].
This situation is the reverse of that in the neutron elec-
tric dipole experiments, where sensitivity to the isovector
term is suppressed. A P~z/P~ 10 would then pro-
vide much tighter constraints on the isovector P, T-odd
vrNN coupling constant.

V. CONCLUSIONS

We have derived the PT-violating NN potentials for

p and u exchange and demonstrated quantitatively what
has only been speculated qualitatively before, namely
that p and u exchange give a negligible contribution to
time-reversal violation compared to m exchange, assum-
ing comparable coupling constants. Under this assump-
tion the heavy-meson matrix elements are about 2 orders
of magnitude smaller than the I = 1 vr-exchange matrix
elements. This is in sharp contrast to parity violation,
where heavy-meson exchange is comparable to pion ex-
change.

The supression of the vector-meson contributions to
P, T violation arises from a combination of factors. The
erst of these applies to p exchange where the form of the
P, T-violating potentials are the same as for vr exchange
except for a crucial sign difference between the two terms
contributing to the I = 1 potential. For N = Z cores
these two terms are equal in magnitude. They add con-
structively for x exchange but exactly cancel for p ex-
change. Moving to heavier nuclei, where X g Z, breaks
this cancellation to a small though not significant degree.
The I = 0 and I = 2 p-exchange potentials have iden-
tical forms to the corresponding m-exchange potentials.
Thus, as in the case of the I = 0 and I = 2 pion terms,
they give zero contribution to P, T violation in N = Z
systems, and contribute through the excess neutrons in
heavy nuclei. We note, as can be seen from Table I, that
the I = 0 and I = 1 ~-exchange terms are not zero for
charge-symmetric systems, owing to the different nature
of the u-exchange potentials, Eq. (13).

The second source of suppression applies equally to p
and u exchange and is due to the approximate scaling of
the radial matrix of Yq(x) with 1/m, so that the matrix
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elements of Vj T scale approximately as 1/m2. This re-
duces the p- and u-exchange matrix elements by about
a factor of 25 relative to those for the pion. Finally,
the short-range correlations function reduces the radial
matrix elements for the heavy mesons by an additional
factor of about 3.

P, T violation in both p-decay and neutron transmis-
sion experiments is always accompanied by P violation
alone, and the sensitivity of these searches is determined
by the ratio of the P, T-violating to P-violating matrix
elements. We have calculated this ratio, ~~ ~, for closed-
shell-plus-one configurations and 6nd it to be approx-
imately independent of the nucleus under study. We

6nd the calculated values of e~ ~ to lie in the range 2
—5. This range is similar to the range 1 —6 found

by Griffiths and Vogel [5] in calculations for rare-earth
nuclei using the quasiparticle random phase approxima-
tion. This suggests that r.~ ~ is determined within quite
a small range independent of detailed nuclear structure
considerations. Thus, the degree of proportionality be-
tween time-reversal-violation and parity-violation matrix
elements seems to have been established.

The authors wish to thank Peter Herczeg for corre-
spondence on the weak p-meson Lagrangians, and for
valuable suggestions concerning the manuscript.
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