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Nucleon-nucleon interaction from meson exchange and nucleonic structure
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We discuss the physics of the Bochum NN potential (Ruhrpot). In contrast to conventional one-
boson-exchange models (OBE) we calculate the potential within two phases which are (i) meson
exchanges at long distances and (ii) direct NN interactions, coming from the intrinsic nucleon
structure, at short distances. The interaction vertices are calculated in a self-consistent way. The
most important resonant two- and three-x correlations are included. As the meson exchange is
negligible at high Q we have several advantages: (i) reasonable meson scales, (ii) SU(6) limit for
vector mesons, (iii) perturbative /CD asymptotic, (iv) no need for o mesons, and (v) very good
description of the nucleon-nucleon data.

PACS number(s): 12.39.Pn, 13.75.Cs, 21.30.+y

I. INTRODUCTION

The nucleon-nucleon interaction plays a very impor-
tant role in hadron physics. It has been investigated for
more than 20 years within a number of different models
[1—5], all of which have been partially successful. How-
ever, in all of these models there are several inconsis-
tencies with the present understanding of the hadronic
structure. External interactions with nuclei demonstrate
that the nucleon has a complicated structure, including
baryonic and mesonic degrees of &eedom. Therefore, in
any realistic description of the two nucleon system, such
as that obtained &om meson-exchange models, the ex-
tended structure of the meson-baryon vertex requires the
bare vertex to be dressed with vertex corrections, the so-
called form factors. It is necessary to determine the ver-
tex corrections within the meson model to be consistent
with the potential itself.

In existing boson-exchange models it is found that, in
the monopole form, meson scales of more than 1.2 GeV
(NN7r) and 1.8 GeV (NNp) are needed to obtain a rea-
sonable fit to the two nucleon data. By contrast, modern
nucleon structure calculations based on Skyrme models
[6], nontopological soliton models [7], or bag models [9]
obtain much lower meson scales of 0.5 GeV to 0.8 GeV.
In an analysis of the NNvr vertex using several sources,
one [8] obtains scales of 0.5 to 0.8 GeV for the free nu-

cleon. Modeling the electromagnetic form factor with
pure vector meson dominance and a dipole fit leads to a
scale of 0.8 GeV for the NNp and the NN~ vertex. The
apparent overestimation of the meson scales used in NN
interaction models cannot be resolved by medium efFects
because modern calculations of the nucleon structure pre-
dict a swelling of the nucleon in nuclear matter, which
would suggest the scales of 0.5 to 0.8 GeV should be de-
creased in the NN interaction [10]. Thus the form factors
that are used in conventional potential models have to be
regarded as pure cutoffs and not as a parametrization of
the extended structure of the meson-baryon interaction.
Indeed they appear to be artifacts of the potential mod-
els and the only processes which are taken into account
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FIG. 1. Processes included in existing one-boson exchange
models, where form factors are not calculated within the me-

son model, but are included as pure cut-offs. Therefore the
form factors are artifacts of the potential model and two- or
three- vr correlations have to be included as additional contri-
butions.

in a one-boson exchange model are the regularized dia-
grams plotted in Fig. 1. Therefore it is not surprising
that these models contradict the present understanding
of nuclear structure. The fact that they reproduce the
nucleon-nucleon data is no evidence of their validity be-
cause the data are fitted and are purely on-shell.

From SU(3) and SU(6) symmetry one can calculate
the ratio of the p and ~ coupling constants. The ex-
act symmetry leads to g /g2 = 9 and K /r~ = 1/5
[ll]. However, the values for the vector coupling ob-
tained in conventional boson-exchange models are typ-
ically g2/g2 = 20 [4,5]. Such differences cannot be ex-
plained by the fact that the SU(3) and SU(6) symmetries
are broken.

Furthermore the (0+, 0) [i.e., (J,T) ] mesons are un-

der discussion. The most likely candidate is a measured
resonance with a mass of 975 MeV. A second resonance
with a very large width has been observed, and it has
been interpreted as a two-x correlation with a mass of
about 600 MeV [2]. It is remarkable, that the recent
models need a meson with a mass of about 600 MeV. It
turns out that the mass of this meson is unimportant for
our model because the long-range scalar force is already
given by the low meson scale.

Moreover from perturbative /CD (PQCD) it is known
that the asymptotic behavior of the meson-nucleon form
factors is Q

4 [12] instead of Q 2, as used in the
monopole approximation. Because one integrates to in-

finite momentum transfer when calculating the two nu-

cleon wave function, such discrepancies are important.
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II. THE BOCHUM MODEL (RUHRPOT)
Tt;, P,h);

The Bochum approach to the NN potential combines
both meson degrees of &eedoxn and the intrinsic nucleon
structure at short distances [13]. By this we regard the
interaction as a superposition of meson exchanges and
direct NN couplings, as shown in Fig. 2. The occurrence
of such contact terms in the strong interaction is due to
the inclusion of higher-mass mesons into the model. As
the Lorentz structure M (shown in the Appendix) for
one quantum-number exchange is unique, this leads, for
example, in case of a p-like potential, to the following
sum:

FIG. 2. The Bochum potential model includes (i) meson
exchange and (ii) direct terms. Both the form factors and
the NN interaction are calculated within the same frame-
work of the meson model, so that the nucleon structure is
consistently taken into account and two- and three- x corre-
lations are included. All scales are consistent with the present
understanding of the nuclear structure.

2
gNNP

+p-like —~p-like ) FNNp (Q ) mp+
W 2

2 2 gNNp=~~i'k FNNp(Q ) m', +

+ ) FNNp(Q ) mp+
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2
2 2 gNNp= ~p-like FN N p (Q ) m +

2 2+ NNpdirect(Q -)~NNp (3)

ladder approximation [13,14]. We start from a renor-
xnalized Lagrangian with physical masses and pointlike
particles, i.e., in the beginning the coupling constants
[FNN (Q )gNN ] are moment»rn independent. We have
used the densities shown in Table I plus the counterterms
coming &om the renormalization. The nucleon current is
connected to the nucleon form factor for each meson cr

with the delnition

(AIJ I&') = (px)i'NN- (&')FNN-(Q').

We determine the extended structure of the nucleons by
calculating the xnesonic one-loop corrections to the nu-

cleon current,

where P stands for all p-like mesons. Because of the
higher masses, the xnomentuxn dependence of the propa-
gator for the additional mesons can be neglected, and one
obtains an effective direct coupling as Z++p is an effec-
tive constant. As we will discuss later, the form factors
dressing the contact interactions differ &om those that
dress the meson-nucleon vertex. The potential therefore
takes the form

+meson + +direct (4)

2

+meson= ) ~aFNNa(Q ) mz +

I direct= ) ~aFNNa-direct(Q )~NNa)

With rl = 7I') p) td) 6) s) 1/.

The meson sector is given by one-boson exchange pro-
cesses and includes consistent vertex corrections which
are calculated in the same &amework in a one-loop

FNNa(Q ) = 1+) KNNa(Q ) —(ZNNa —1). (8)

We calculate the contributing Feynman diagrams as
shown in Fig. 3 and project out the operator structure
u(pf)1'NN u(p;). Therefore the unity on the right-hand
side of Eq. (8) is related to the tree graph of Fig. 3,
i.e., the first diagram on the right-hand side of that fig-
ure. The difFerent KN~ are the different loop diagrams
which contribute to the NNa vertex, and the index i is
introduced only to label them. The vertices are given by
Hl = —f Zdsz. The last term of Eq. (8) is due to the
renorxnalization and therefore connected to the counter-
term b l: = (1 ZNN )QI'NN —Q which fixes the coupling
constant to its physical value at Qz = 0. All loop dia-
grams of Eq. (8), i.e. , Fig. 3, are divergent and have to
be regularized. We replace the bare vertices with the self-
consistent sum of one-loop diagrams as it is done in the
Dyson equation, i.e., each bare vertex is replaced with the
sum of all reducible higher-order diagrams. That leads to
form factors on each meson-nucleon vertex in the loops
as demonstrated in Fig. 4. In this scheme one has to
distinguish two kinds of forxn factors. First we have to

vr - like

g - like

p — like

cu — like

b - like
~ - like

TABLE I. Lagrange densities of the

(JP, T)
(0,1)
(0,0)
(1,1)
(1-,o)
(0+, 1)
(o+, o)

present model (Ruhrpot).

Lagrange densities

, '„&t(q') A'"&'&A'&pl'

, '„I"i(q')A'"V'@&p4'
9@ F,(q')-l„—F2(q—'), " )r„B"]7;gp",

g4' I"i(q')&p —I~—(Q'), "„~p-&" 04"
—g+.(Q )V~'A'
—g&i(Q')A 4
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FIG. 3. Integral equation for calculating the one-loop cor-
rections to the NNm vertex. Note that similar equations have
to be solved for all mesons, for example, the NNp vertex is
dominated by the xx intermediate states. We have included
the hadrons x, p, u, e, N, and A.
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include form factors coming &om different mesons, e.g. ,
the NNm vertex depends on the NNp vertex. There-
fore we have to solve the equations for all the different
nucleon-meson form factors simultaneously. Second, we
have to include the form factor which is determined by
the equation itself. We replace these vertices with a so-
called test function. To regularize all diagrams even in
lowest order we also replace the bare vertex of the tree
graph (first diagram on the right-hand side of Fig. 3).
This leads to the coupled set of equations, which are also
shown in Fig. 5:

FNNa(Q ) GNNa(Q )

+) ItNNa(Q & GNNa& FNN(Pga))
2

+[I —ZNNa(Q )]GNNa(Q').

We have used the following: FNNa (Q ), form
tor for the NNn vertex which depends on the mo-
mentum transfer. GNN (Q ), test function for the
NNa vertex which depends on the momentum trans-
fer. ENN (Q, GNNa, FNNy~a)), Feynman diagrams
(with loop) which contribute to the NNn vertex. The
diagrams depend on the momentum transfer, on the
test function, and on the form factors of the other ver-
tices. The operator structure u(pf)I'NN u(p, ) is pro-
jected out. Z~~, renormalization constant which sets
the coupling constant to its physical value at Q2 = 0.

Note that we have approximated the NAn vertices to
be the same as the NNo, vertices.

These equations are solved by varying the different
test functions G~~ for all the mesons o; until the loop

---C) +
N'

+ 1Tt; + ~ ~ ~

N, 'r

FIG. 5. Coupled set of integral equation which are explic-
itly solved. Note that we have approximated the NA form
factors to behave like the related NN form factors and that
for the c meson no N, 4 transition is possible.

corrections are momentum independent. Then, the test
functions are equal to the form factors and the mo-
mentum independent loop contributions are absorbed in
the renormalization constants. The same procedure is
used to determine the Pauli form factor for the vector
mesons. However, these form factors come purely from
the mesonic one-loop corrections:

To describe the nucleon structure for low Q in a math-
ematically closed form, we have chosen a monopole form
F = A /(A2 + Q2). In Fig. 6 we show an exact cal-

1.00 '

0.80-

F»N-(Q') = ) .&NN. (Q')
gNNa

1 ) +NNa (Q & GNNa r FNN(Pga) ) ~
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FIG. 4. Pictorial explanation of the self-consistent replace-
ment of the bare vertices with dressed vertices. In step one the
one-loop corrections are replaced with the sum of all reducible
higher-order diagrams (ladder approximation). In the second
step we identify the terms of the sum to be the form factors
and the test function, respectively, so that all diagrams are
regularized.

Q z (Gev~)

FIG. 6. Comparison of a self-consistent calculation of the
one-s-loop contribution to the NNp (Ref. [14]) compared to
monopole form factors. The form factors of the present model
are not adjusted with respect to the data, i.e., we have used a
uniform scale of 0.8 GeV. The second curve is the form factor
with a scale of A=2.0 GeV, as obtained in the potential model
Bonn B.
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culation of the one-x-loop corrections to the NNp form
factor in comparison to the monopole representation with
A = 0.8 GeV. Note that the complete set of meson cor-
rections are discussed in Refs. [13,14]. The complete cal-
culation leads to meson scales between 0.6 and 0.9 GeV.
However, the calculations have a principal uncertainty of
about 100 MeV because not all coupling constants are
determined. So, in the present model we have chosen a
uniform scale for all vertices to demonstrate the possibil-
ity of reproducing the data without further adjustment
of the form factors. We find that the form factors can be
accurately represented by a monopole with a scale A of
0.8 GeV except the e meson (0+, 0), where we have cho-
sen a scale A = 0.64 GeV. This exception results &om the
strong decay channel into two ~ mesons. This is compa-
rable to the p meson, but in contrast to the e meson,
the p meson form factor is strongly dominated by the
magnetic term, especially by the Nb, p interaction [14].

By combining the one-boson-exchange diagrams with
all contributing one-loop corrections to the vertices, all
processes shown in Figs. 7 and 8 are taken into account.
As the p, u, and e mesons are correlated n states, it is
obvious that we have implicitly included the correlated
two- and three-m exchange processes. The two-7r states
can be seen directly in Fig. 7 and the three-x states can
be seen in Figs. 8 and 9, where the u decays as ~ ~
pn -+ ex'. Note that the integral equation for the vertex
corrections in Fig. 5, just as the Schrodinger equation
for the two nucleon wave function, iterates the included
diagrams to infinite order, so that our description is not
truncated to any finite order of coupling constants, but
represents a topological class of diagrams, the so called
ladder approximation.

To satisfy the asymptotic behavior of the strong in-
teraction, we have extended the meson model. We
adopt a phenomenological ansatz given by the analysis
of the electromagnetic nucleon form factors by Gari and
Krumpelmann [15], which is consistent with the present

g Nh~
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N,h ~
i p(K)

TK+ Nh
'K(p)
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FIG. 8. Summary of most important processes which are
actually included in the mesonic sector of the present Ruhzpot
model, shown here for m- and cu-meson exchanges. Three-m
correlations are included since the u decay is dominated by
cu -+ px ~ vrxx. Note that for the u meson no N, b, transition
is possible.

Af A2

A2+q2 A2+q2

+2
log

q2 q2 . %co
A~~

log
+CD

t
0.8 GeV for mesons,

Aq —— 0.64 GeV for the (0+, 0) meson,
1.2 GeV for direct terms,

model of the strong interaction. Therefore the form fac-
tors are multiplied with additional monopole (Fq) and
dipole (F2) forms, respectively, both of which share the
PQCD scale A2.

N, h p
Tt;

I
N, h

i'
p+

A2 ——2.3 GeV, AgcD = 0.29 GeV.

---Q N, h + TK N, h N h 'P —-Q NPh + ~ ~ ~

The low-q2 behavior is essentially unchanged by the ad-
ditional terms, but the asymptotic q dependence satis-
fies the counting rules of the PQCD [12]. The scale A2
is fixed by the analysis of the electromagnetic form fac-
tors [15]. In this analysis the photon-nucleon coupling
is described not only with an intermediate p meson but
also with a direct coupling itself. To be consistent with
this very successful approach for the short-range part of
the interaction, one has to investigate the direct coupling
in the two-nucleon interaction as shown in Fig. 2. The

FIG. 7. Summary of most important processes which are
actually included in the mesonic sector of the present Ruhrpot
model, shown here for p- and e-meson exchanges. As the form
factors are calculated within the same model they re8ect con-
sistently the nucleon structure arising from mesonic degrees
of freedom. Two-vr correlations are included since the p and
~ mesons decay into mm. Note that for the ~ meson no N, A
transition is possible.

,h

FIG. 9. Some of the three-7r states, which are included by
our treatment of the meson vertices.
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FIG. 10. Processes included in the long-range part of the
direct terms of the present model.

stronger. Therefore the meson exchange dominates the
long-range part of the interaction and dies out at small
distances. Thus the core is a property of the nucleonic
structure only. We regard this distinction as the ma-
jor step that is necessary to obtain good agreement with
experiment without resorting to unrealistic and inconsis-
tent scales, and we therefore regard this as one of the
main advantages of our model.

long-range part of the direct vertices has to be calculated
within the same &amework as the meson corrections to
the one-boson-exchange vertices. The contributing pro-
cesses are shown in Fig. 10. As the decay channels of the
high- and low-mass mesons are different, the important
diagrams for the direct vertices are the loop diagrams
where one meson is exchanged around a direct vertex.
For example, in the NNp-like vertex we have to calcu-
late the different kinds of loop diagrams, as shown in
Fig. 11. The p' meson cannot decay into two vr mesons
and therefore the form factor is weaker and the range
of the higher-mass mesons is shorter, as one would ex-
pect. Note that these diagrams are consistent with the
effective Lagrangian introduced by Weinberg [17]. By
summing up the long-range part of the diagrams within
our model, that means the mesonic contributions to the
direct terms, we obtain a form factor scale of 1.2 GeV
for the direct terms. This is consistent with the analy-
sis of the electromagnetic form factor [15]. The isovector
part of that form factor is directly connected to the p-like
strong form factors of the present model:

m2

p mp +

+ 1 +1 NNpdirect(Q ). -9p 2

P

P '.) + N, h + p Nhi
IQ + ~ ~ ~
I

N, bj

P' .) p' N, b', x
lg + ~ 0 ~

N, h~
I

r

FIG. 11. Dominant contributions to the NNp-like form
factors. For the higher-mass meson p' the decay into tvro

vr mesons is not possible.

As mentioned before, the short-range part
is parametrized due to the PQCD, and the results for
the long-range part agree with the form factors used in
the present model.

Comparing the meson exchanges and the direct terms
one has two main effects. Due to the propagator, the
meson-exchange contributions decrease with higher or-
der in Q2. As the form factor of the direct vertices has
a weaker Qz dependence, this difference becomes even

III. RESULTS AND DISCUSSION

The present model has some essential differences in
comparison to conventional models.

(i) In the propagators, just as in the form factors, we

take the four-momentum as it is obtained by summing up
the time ordered diagrams in the perturbation expansion.
Therefore it is possible to extend the model to a fully
relativistic one [18].

(ii) Because the (0+, 0) meson is still open to debate,
we want to demonstrate that it is possible to use a meson
with a mass of 975 MeV.

(iii) In the vector-meson sector we have restricted the
coupling constants to be very close to the SU(3) and

SU(6) values.
(iv) We have restricted the NNx coupling constant

because it has also come under scrutiny in the last years.
de Swart and collaborators find, in their analysis of the pp
scattering data, a value for the uncharged vr of g2/4vr =
13.5 [19] . Note that this coupling is normalized at Q
m, which is compatible with a value of about 13.1 at
Q = 0. Amdt et al. [20] obtain a value of 13.3 &om
their analysis of the Nx data. We restrict the m coupling
to be compatible with these results.

Some of the other coupling constants, i.e., the g, b, e,
and the direct coupling constants, are completely un-

known. Thus we have adjusted them to reproduce the
NX scattering data in terms of the phase shifts.

This procedure is nonetheless ambiguous because the
phase shifts are not unique. Nowadays there are more
than 4000 NX scattering data available and usually they
are represented via a phase shift analysis with more than
200 phase shifts. Because the experiments, and therefore
also the phase shifts, are not independent it is meaning-
less simply to fit to these phase shifts. The Nijmegen
group has shown that it is possible to reproduce the data

(y ( 1) with a Reid-like parametrization with roughly
40 parameters [21]. Because the model is purely a phe-
nomenological ansatz, it indicates a maximum number
of the degrees of freedom in the data and shows that
the phase shifts are strongly correlated. The only proper
way to fit a potential is therefore to adjust the coupling
constants with help of the so-called correlation matrix,
which is the Hesse matrix of the phase shift analysis.
This matrix contains all of the correlations between the
phase shifts. We have used the analysis of the Nijmegen
group [22] for the present results. The final assessment
of the success of the potential model is, of course, the
comparison with the data themselves, i.e., the calculated
y2 value to the data.

The analysis has included the np- and pp-scattering
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TABLE II. Meson properties for the present model (Ruhrpot).

Meson (J,T)
(0-,1)
(0,0)
(1-,1)
(1,0)
(0+,1)
(0+ 0)

Mass

136.5 MeV
548.8 MeV
776.0 MeV
782.4 MeV
983.0 MeV
975.0 MeV

9,'l4~
13.288
2.8792
0.2169
1.9463
2.9059
8.8853

6.4000
1.0880

Z;
49.516 QeV

0.0124 GeV
12.379 GeV

5.6911 GeV

28.105
0.4334

TABLE III. Phase shifts calculated with the present model (Ruhrpot). A complete set of phase

shifts is included in the sAID program [23].

'Sp
Pp

1p
P1
S1
D

E1
'Dg
D2
P
F

10 MeV
59.224
3.989

-3.347
-2.329

102.690
-0.720
1.110
0.177
0.899
0.668
0.014

-0.218

25 MeV
49.658
8.527

-7.021
-5.334
80.786
-2.938
1.647
0.700
3.846
2.463
0.107

-0.843

50 MeV
38.448
10.851

-10.800
-8.737
63.017
-6.671
1.899
1.652
8.998
5.784
0.325

-1.720

100 MeV
23.060
8.368

-15.842
-13.336
43.595

-12.541
2.342
3.666

16.612
11.087
0.684

-2.515

200 MeV
2.922

-1.209
-23.349
-20.248
21.789

-20.249
3.729
7.319

23.094
15.690
0.784

-2.247

300 MeV
-11.152
-10.064
-29.203
-26.171

?.568
-25.608

5.218
9.423

24.101
16.216
0.055

-1.453

TABLE IV. Low energy scattering parameters calculated with our L = 0 phase shifts.

Spin
S= 0

Observable
Scattering length a,

Effective range r,
Scattering length a~

Effective range r~

Theory
-23.80 fm

2.75 fm
5.42 fm
1.75 fm

Experiment
-23.748(10) fm

2.75(5) fm
5.419(10) fm
1.754(8) fBI

TABLE V. Deuteron properties as obtained from the present model (Ruhrpot).

Observable
Deuteron binding energy
D-wave probability
Quadrupole moment

Asymptotic
Asymptotic

Root mean square radius

g~
Pg)

QII

&s
D/S

Theory
-2.224 MeV
5.85 %
0.276 fm

0.882 fm
0.025

1.932 fm

Experiment
-2.224575(9) MeV

0.2860(15) fm
0.2859(3) fm

0.8846(8) fm
0.0271(8)
0.0272(4)
0.0256(4)
1.9635(45) fm
1.9560(68) fm
1.953(3) fm
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data. Due to the Coulomb force in the pp system these
two data sets have different So phases. As we have not
included any Coulomb interactions, we have used only
the So phases of the np system, so our model gives
good results for all np experiments and for pp experi-
ments above 10 MeV, where the Coulomb force becomes
negligible.

We have solved the Lippmann-Schwinger equation to
calculate the phase shifts and obtained the set of coupling
constants shown in Table II. In Table III we list the
phases for J & 2. A complete set of our phases is included
in the sAID program under the name RUHR [23]. Table
IV contains the low energy scattering parameters that
are calculated with our I = 0 phase shifts.

To calculate the deuteron observables, we have solved
the Schrodinger equation. We have calculated a num-
ber of deuteron properties in impulse approximation and
the results are presented in Table V. For detailed in-
formation about the experimental values quoted we refer
to [13] and the references therein. Note that the cou-
pling constants are determined purely by the fit to the
phase shifts, whereas the low energy parameters and the
deuteron properties are calculated without further ad-
justment of the coupling constants, as they reproduce the
experiments already. In particular, the deuteron binding
energy is not used to adjust the parameters. Comparing
the theoretical deuteron properties such as quadrupole
moment, root mean square radius, and asymptotic be-
havior with experiment one recognizes that the data are
underestimated. This probably results from neglecting
the photon coupling to meson exchange-currents, which
are not taken into account via an impulse approxima-
tion. As already mentioned the most important criteria
of the potential models are the direct comparison with
the NN scattering data rather, than simply the phase
shifts. We have calculated them with the sAID program
[23] and the y values for np scattering up to 300 MeV
are presented in Table VI for comparison with other real-
istic potential models, all of which are presently included
in the sAID program. Although it is demonstrated by
the Nijmegen group that it is possible to find a parame-
terization which produces a y2 value below 1, our model
shows a reasonable agreement with the data compared to
other meson-exchange models. Note that such data fix
only the on-shell behavior of the models. Therefore it is
extremely important to investigate and measure the off-

shell behavior in experiments like (p, pp) bremsstrahlung
or elastic and inelastic deuteron electron scattering [25].

Summarizing our results, we note that a consistent mi-

croscopic meson-exchange model at low Q2 with a real-
istic and consistent extension to high Q is a valuable
tool to describe the nucleon-nucleon interaction. In the
mesonic sector we have included not only the pure me-
son exchanges, but also the vertex corrections calculated
within the same model. Therefore we have also included
the two- and three-vr correlations in a consistent manner.
We obtained a meson scale of 0.8 GeV for the meson-
exchange vertices and 1.2 GeV for the direct vertices
from both the mesonic calculation and the analysis of
the electromagnetic form factor. The PQCD scale A2 in
this model is taken &om an analysis of the electromag-

TABLE VI. Comparison of several realistic potential mod-
els. The y 's are obtained by comparison with all measured
observables in np scattering up to 300 MeV. For detailed in-
formation on these models we refer to the references given
in the sAID program [23]. Note that the updated Nijmegen
potential gives a y of 2.1 to their np data.

Model
Bonn (full)
Bonn B (OBE)
Nijmegen (92)
Paris (81)
Ruhrpot (this work)

x'
1.82
2.27
4.41 (2.1)
4.16
1.68

The differences resulting from the Nijmegen groups treat-
ment of some total cross section data [24].

netic form factor. Due to the weaker form factor and the
missing Q dependence of the propagator of the direct
interactions, meson-exchange processes become unimpor-
tant at small distances and the core is dominated by the
nucleonic structure. We have demonstrated that such a
model gives a good description of the available data and
that inconsistencies appearing in most existing meson-
exchange models are indeed avoidable.
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APPENDIX: EXPLICIT POTENTIAL
STRUCTURE

where e; and ey are the asymptotic energies of the initial
and the final states, Ho is the &ee energy operator, and

Hi is the interaction energy obtained from integrating
the Lagrange densities presented in Table I via Hl
—I Cd x. Note that, in principle, one has to sum over
all mesons o.. In our approach, where we take the lightest
mesons exactly into account, and the higher mass efFects
via direct terms, the potential becomes

In time-ordered perturbation theory, an efFective one-
boson exchange potential is given by

V.g= —) HI ( + )Hp,



49 NUCLEON-NUCLEON INTERACTION FROM MESON EXCHANGE. . . 2377

1 -
~

1
Vp = — ) Hl'

z Ho
Hl' + ) HpZ, HI'

~f —Ho
(A2)

Including all elements explicitly one obtains the final potential structure for each meson, which can be defined in
terms of the Lorentz structure M of the vertices and the propagators times some constants:

2

V&-&(p, p') =): ',""-, F~..(k')~-
a a p

g~~~ $ $ epee'&

4w m' —k„' S~' E~E~ ~i ~~)

where

and

xV& X+ Vz iS(k x q) + V2 (nq k)(o'2 k) + V3 (~~ q)(~2 q)

+V4 [crz (k x q)][o2(k x q)] + Vs (crq o'2),

„=(p~ + pt, )/2, S = (ng + ng) j2,

e =8„+m = gp2+m2+m.

(As)

—,, ll q'+-(&. +&.)' I

1. Pseudoscalar exchange; isoscalar (is)(0, 0) and isovector (iv)(0, 1)

F.(k.)
( ~ + ~)'

4 e2e~ e~e2 E + E

Vs —F (k„)—
e„e„, e„e„, z +

2 2 1 ep+ep
V4 ——F(k) 2 )

e„e„, „+

z„+z„.
2. Scalar exchange; isoscalar (is)(0+, 0) and isovector (iv)(0+, 1)

Ve ——F (k„) —
~

1—( p' p&

2 t'

Vg ——F (k„) i

—1i
2

V4=F'(k„')
I.Ee~es')

3. Vector exchange; isoscalar (is)(1,0) and isovector (iv)(1, 1)

V, = [F,(k„')+~F,(k„')]' ( + —
[ +

]
1+e„e„e„ez

[Fg(k2) + ~F2(k2)]~F2(k2) p' p f p" p' pl p'2

m e~ e„e„e„e„e„
e~ e„ I e„e~ e~e„ ] " " ( e2e„, )
(+Fg(k2) ) ( p'. p) f 1

+/ " I1 —
I

q'+-&+4 '"") &
4

p' p [Fg(k„) + ~E2(k„)]vE2(k„) 1 (
Vg

——[F (k„) + ~F2(k„)] — —2 2 +
e„e„~ e2e, m e

+ —
~

1 — —2
I

—2(&s +&a') 2 2e„ q e~e„ ezez p e e

+
(KF2(k2) ) t1'

m j ge~e„

p12

(A.4)

(A5)

(A6)
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2

2

(e~ ep. ) e„e„,Ep+ E„
@„+g„, + e„+e„, [Fg(k„) + rF2(k„)]rE2(k„) &„+E i + e„+e„i

m

q'+ [(~.+ E~ )I2]'+
m

I

Vs = [Eg(k„) + ~E2(k„)] (ej'

p

p ) (k x q)2 e„+ ep+

The potential structure for the direct interactions can be obtained by the substitution

g
4~ m2 —I 2

with (A7)

and the meson-scale form factors should be replaced by their direct counterparts.
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