
PHYSICAL REVIEW C VOLUME 49, NUMBER 5 MAY 1994

Dynamical model for correlated two-pion exchange in the NN interaction
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A dynamical model for S- and P-wave correlated two-pion exchange between two nucleons is
presented, starting from corresponding NN + arm amplitudes in the pseudophysical region, which
have been constructed from nucleon and ¹isobar exchange Born terms and a meson exchange model
of xx scattering which satisfactorily describes the empirical xm data. It is demonstrated that the
results have quite different characteristics, in both strength and range, compared to (sharp mass)
0', p exchange as used in the Bonn potential. Consequences for the description of high partial wave
NN scattering phase shifts are discussed.

PACS number(s): 13.75.Cs, 21.30.+y

I. INTRODUCTION

Since Yukawa [1] proposed that the strong interaction
between two nucleons is mediated by the exchange of
mesons in analogy with photon exchange in quantum
electrodynamics, the meson theory of nuclear forces has
been vigorously pursued in order to describe the nucleon-
nucleon (NN) interaction both qualitatively and quanti-
tatively. Indeed, even nowadays this picture is fully jus-
tified: Although quantum chromodynamics (/CD), with
quarks and gluons as fundamental degrees of &eedom, is
believed to be the underlying theory of the strong inter-
action, baryons and mesons have definitely retained their
importance as relevant degrees of freedom for a realistic
description of low energy nuclear phenomena.

There are numerous examples of successful NN po-
tentials based on meson exchange. After the experimen-
tal discovery of vector mesons in the early 1960s, sim-
ple one-boson exchange (OBE) models have been con-
structed (see, e.g. , Refs. [2—4]) which, despite the use
of very few parameters, were able to account reasonably
well for the empirical NN data below pion production
threshold. However, conceptually such models are not
satisfactory. Their main deficiency is the use of a ficti-
tious scalar-isoscalar boson, oQBE (with a mass around
500 MeV), which does not exist but is needed to pro-
vide the intermediate-range attraction. Indeed it should
be viewed as a mere —and quite rough —parametrization
of 2z'-exchange processes in the J& = 0+ state of the t
channel. A realistic inclusion of such 2m-exchange con-
tributions (which replace not only the o' but also the p
meson of OBE models) can be.done with the help of dis-
persion relations using AN and ver data. Corresponding
NN potentials were developed in the 1970s, in particular
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by the Stony Brook [5,6] and Paris [7—9] groups.
Although the dispersion theoretical approach, which

obtains the 2z-exchange interaction Rom empirical data,
is certainly adequate for free NN scattering, it is in-
sufficient when dealing with the many-nucleon system.
For example, modification of the interaction in the nu-
clear medium cannot be taken into account in a well-
defined way. The study of such efFects requires an explicit
field theoretical description, including the 6, isobar in
intermediate states, which is also essential for a consis-
tent evaluation of pion production processes, three-body
forces and meson exchange currents.

The (full) Bonn potential [10] contains, apart
from single-meson exchanges (z, ur, 6), uncorrelated 2z'-

exchange processes with NN, Nb, , and b,b, intermedi-
ate states, see Fig. 1. Corresponding correlated processes
(for J~ = 0+ and 1 in the t channel) are included in a
simplified way, parametrizing them by simple 0' and p
exchange with a sharp mass of 550 and 769 MeV, re-
spectively (see Fig. 2). Diagrams analogous to Fig. 1
involving heavy mesons are included too, especially the
contributions with vr and p, which prove to be of out-
standing importance. (Note, however, that correspond-
ing correlated contributions are missing. ) It is important
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FIG. 1. Uncorrelated 2m-exchange contributions as used in
the Bonn NN potential [101. The double line denotes the A
isobar.
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FIG. 2. Correlated 2m-exchange contributions; in the Bonn
potential, they are represented by sharp mass o.' and p ex-
change.

to realize that this o' of the Bonn potential is not to be
viewed as a genuine particle but this exchange (as well
as p exchange) merely serves as a simple parametrization
of correlated 2x-exchange processes. As such, however,
it is subject to the same criticism brought up against
the dispersion theoretical approach before: While pos-
sibly adequate for free NN scattering, medium modifi-
cations (e.g. , change of the intermediate pions) cannot
be considered. This is especially serious since, as shown,
e.g. , by Durso et al. [11],the correlated processes of Fig. 2

provide by far the dominant contributions compared to
the uncorrelated processes of Fig. 1. Consequently, the
goal of providing an explicit NN interaction model ad-
equate for the use in the nuclear environment has only
partially been realized in the Bonn model [10].

The aim of the present work is to provide such an ex-
plicit model for the correlated 2z-exchange processes of
Fig. 2. This requires as input a realistic arm T matrix,
which, in this work, is generated from a potential model
V developed by our group some years ago [12]. It is
likewise based on meson exchange and involves the cou-
pled channels mx and KK. Corresponding diagrams for
V are shown in Fig. 3; empirical xx phase shifts are
well reproduced (cf. Ref. [12]).

The reason for choosing a dynamical model for the ~x
interaction instead of a purely phenomenological treat-
ment, as done in Ref. [11], should be obvious: In this
way, medium modifications in the diagrams of Fig. 2 can
be taken into account not only for the pion legs but also
in the interaction itself. Indeed, if the p mass in the
medium drops [13], the resulting zm T matrix will be
strongly in8uenced. These changes occur both in the
scalar (J~ = 0+) and vector (J" = 1 ) channel since,
according to Fig. 3, p exchange is included not only in
the s, but also in the t channel.

In principle, one could evaluate the processes of Fig. 2

directly in the s (NN ~ NN) channel. Since our m.vr am-

plitude, generated by a potential model, is by construc-
tion not completely crossing symmetric, such a calcula-
tion would not necessarily provide a correct representa-
tion of the NN amplitude in the t (NN ~ NN) channel,
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FIG. 3. Meson exchange diagrams used in the arm interac-
tion model of Lohse et al. [12].

which is essential for an adequate description of its range.
On the other hand, since we restrict ourselves to rather
low energies in the 8 channel, i.e., to NN scattering be-
low pion production threshold, a correct representation
of the 8 dependence would be of much less significance.

Therefore, we concentrate on the t channel and proceed
as in Ref. [11]:First, we evaluate the NN ~ xz ampli-
tudes, for J"= 0+ ("0")and 1 ("p") in the pseudophys-
ical region t ) 4m, t being the c.m. energy squared of
the 7rx system. It is important that these amplitudes can
be checked against quasiempirical amplitudes obtained
by analytic continuation of mN and m7r data [14]. Fi-
nally, a dispersion integral and unitarity together with
appropriate subtractions is used to obtain the correlated
2'-exchange contribution to the NN interaction.

As outlined before, our principal motivation for con-
structing an explicit dynamical model for correlated 2m

exchange has been to open up the possibility for a well-

defined study of medium effects. In fact, some corre-
sponding results have already been published [15]. Nev-

ertheless, quite interesting results occur already in free
NN scattering, which will be addressed in the present
paper. Namely, it turns out that the correlated 2' ex-
change has quite different characteristics compared to u'

and p exchange as used in the Bonn potential [10]. Not
only is the range different, especially in the scalar chan-
nel, which one might have anticipated if a broad mass
distribution is replaced by a sharp mass. In fact, the
strength provided by the explicit model is also consider-
ably stronger in both the scalar ("cr") and vector ("p")
channels. We will discuss the consequences for the high
partial wave NN scattering phase shifts, and possible
implications for the ongoing discussion about the value
of the mNN coupling constant.

The outline of the paper is as follows. In the next
section, we sketch the basic formalism for obtaining the
2'-exchange contribution to the NN interaction from
(pseudophysical) NN + mvr scattering and develop our
dynamical model for the S- and P-wave contribution of
the latter amplitude. In Sec. III, we present correspond-
ing results and perform a detailed comparison with 0'
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and p exchange as used in the Bonn potential [10]. The
final section contains a short s»mmary and outlook.

Pp

II. FORMALISM

In the following we brieBy sketch the extensive formal-
ism, which is used to evaluate the 2x-exchange contribu-
tion to the NN interaction. For more details we refer the
reader to Ref. [16].

A. Dispersion relation for the NN ~ NN amplitude

The field theoretical (on-shell) scattering amplitude T
is conventionally related to the standard S matrix by

FIG. 4. Diagram visualizing the NN scattering process, in
the s (NN ~ NN) and t (NN m NN) channels.

Syj —bye i(2z ) bl l (Py —P)Ny N; Ty; ) (1)

N;y —— 2E~ 0/(2m' )
s& . (2)

where P (Py) is the total four-moment»m in the initial
(final) state,

Here, n; y is the number of particles in the corresponding
state; each particle has mass my, momentum and energy

Ey = (ps + mz)~y2; b~ = 0 (1) for bosons (fermions) and
0 is the quantization volume. For the s-channel (NN m
NN) reaction, cf. Fig. 4, and choosing 0 = (2z'), Eq. (1)
becomes

4 1/2

Sy; = by; —i(2z) b (p~+ pz —pg —pz)
~ E,E,E Ty, .

1 2 1 2)

The direct (i.e. , s channel) amplitude can be written as

~s(py) p2 i ply p2) —n(pl) ~1)( (pl)u(p2& ~2)( (0'2)T&(pl) ~1)f(pl)n(p2) ~2)5(p2) ) (4)

where u(k, A) is a Dirac helicity spinor normalized to uu = 1 and ((p) a Pauli isospinor. The spin and isospin
dependence is suppressed on the left-hand side of Eq. (4). For on-shell scattering, the operator T can be expressed as

a linear combination of 10 invariant operators Cs (including isospin); the expansion coefficients cy are scalar functions
of the Mandelstam variables s—:(pq +p2)2 and t =

(p&
—pq)2. (u is not independent but given by u = 4m&2 —s —t.)

T can then be written as
10

T = ) c, (t, s)C,.

with C~ being a complete set of operators acting in spin and isospin space, i.e., between the Dirac spinors and Pauli
isospinors of Eq. (4).

Correspondingly, the amplitude for the t-channel (NN ~ NN) process defined in Fig. 4 then reads

Tt( —pyypzi p], ) p2) = v( py) ~1')( (pl')&(p2& ~2)( (p2')T&(ply ~1)((pl)v( p2& ~2)((p2) ~ (6)

Here v(k, A) [f(p)] is the Dirac spinor (isospinor) for an
antiparticle. The essential point is that, due to crossing
symmetry, T can now be represented in the same way
as before [Eq. (5)], with precisely the same functions c~,
however in a diR'erent 8, t domain obtained by replacing
p', by —p1 and p2 by —p2.

According to the Mandelstam hypothesis the analytic
properties of the full amplitude leads, for the general
case, to a double dispersion relation for the c~. If one of
the variables 8, t, u is held fixed, one can derive a one-
dimensional dispersion relation containing pole terms
and integrals (branch cuts) involving the other two vari-
ables.

q,

P1 P2

FIG. 5. Diagram visualizing the 2m-exchange contribution
to the NN interaction.



2358 H.-C. KIM, J. W. DURSO, AND K. HOLINDE 49

Since in this work we are only interested in the 2vr-

exchange contribution, T, , and since it is suKcient to
consider only the direct term, the corresponding cj fulfill
the following dispersion relation:

part is known in the pseudophysical region (t' & 4m ) of
the t-channel reaction and for s & 4m~. This informa-
tion is now obtained by exploiting the unitarity property
of the t-channel amplitude.

1 Imc~ (t', s)
cz t, s d~'.

4 g t' —t —ie B. Unitarity and the NN —+ 2m amplitude

Thus the c~ (and consequently the 2x-exchange ampli-
tude in the s channel) can be determined if this imaginary

I

Unitarity relates ImT, [Eq. (6)] to the on-shell NN m
27r amplitude (cf. Fig. 5)

Iml'," = — ) (NN
I

Tt
I «)(« I

T
I

NN&h(') (q& + q, + p', —p&).

The latter amplitude is defined according to Eq. (1), i.e. ,

1/2

~f = —'t(2~) '~'"(n + q2 + py
—px) I, ,

"
I

(« I
T

I
NN)

(EyEy2~12~2 j
with u; = (q; + m ),and can be represented in the following way:

(-p & )&'() )&'(&)T-)v&(v )(( ) (p»& ) (10)

with

T~ —T~a t,(+) -(-)

t (m) being the isospin operator for the pion (nucleon), and

T.'+„' = — A + (t, s, ) + B + (t, s, )p q . (12)

Here, Q =—2(q2 —qz), t = (pq —pI), and s, = (pq —qq)2. In the c.m. system of the NN reaction, q = ((), —q),
t = 4E = 4u, and sq —— —(p + q —2pqz), with p = pq, q = qq, and z = cosset, where Oq is the scattering
angle between qx and p& in the t channel. Since we only want to include the 27r-exchange contribution in the scalar
(J"= 0+) and vector (J& = 1 ) channels, we have to perform a partial wave expansion for both A(+), B(+)

(t, z) = ) I
J y —

~

Aq( (t)Pg(z)2) (13)

and the same for B(+). In order to have amplitudes free of kinematical singularities, new helicity amplitudes f+
are introduced [17]

1
+ 8~

P (+) fAN (+) (+)
(

)~Aq +
( J )( )q ~

(2J + 1)Bq+~ + JBq

& (+) 1 (J(J + 1)) 1 (+) (+)
S~ 2J + 1 (pq)' '. '-' -'+'. (14)

The lower index describes the helicity of the NN state; + corresponds to A~ = +2, A~ ——+2. The Pauli principle

puts constraints on these amplitudes: f+ ——0 for even J and f+ +) ——0 for odd J; therefore, the isospin index (+)
is usually omitted.

At this point it is necessary to specify the set of operators Cj which we will use in order to represent the NN + NN
as well as the NN ~ NN amplitude, i.e. , T, and Tt There are two pos.sible operators in isospin space, I2 I2 (I„(a) (2)

is the n x n identity matrix) and v (~) . v.(2). We can therefore define

C- = SI"1(2)C(+)
2 2

Cj+5 = 2T T Cj

for j = 1, ..., 5. C. act only in the two-nucleon spin space. Here, we use
~ (+)

(15)
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g(+) 1(~)1(2) g(+)
(

(&) N 1(2) + 1(~)~(2) N )
("(+) = (') . N, (') . N, ("(+) = (') . (') ("(+) =

with N;—:2(p; + p!) and

(16)

(17)

The slightly difFerent set for C is used in order to have fmm the beginning the operator structure of p exchange,
"(—)given by Cz &4.

In a lengthy but straightforward calculation (cf. Ref. [16]) one now expands both sides of the unitarity relation

[Eq. (8)] in terms of Cz(t) (de6ned as matrix elements of C~ sandwiched between the appropriate Dirac spinors and
Pauli isospinors for the t channel [Eq. (6)]), using the fact that

(18)

and the same for B. A comparison of coefBcients leads to

g 4 2g&l28, , t (19)

for the scalar contribution, and

Imc~~='(t')

Imcr ='(t')

Imcs~='(t')

(t' —4m') ~

t"~' (t' —4m' )

(t' —4m') '~'

t'&/2 (t' —4m2 )

(t' —4m') '~'

]6 g~~/2 I

f-'='(t') I'

m2
f+= (t') + ~ f = (t') —v2m~Re(f =''(t')f+= (t'))

(2O)

for the vector contribution. The other coeKcients are
zero.

0"(z)TQ(z) B„P (z) + H.c.
m~

(22)

C. Microscopic model for the NN -+ 2m process

In the last section we have outlined the way which
leads from the NN ~ 2m partial wave helicity ampli-
tudes f~ [Eq. (14)] to the 2m-exchange contribution to
the NN ~ NN scattering amplitude. Usually, in dis-
persion theoretical derivations of the NN interaction (cf.
Refs. [5—8]), the f+ are taken from "quasiempirical" in-
formation obtained by analytic continuation of xN as
well as 7rm scattering data [14]. As we have discussed in
the Introduction, it is essential for our purposes to follow
an alternative procedure, since a consistent treatment of
medium modi6cations requires the construction of a truly
dynamical model for the NN ~ 2m amplitude, not only
for the elementary NN -1 2' transition but also for the
mm ~ mvr amplitude.

The ingredient of our model is visualized in Fig. 6: It
consists of an NN ~ 2x transition, VN~~2, with nu-
cleon as well as A exchange. V~~~2~ is essentially taken
&om the former work of the Jiilich group dealing with
the NN system [18,19], which started from the following
Lagrangians:

1
gp, v + 3'7p, &v

N

N N
—k

7r

N

The only difFerence is that we now take into account non-
pole contributions to the 6 propagator according to the
Rarita-Schwinger choice:

0(z)a'V"&@(z) &,4 (z)
mm

(21) FIG. 6. Our dynamical model for the NN -+ 2' amplitude.
The s vr -+ em. amplitude in (b) is taken from Lohse et ol. [12].
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with k:—p —q. As usual, phenomenological form factors
I"N ~ have been added to account for the extended vertex
structure. They are parametrized by

with cutoff masses to be determined later.
The full NN —+ 2x amplitude is obtained from

NN-+27r +1VN+27r + 2~~2~+2~ NN-+2'

+N, D
( na'„—m„'

(nA~~ ~+ (p —q)') (24)
with Tq ~z tailn from Ref. [12), or, more explicitly,

(a»IT'(@*)ivi~4 ) = (~ool vlu~~~u) + J ~'~(q»IT'(&*)l~oo) ~, . (~ool vlv~~4r)
1

E~ 24)g + z6
(26)

with the starting energy E, = 2E„=~t'. Note that both T amplitudes in Eq. (26) are related to the S matrix by

Sy, = 8y, —i(2m')bl l(Pf P )Tf, .'

We define partial wave amplitudes according to

1

(00IV (q, p) IANAg) = 2n' d(cos 8)d&o(cos 8)(qOOIVIpA~AN),
—1

(27)

(28)

where d&~p are the conventional reduced rotation matrices, and A—:AN —AN. We then obtain the partial wave
expansion

(qooIVIpANA/) = —) (2J + 1)dpQ(cos 8)(00IV (q, p) IA~A~) (29)

and similarly for T, which leads to the partial wave decomposition of Eq. (26),

OO 1
(00IT (q, p;E, )IA~Ag) = (00IV (q, p)IA~Anr) + dkk (00IT (q, k)I00) . (00IV (k, p)IA~A~). (30)

p @z 24)g + x6

This equation can be solved numerically. The on-shell amplitudes are related to the required helicity amplitudes f+
in the following way:

f+(t') = vr E,p —
&

0—0 T (q, p;E ) ——

I 1 1 1 1f (t') = x E,p — —00 T (q, p; E,) ———
2 *(pq)~ ' ' '

2 2
(31)

Note that in the pseudophysical region (4m~ & t' & 4msN) p is imaginary.

D. NN interaction arising from correlated 2m exchange

If we insert the resulting f+ into Eqs. (19) and (20) we then obtain, by means of Eq. (7), the 2m-exchange contribution
to the NN interaction. However, by construction (see Fig. 6), this result contains not only the correlated part we
are interested in but also the uncorrelated contribution, cf. Fig. 1. Therefore, the latter part has to be removed. We
do this by identifying j+ & as the corresponding amplitudes for the Born terms [Fig. 6(a)] and putting, in complete
analogy to Eqs. (19) and (20),

Imci ~ (t')

imc,'g(t')

Imc~ ~ (t')

Imcs n (t')

t' —4m') 'i

t' ) (t'

(t' —4m') 'i'
ta) ~ (ti 4~~ )

(t' —4m') i'
t"i' (t' —4m~)

(t' —4m') 'i'
16 g' /

4 ~), I
+=,a(t') I'

77Lpf g y( g)
2

2
R (f~='*(t')f+~='(t'))

m2
f+~~(t') + ~ f = (t') —v2m Re(f ~ '(t')f = (t'))

(32)
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The NN interaction due to correlated 2z' exchange may then be written as

(s) (&)
V2x,corr —V2+,corr + V2x, corr

d C, +, AC,
g=1,2,4

with the spectral functions p+. given by

p (t') = 2 Imc +s (t') —almc. +s &(t'), j = 1, 2, 4.

(34)

2

The factor z =
(2 ),

~ arises since V2, „is
EgE~EgE~

to be defined as part of the Bonn potential whose T
matrix fulfills Eq. (27). The C. are specific matrix
elements between Dirac spinors in the helicity represen-
tation, in the s channel. Furthermore, if p(p') denotes
the initial (final) c.m. three-momentum of the NN sys-
tem, the momentum transfer variable t can be written as
t = —(p' —p)2 (with the on-shell condition p'2 = p2)
and s = 4E2. Therefore, the result Eq. (33) can be repre-
sented as in the Bonn potential, i.e. , as an (on-shell) ma-
trix element (p'AiA&~V2~ «„~pAiA2). The partial wave
decomposition can then be defined in precisely the same
way as in Ref. [10) using a generalization of Eq. (29).

120-,

E 80-

0+~ 40-I
K

10 20 30 40 50
t[m'„]

120-

E 80-

0-"

~ ~ eq
0

10 20 30 40 50

t [ m' ]

masses AN, Aa in the form factor, Eq. (24), to the values

Aiv(A~) = 1.9 (2.1) GeV. Note that the parametrization
in the form factor is chosen such that the dependence on
n is quite weak; we take n~ (n~) to be 1 (2).

There is one amplitude, f+~, for the scalar (0) chan-
nel whereas there are two, f+i and f, for the vector (p)
channel. In Fig. 7 we show the results in the pseudo-
physical region obtained &om our dynamical model, for
both the real and imaginary parts. Obviously the nu-

cleon exchange dominates; however, the 6 contribution
is non-negligible, especially in the fi amplitude.

III. RESULTS AND DISCUSSION 4

A. NN m 2m amplitudes f+~

In order to evaluate the NN ~ 2z' amplitudes it re-
mains to specify the parameters in the NN + 2x tran-
sition potential. The relevant masses used are mdiv =
938.926 MeV, m~ ——1232 MeV, and m = 138.03 MeV.
For the coupling constants (unless stated otherwise), the
same values are used as in the Bonn potential, i.e.,
f&~tv /4x = 0.0778 and f~~& /47r = 0.224. On the other
hand, form factor parameters should not be blindly taken
over &om the Bonn potential. The reason is that for the
t-channel baryon exchange process considered here one
is in a quite difFerent kinematic regime &om that of the
physical s-channel pion-exchange process. The fact that
we cannot establish a definite relation for the mNN ver-
tex in difFerent kinematic domains is the price we have
to pay for our simplified treatment of the xNN vertex
structure, which makes the form factor depend on the
momentum of only one particle [cf. Eq. (24)). This is
a general problem which, in our opinion. , is difBcult to
avoid, since a reliable /CD calculation of the full mo-
ment»m dependence of the vertex does not exist.

Fortunately, as mentioned before, there is quasiempiri-
cal information about the f+ in the pseudophysical region
obtained by analytic continuation of empirical xN and
mn data [14]. We use this information to constrain cutofF

0 2
I

~ ~
~ oo ~

IW2
E

~+
E

10 20 30 40 50

t[m ]
10 20 30 40 50

t[m ]

4 I I

cv+ 2
E

v- QS

CVQ 2I

10 20 30 40 50
t[m ]

10 20 30 40 50
t[m ]

FIG. 7. The NN m 2s helicity amplitudes f+' (t) defined
in the text and as function of t in the pseudophysical region,
as predicted by our dynamical model. The solid line denotes
the total result while the long-dashed line gives the contribu-
tion provided by N exchange only. The short-dashed line is
provided by the (N + B) Born terms. The curve indicated
by dots shows the quasiempirical result obtained by analytic
continuation of mN and ss data, taken from Ref. [14].
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Given that we have only two open parameters
(A tv, A~) there is remarkable agreement with the
quasiempirical result [14] in all vector amplitudes. Some
disagreement occurs in the scalar channel. Fortunately,
as we will discuss, these do not severely afI'ect our final re-
sult: the correlated 2'-exchange potential. Furthermore
one should keep in mind that the quasiempirical result is
subject to considerable uncertainty at large values of t'.

B. The spectral functions p.

Next, we show in Fig. 8 the spectral functions de-

fined in Eq. (34), namely pi+ for the scalar channel and

p (j = 1, 2, 4) for the vector channel. Note that for(—)

both the dynamical model and the quasiempirical result
we have subtracted precisely the same (X and b, ex-
change) Born terms as given by our dynamical model in
order to allow for a meaningful comparison. As expected
from the foregoing section, there is good agreement with
the quasiempirical result in the vector channel but dis-
crepancies occur in the scalar channel. As indicated in
the figure, the use of o' and p exchange with sharp masses
m = 550 MeV, m~ = 769 MeV, as done in the Bonn
potential, corresponds to a delta-function behavior at the
corresponding t' value.

C. (On-shell) potentials for correlated 2m exchange

From the spectral functions p- the NN interaction
~ (+)

arising from correlated 2' exchange, Vq, „,can then be
obtained by means of Eq. (33). For our practical calcula-
tions we use a cutofI't, = 50m in the dispersion integral.
Such a cutofF procedure is customary in dispersion theo-
retical treatments and is done mainly because both our
dynamical model and the quasiempirical result cannot be
trusted for considerably larger t'. For the small momen-
tum transfers t of interest here, the weighting factor t'
in the dispersion integral strongly suppresses the sensi-
tivity to variations of t, . As described brie8y at the end
of Sec. IIC, ISJ partial wave states of Vq, „can be
obtained in a straightforward way.

2. o channel

%e first discuss the results in the scalar channel. Fig-
ure 9 shows the (on-shell) potentials Vs, „as a func-
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FIG. 8. Spectral functions p~ (t') (p, , i = 1, 2, 4) ss de-
fined in the text and as function of t' in the pseudophys-
ical region, characterizing the correlated 2m-exchange con-
tribution to the NN interaction in the scalar-isoscalar (vec-
tor-isovector) channel. The solid line shows the prediction of
our dynamical model whereas the dashed line shows the re-
sult obtained from the quasiempirical information [14]. The
vertical lines indicate the b function at m t = 550 MeV
(rn~ = 769 MeV), representing sharp mass a' and p exchange
as used in the Bonn potential.
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FIG. 9. On-shell potentials in various NN partial waves

arising from correlated 2' exchange in the scalar channel,
as function of the nucleon laboratory kinetic energy. The
solid lines are predictions of our dynamical model whereas the
long-dashed lines are derived from the quasiempirical result
of Ref. [14]. The short-dashed lines denote the contribution of
(sharp mass) o' exchange as used in the Bonn potential [10],
including the form factor.
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tion of T1 b in the NN spin singlet states with (relative)
angular momentum L = 0, 2, 4, i.e., using the common
notation ~+ LJ, in the So, D2, and G4 state. As ex-
pected, our dynamical model provides attraction in all
partial waves. There is remarkable overall agreement
between the model predictions and the quasiempirical
results despite sizable di6erences in the spectral func-

tion py This is easily understood since what counts
in a first approximation is just the area under the spec-
tral function, which is quite similar for both cases. A
closer look however shows that our model is practically
identical to the quasiempirical result in D2 but some-
what smaller (larger) in So ( G4), which means that
our model prediction has a slightly longer range. Obvi-
ously, the lower. t' portion of the spectral function (where
our model is larger than the quasiempirical result) has,
indeed, a strong weight for the determination of the 2n-
exchange potential, a fact which confirms the justification
of the cutoff procedure discussed before.

Compared to both the model and quasiempirical re-
sult, the (sharp mass) 0' contribution used in the Bonn
potential differs remarkably in higher partial waves,
whereas it is similar in the So state. Note that the cr'

contribution contains the phenomenological vertex form
factor of monopole type with a cutoff mass of 2 GeV as
used in the Bonn potential. The strong underestimation
(by about a factor of 2) in ~G4 is due to the missing of the
long-range (small t') tail in the spectral function. Obvi-
ously, and not unexpectedly, a broad mass distribution
cannot be replaced by a sharp mass if a truly quantita-
tive description over all relevant partial waves is to be
kept. The procedure done in Ref. [10],namely to replace
a broad 0' exchange with g2, /4m = 10, m ~ = 662.5 MeV
and I' = 524.5 MeV (considered in the first place) by
the sharp o' exchange (cf. Sec. 5 of Ref. [10]) is necessar
ily quite rough. In fact, Fig. 7 of Ref. [10] shows clearly
that (at medium energies) the replacement works well
for F waves but underestimates the broad distribution
in higher partial waves, e.g. , sHs. Conversely, in lower
partial waves (not shown in [10]) the sharp o' provides a
stronger contribution.

If we go back to our results and look at the systematics
of Fig. 9, we expect that in an Ii wave the sharp 0' would
be about 2/3 of the dispersion theoretical result (which
we have confirmed by an actual calculation). Taking into
account the foregoing discussion, this then implies that
the present result for correlated 2x exchange is larger by
about 30% than the broad o' discussed in Ref. [10]. This
is indeed true: The dispersion theoretical calculation of
Ref. [11],which practically agrees with the quasiempir-
ical information [14], yields for the 2x-exchange contri-
bution, according to Ref. [11], g, /4m = 13 instead of
10 used in Ref. [10], with all other parameters being the
same. Furthermore, the subtraction of N, L Born terms
in Ref. [11] is larger since there a larger Nb, vr coupling
constant was used (f~~& /4n = 0.36 instead of 0.224 used
here). Consequently, with our Nb, n' coupling constant,
the resulting g, /47r should be around 15 or so, indeed
about 50% larger than the o' used in Ref. [10).

Thus, the diHerent property of the sharp cr' used in
Ref. [10) compared to a realistic evaluation of correlated

2n exchange arises from two facts. First, the overall
strength of the o' is about 30% too small; second, the
sharp mass approximation leads to an additional under-
estimation of high (L & 4) partial waves but an over-
estimation in low partial waves, which roughly cancels
the former underestimation. Combining both effects the
sharp cr' obviously provides a reasonable description of
the situation in S and P waves but strongly underesti-
mates the contribution in high partial waves, see Fig. 9.

g. p channel

We now turn our attention to the vector channel. Fig-
ure 10 shows again the on-shell potentials V2, „in the
So, Pz state and SD& transition. Again, our dynam-

ical model prediction and the quasiempirical result are
in qualitative agreement. In contrast to the scalar chan-
nel, this fact was to be anticipated since both spectral
functions agree quite well.

Compared to the single p exchange used in the Bonn
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FIG. 10. On-shell potentials in various NN partial waves
arising from correlated 2' exchange in the vector channel
as function of the nucleon laboratory kinetic energy. The
solid lines are predictions of our dynamical model whereas
the long-dashed lines are derived from the quasiempirical re-
sult of Ref. [14]. The short-dashed (dotted) lines denote the
contribution of sharp mass p exchange as used in the Bonn
potential [10], with (without) the form factor.
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potential, the realistic evaluation of correlated 2~ ex-
change provides a much larger result (by a factor of
2 or so) in all partial waves. One reason is that, in
the Bonn potential, a phenomenological (monopole) form
factor is added to the NNp vertex, with a cuto8' mass of
Ap = 1.4 GeV for both vector and tensor coupling. This
form factor, while being correctly normalized to 1 at the
meson pole, becomes less than 0.5 at t = 0, which implies

I

that both the strength of vector and tensor coupling (for
the definition, see Ref. [10]) are reduced by more than
50% in the physical region.

The problem is that such a strong suppression &om
the pole into the physical region is not provided by the
realistic calculation, as can be seen by defining effective
couplings F;(t). Motivated by the OBE expression for
sharp p exchange (without form factors)

g2 2

V = "pNN 1 C(—) + fpNN9pNN 1 + fpNN
~ g + 12 2 1

mN m —t mN I, 9pNN) mp —t }, 9pNN j+
I 2 2 9pNN 4 'I

we parametrize our result as

(35)

y(p)
2m, corr

Fi(t) 1 (-) F2(t) 1 (-)
( )

(-)
m2 m2-t + C2 + I'4 t t 4

N p mN m2
p P

(36)

which leads to

(-),
2(t)

N (m2 t) p2 ( )
dt's

Eq. (25) for the NN -+ 27} amplitude]. In order to ob-
tain such a solution, VNN has to be known (half) off
shell. However dispersion theory is an on-shell theory,
i.e. , it can only provide information about on-shell pieces
of the amplitude; therefore, in order to apply V2, „in a
scattering equation, it has to be extrapolated off shell in

F4(t) = —(m, —t), Ct .P4 (t)
7r p

4 g t' —t

40

30

Figure 11 compares the tensor coupling strength, i.e. ,
. F2(t), Fp = ~, ; with Ap

——1.4 GeV, as
P

used in the Bonn potential, with 4„as obtained in our
dynamical model calculation. The same is done for the

vector coupling, '4"" F (t) versus 4' [F4(t) —2F2(t)—
Fi(t)], and for fpNN/9pNN versus Fi(t)/[F2(t) —Fi(t)].
We make the following observations.

(1) The dispersion theoretical result has quite a weak t
dependence reducing the values by about 20% only over
the t range considered in agreement with the result ob-
tained by Hohler and Pietarinen [20] which is based on
essentially the same NN —+ 2m input; on the other hand,
the rather soft form factor in the Bonn potential reduces
it by more than 50%.

(2) At t = 0, our present result for the dominant tensor
coupling [Fig. 11(a)] is about twice as large as the value
used in the Bonn model; this explains Fig. 10.

(3) Concerning the vector coupling [Fig. 11(b)], there
is also an increase at t = 0 by about 60%. Consequently,
the effective tensor to vector ratio increases &om 6.1 as
used in the Bonn model to a value of about 7.

D. NN scattering phase shifts

"Theoretical" NN scattering phase shifts are obtained
&om the on-shell scattering amplitude, which is usually
found as a solution of a scattering equation of Lippmann-
Schwinger type, with some interaction VNN as input [cf.
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FIG. 11. The effective vector coupling constants f (t)/4m,
gp(t)/4m, and the ratio fp/gp(t) predicted by our dynamical
model in the physical region of NN scattering (t & 0), as
defined in the text and based on mp = 769 MeV (solid line).
The corresponding values used in the Bonn potential includ-
ing the form factor are indicated by the dotted lines.
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some way. This is a weak point in dispersion theoretical
derivations of potentials, and the price we have to pay for
concentrating in our derivation on the t channel. Indeed,
as discussed in the Introduction, we could have directly
evaluated V~,, „in the 8 channel and, given our field
theoretical e'er ~ arm amplitude, would have obtained a
well-defined off-shell behavior for V~,, „. It should be
pointed out however that such a calculation is more com-
plicated, since two-loop integrals are involved in this case.
Furthermore, given that our ver T matrix is not crossing
symmetric, we cannot be sure that the result will be reli-
able in the t channel, which determines the main dynam-
ics of the interaction. Finally, since V~, „is already
a second-order contribution, ofF-shell efFects (which arise
at the outer legs) enter only in still higher order of T~~
and are therefore of comparably reduced importance.

Nevertheless, we will avoid the problem of extrapolat-
ing V~, „offshell in this paper, by restricting ourselves
to phase shifts in high angular momentum partial waves.
For these, the Born approximation is an extremely good
approximation, which means here taking only the lowest
order term in the B-matrix equation

R(E) = V + V R(E)
0

(38)

with B being related to the conventional T matrix by

T(E) = R(E) —ivrR(E)b(E Ko)T(E) (39)

and 'P denotes the principal value. Note that the Born
approximation defined in this way, often called K-matrix
approximation, is unitary. Needless to say that putting
R(E) = V requires the knowledge of V only on shell.

In order to have a meaningful comparison both with
experiment and sharp 0', p exchange used in the Bonn
potential, we will supplement Vq „„(i)by single x and
ur exchange, and (ii) by the uncorrelated 2m'-exchange
contribution of Fig. 1. (Note that the second iteration
of the one-pion exchange is included in the latter contri-
bution. ) The parameters are taken to be precisely the
same as in Sec. 5 of Ref. [10],i.e., f&~ /4m = 0.0778 (
g~~ /4m = 14.4), f~& /4x = 0.224, m = 138.03 MeV,
g~~ /4x = 5.7, m = 783 MeV. Monopole form factors
with cutoff masses A~~~ ——1.3 GeV, A~~~ ——1.2 GeV
have been used for the evaluation of the diagrams in
Fig. 1. Since the high angular momentum phase shifts to
be considered depend only on the long-range part of the
amplitude, they are almost independent of form factor
parameters.

At this point it is perhaps worthwhile to point
out that the above values for the coupling constants
(f~~, f~& ) agree with those used in our dynamical
model for the NN ~ 2m amplitude. This is—of course—
done on purpose, since it is an essential requirement for
consistency. In order to isolate the correlated 2m ex-
change, we have subtracted &om the total NN —+ 2m

amplitude (which is constrained by quasiempirical in-
formation) the elementary (N + b, exchange) transition.
Thus, our procedure amounts to first subtracting the un-
correlated contributions in the t channel and then adding
them back in the 8 channel. The importance of using the

same parameters is obvious.
Due to our oversimplified treatment of form factors this

can however not be done for the cutoff mass since we can-
not be sure that this parameter is the same in both the
t channel (where it parametrizes the ofF-shell behavior
of N, b, ) as well as in the s channel (where it describes
the corresponding behavior of the pion). Thus the cutofF
mass in the 8 channel remains an open parameter. Fortu-
nately, this ambiguity does not affect our conclusions in
this paper since, as mentioned before, high partial waves

only slightly depend on form factors. We would like to
point out already here that the low partial waves, which
are affected by this ambiguity, are—in any cas" -subject
to uncertainties generated by the choice of off'-shell exten-
sion of V~, „.In this connection we mention also that
the difFerent choice of the b, propagator in our model for
NN ~ 2vr (taking into account nonpole contributions)
compared to the Bonn potential where these are left out
affects the consistency only in a negligible way since in
the 8 channel, the 4 is not far off shell, and the pole
contribution by far dominates.

The question might arise why we subtract and then
add the uncorrelated 27r exchange anyhow. Why not
transform the total 27r-exchange amplitude (without any
subtraction) into the s channel and then leave out the
uncorrelated contributions of Fig. 1? There are several
arguments for not choosing this alternative. First, such
a procedure includes only the JJ' = 0+, 1 contributions
(in the t channel) of Fig. 1 whereas our treatment is more
complete since the diagrams of Fig. 1 (evaluated directly
in the s channel) contain automatically all higher J ) 2
t-channel contributions. On the other hand, our restric-
tion to J = 0+, 1 contributions of the correlated part is
probably justified since in this case the higher J pieces
are known to be small; e.g., the f(2+) resonance occurs
at about 1250 MeV—too large to be important for low
energy NN scattering. Note also that, for a calculation of
low partial wave phase shifts, the iterative box diagrams
involving NN intermediate states have to be subtracted
in any case since they are unavoidably generated by the
scattering equation.

Second, since our ultimate goal is to derive a coupled-
channel model, i.e., to treat the N and b, on an equal
footing, we must keep the diagrams of Fig. 1 explicitly.
We mention that Haidenbauer, Holinde, and Johnson [21]
recently presented such a coupled-channel model based
essentially on the physics of the Bonn potential and the
method of folded diagrams.

Finally, for the purpose of the present paper, which is
to compare the role of a realistic treatment of correlated
2m exchange versus (sharp) 0', p exchange used in the
Bonn potential, it is necessary to treat the other contri-
butions (single m, u exchange, uncorrelated 2vr exchange)
precisely the same as in Ref. [10].

Figure 12 presents the results for some selected high
angular momentn~ partial wave np phase shifts (ob-
tained in Born approximation as defined and as function
of the lab kinetic energy) —namely those for which em-
pirical information is available. Here, we wish to demon-
strate the role of the various models for correlated 2m ex-
change: (i) our dynamical model, (ii) the model derived



2366 H.-C. KIM, J. W. DURSO, AND K. HOLINDE

Q s s s s ~

2.0-

'I) 50 100 200 300

T)ob [ MeV ]
0.0-

-1.2-

0.6-

0.2-

0.1]-

10.0

50 100 200 300

T(,b [ MeV ]

8.0-

6.0-
4Po

4.0-

50 100 200 300

Ti.b [ MeV ]
Q, 8 s s s s s s

5s0 s s s ~ s

S

4.0-

1.0-

50 100 200 300

Tlab [ MeV ]
0.0

-0.4-

'[1 50 100 200 300

Ti.b [ MeV ]
0

I

I I

S
!

~

I t I

0,8-

0.2-

'I) 50 100 200 300

Ti.b [ MeV ]
01 s s s s s s

S

0.0-

&om the quasiempirical NN —b 2x amplitudes [14], and
(iii) sharp 0' and p exchange as used in the Bonn poten-
tial. As described before, single m + u exchange and the
uncorrelated 27r exchange (Fig. I) are exactly the same
for all these cases.

Since we are dealing here with high partial waves, the
results are essentially dictated by the behavior of the
models in the scalar channel, which provides the longer-
range contribution. As expected &om the foregoing re-
sults concerning the (on-shell) potentials (Fig. 9), the
dynamical model provides slightly more attraction than
the quasiempirical result in all partial waves. However-
as we pointed out before —the difference is quite small,
despite the relatively large discrepancy in the scalar spec-
tral functions.

On the other hand, 0' (+p) exchange provides sub-
stantially less attraction in some partial waves —again to
be anticipated &om the potential results. Those partial
waves in which the discrepancy is small are dominated
by one-pion exchange anyway. We have split up the po-
tential into the various terms in order to really show that
a realistic description of correlated 21r exchange provides
a contribution which is considerably larger compared to
the Bonn parametrization, by an amount increasing with
the angular momentum of the partial wave. Furthermore,
our results strengthen the role of the correlated 2' con-
tribution compared to the uncorrelated part even more.

For the G4 partial wave, the increased attraction aris-
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FIG. 12. np phase shifts as function of the nucleon labo-

ratory kinetic energy, predicted by our dynamical model for
correlated 27r exchange (solid line), supplemented by 7r ex-
change and u exchange (g~~ /4s = 5.7) and the uncorre-
lated 2'-exchange contributions as calculated in the Bonn po-
tential [10], using g~N /4s = 14.4. In the long-dashed line,
the correlated 2m exchange is derived from the quasiempiri-
cal result provided by Ref. [14]. In the short-dashed line, the
correlated 2' exchange is replaced by sharp mass o' and p ex-
change as used in the (full) Bonn potential [10]. The error bars
are taken from the empirical analysis of Bugg [25] (triangles)
and Amdt et aL [26] (circles). The dotted lines denote the
vr-exchange contribution only while the dash-double-dotted
lines arise from vr + u exchange. Finally, for the dash-dotted
curve, uncorrelated 2' exchange is added to vr + ~. All cal-
culations are done in the K-matrix approximation.
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FIG. 13. np phase shifts in the G4 partial wave, as a
function of the nucleon laboratory kinetic energy, predicted
by our dynamical model for correlated 2m exchange, supple-
mented by s' exchange and tu exchange (g&~ /4@=5.?)and'
the uncorrelated 2m-exchange contributions as calculated in
the Bonn potential [10], using g~N /4n = 14.4 (solid line).
The dashed line arises if ~ exchange is increased by using

g~~ /4s' = 20. For the dash-dotted line, uncorrelated con-
tributions arising from mp exchange, as calculated in the Bonn
potential [10], are added to the interaction leading to the
dashed line. The dotted line is obtained by using soft mNN

and 7rNA form factors, A~~ ——A~~„——0.8 GeV, instead

«ANN~(Awa~) = 1.3(1.2) GeV, in the interaction leading
to the dash-dotted line, both in the one-pion-exchange poten-
tial and in the uncorrelated 2m-exchange contributions. The
error bars are taken from the empirical analysis of Bugg [25]
(triangles) and Amdt et al. [26] (circles) .
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ing &om the realistic description of correlated 2x ex-
change now leads to a de6nite discrepancy compared
to the empirical information: already at medium ener-
gies the empirical phase shifts are de6nitely lower. Of
course, the present model is not complete. In the full
Bonn model, 1d exchange is considerably larger and (un-
correlated) xp exchange is included, both of which bring
the phase shifts down somewhat. However, due to the
short range of these contributions, the shift is very small
in this L = 4 partial wave, as demonstrated in Fig. 13,
and by no means sufficient to bring the phase shifts into
agreement with experiment. Note also that a full calcula-
tion (instead of the K-matrix approximation done here)
will not change the results noticeably. We have checked
for the full Bonn potential that the K-matrix approxima-
tion is extremely good in this partial wave. Consequently,
the discrepancy essentially survives in a more complete
calculation.

What remains to bring the phase shifts down is a re-
duction of the one-pion-exchange contribution. The first
idea which comes to mind is to make the xNN form fac-
tor softer. Indeed, a considerable body of information
suggests that the xNN form factor is quite soft, char-
acterized by a value of 0.8 GeV for the monopole cutoH'

mass. However, as also shown in Fig. 13, the phase shifts
barely change even if we take A = 0.8 GeV for both xNN
and xNL vertices. This is not surprising since high an-
gular momentum partial waves (I, & 4) are known to
be essentially independent of form factor modifications.
This fact shows once more the advantage of concentrat-
ing the efforts on high partial waves, since one is here
essentially &ee of ambiguities due to form factors and
the short-range part of the interaction.

The only possibility to get a noticeable reduction of
the G4 phase shifts is to reduce the xNN coupling con-
stant. Indeed, the Nijmegen group has claimed for quite
some time that not only g2, [22] but also g2 + (of rele-

vance here) should be substantially smaller (g„+/4m—
13.5 [23]) compared with the value g2 +/4w = 14.4 es-
tablished before. A comparably lower value has been
obtained in a recent phase shift analysis done by the
VPI group [24]. Although there is still a vigorous de-
bate over this subject, we take, in a second step, the
lower value g~2~ /4m = 13.5 everywhere, i.e., in the
one-pion-exchange potential (OPEP), in the uncorrelated
2' + xp-exchange piece, and in our dynamical model for
correlated 2m exchange. (Note that, for this calculation,
we do not readjust our %N ~ ma amplitudes to the
quasiempirical result since the latter is based on the for-
mer value of g~~ and is thus expected to change also if
gN~ is reduced. In any case, the change is expected to
be smaller than the overall uncertainty of the quasiem-
pirical result. ) Results (now with g~~ /4' = 20) are
coxapared with the corresponding calculation using ev-
erywhere g12v~ /4m = 14.4 in Fig. 14. Obviously, this
change provides a substantial reduction, mainly due to
the modi6cation of OPEP, which dominates the interac-
tion in these high partial waves. For G4, however, it is
not su%cient to bring the phase shifts in agreement with
the empirical result. This is not necessarily an indication
for a still lower coupling constant since the phase shift
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FIG. 14. np phase shifts as function of the nucleon labo-
ratory kinetic energy, predicted by our dynamical model for
correlated 2m. exchange, supplemented by vr exchange and ~
exchange (g~~ /4s = 20) aud the uncorrelated 2x as well
as s'p contributions as calculated in the Bonn potential [10],
with g~~„/4' = 14.4 (13.5) for the solid (long-dashed) line.
The short-dashed line is based on the same interaction as the
solid line, with the correlated 2m-exchange contribution re-
placed by (sharp mass) o' aud p exchange as used in the full
Bonn potential [10]. The error bars are taken from the em-
pirical analysis of Bugg [25] (triangles) and Amdt et aL [26]
(circles).
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analysis of Ref. [25] has the constraint gz +/4vr = 14.3
and is thus expected to change somewhat if the lower
value would be taken as a constraint.

Consequently, if we avoid arbitrarily adjusting the
intermediate-range attraction but make use of the con-
straints given by a realistic evaluation of correlated 2'
exchange the resulting NN interaction seems to prefer
a somewhat smaller vrNN coupling constant. Of course
lower NN partial waves, and especially NN observables,
will have to be investigated in order to confirm this state-
ment. Nevertheless, we feel that our results, being in-
dependent of assumptions about short-range dynamics,
provide additional support for the need to redetermine

g~~ from xN data.

IV. SUMMARY AND OUTLOOK

In this paper, we have developed a dynamical model
for the NN interaction arising from correlated 2x ex-
change in the scalar and vector channel. Starting point
was a microscopic model for the NN -+ urer process based
on nucleon as well as 6-isobar exchange, together with a
xx interaction which has been likewise derived in the me-
son exchange framework and describes xx scattering data
sufficiently from threshold to about 1.3 GeV c.m. energy.
In the pseudophysical region the resulting NN ~ xx am-
plitudes are compared with those obtained by Hohler and
Pietarinen by analytic continuation of empirical AN and
vrx data. Although some discrepancies occur in the scalar
channel, these have only a minor effect on the correlated
2x-exchange interaction, which we have obtained &om
the NN ~ vrvr amplitudes via a dispersion integral over
the unitarity cut, subtracting the uncorrelated part.

It turned out that the results differed considerably
from the simple parametrization in terms of (sharp mass)
cr' and p exchange as used in the full Bonn NN potential.
In the scalar channel the o' exchange strongly underes-
timates the contribution in high partial waves; in the

vector channel the p exchange of the Bonn potential is
likewise much weaker due to the use of a phenomenolog-
ical form factor which signi6cantly cuts down the contri-
bution in the physical region.

We have investigated the effect of these modifications
in high angular momentum NN scattering phase shifts.
Throughout, there is a pronounced upward shift com-
pared to the former Bonn results, which mainly arises
from the increased attraction generated by correlated 2~
exchange in the scalar channel. In some cases, it leads to
de6nite discrepancies with empirical phase shifts, which
can be reduced by lowering the xNN coupling constant
in accordance with 6ndings of the Nijmegen and VPI
groups.

Whether the improved treatment of correlated 2m ex-
change really requires a lower xNN coupling constant
can of course only be decided (if at all) by also look-
ing at the consequences for low partial waves and, ulti-
mately, for the NN observables. Here, the Born approxi-
mation is not valid anymore; therefore, a suitable ofF-shell

extrapolation of the correlated 2x-exchange potential is
required. Also, harp-exchange processes contained in the
Bonn model, which are not very relevant in high partial
waves, become important in low partial waves and require
a consistent treatment of p exchange. Corresponding in-
vestigations are under way.

With this dynamical model for correlated 2x exchange
it is possible to discuss medium modi6cations in a well-

defined way. First calculations (based on a slightly dif-
ferent model) have already been performed and provided
interesting results [15].

Finally, it should come as no surprise that such an
improved treatment of correlated 2x exchange also has
considerable impact in other hadronic reactions. So far,
we have looked at the 7rN [27] and It N [28] systems.
A corresponding investigation for the hyperon-nucleon
(AN, ZN) system is under way.

Thanks are due to J.Haidenbauer for useful discussions
and assistance in obtaining some numerical results.
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