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Coulomb correction calculations of pp bremsstrahlung
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The effects of the Coulomb interaction upon the photon cross section and analyzing power from
pp bremsstrahlung have been studied in detail. Off-shell properties of the Coulomb T matrices have
been considered, but the associated, Coulomb modi6ed, hadronic T matrices are important elements
in any analysis of low energy, forward proton scattering data.
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I. INTRODUCTION

Nucleon-nucleon (NN) bremsstrahlung has been stud-
ied for many years [1—14] as the reaction allows a di-
rect measure of half-off-of-the-energy-shell attributes of
NN t matrices. New experixnental results [15—17] as
well as the specification of realistic, meson theoretic
NN interactions [18,19] led to renewed interest in such
brexnsstrahlung [20—26] and it is now known (below pion
threshold) just how photon cross sections and analyz-
ing powers are sensitive to half-off-shell details. The
importance of rescattering terms and relativistic spin
corrections (RSC) in the reaction amplitudes also have
been demonstrated. However, it is only recently [25]
that Coulomb interaction effects in pp bremsstrahlung
have been treated fully. To date, most authors either
have ignored the Coulomb interaction altogether or have
used a simple model in which the on-shell point parti-
cle Coulomb amplitude is added to the hadronic terms.
Other authors have used the on-shell Coulomb amplitude
[11,20] as a representation of these corrections. The most
complete treatment in the past was made by Heller and
Rich [14] who also used the Hamada-Johnston NN po-
tential to define the hadronic interaction.

The long-range character of the Coulomb interaction
makes it particularly difBcult to use standard techniques
of evaluation of the T matrices from the Lippmann-
Schwinger equation. However, the importance of the
Coulomb interaction in atomic and few body physics
has produced considerable published work on the specifi-
cation and application of the (pure) Coulomb off-shell
T matrices [27—34], and those studies reveal ambigui-
ties which must be treated carefully via a renormaliz-
ing procedure. So Coulomb effects need be considered,
and we proceed by finding solutions of inhomogeneous
Schrodinger equations that result by use of the Gell-
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Mann —Goldberger two-potential formalism [35]. This
formalism is slightly different &om that used by Heller
and Rich [14] as they introduce Coulomb corrections by
way of the total wave functions. The current scheme,
which is presented in detail in the next section, requires
evaluation of half-off-shell (pure) Coulomb T matrices
and half-off-shell Coulomb modified hadronic T matri-
ces; the latter being specified with a formalism predi-
cated upon the generalization of the Jost function that
has been developed by Fuda and Whiting [36). The pro-
cess is no more diKcult to effect than that by which the
Coulomb interaction alone is considered since the short-
range character of the hadronic interaction ensures no
new poles arise in the development.

The pp bremsstrahlung studies reported herein extend
previous ones [26] by a consistent treatment of Coulomb
effects and give more specific information than presented
recently [25]. Simplified model [11,20] results are inap-
propriate, as will be demonstrated. Of particular interest
are photon cross sections and analyzing powers for for-
ward proton scattering angles at which it is known that
the observables are sensitive to off-shell characteristics
of the T matrices. This is expected to be the most im-
portant Coulomb region also due to the proximity of the
outgoing protons. Further, such a study is of current rel-
evance given the report [17] that measurements at these
angles are now contemplated. Also, the limitations of
the on-shell approximation for the pure Coulomb contri-
butions due to the divergence of the on-shell Coulomb
amplitude are expected to be most evident at the very
forward ppp proton angles. The current work also in-
cludes rescattering contributions to the @pe transition.
They are calculated in the modified soft photon approx-
imation (MSPA) [23] and play an important role at the
higher incident energies.

In Sec. II we introduce the Coulomb interaction into
the hadronic T matrix via the two-potential formal-
ism and specify how the Coulomb corrections afFect the
hadronic on-shell T matrix. The fully ofF-shell pure
Coulomb amplitude is then examined in partial wave
form so that singularities are shown explicitly. Then,
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a renormalization scheme is given to obtain the half-off-
shell and on-shell Coulomb T matrix elements in the lim-

iting case. Subsequently, the prescriptions of the half-
off-shell pure Coulomb and Coulomb modified hadronic
T matrix elements that are required in bremsstrahlung
calculations are given explicitly and in Sec. III those
Coulomb corrected amplitudes are used to specify the

ppp single scattering terms. Calculated results and a dis-
cussion of them are given in Sec. IV and the conclusions
one may draw from this work follow in Sec. V.

boundary conditions is

1
Gc(E+ie) = E+ ze —Ho —Vg

'

when e is a small positive number and Ho is the kinetic
energy Hamiltonian. The operator tHc(E+ i&) obeys the
Lippmann-Schwinger equation for the hadronic interac-
tion (VH),

tHc(E+'ce) = VH+ VHGc(E+ xe)tHc(E+ ze) . (9)

II. DEVELOPMENT OF THE T MATRICES

In general, the T matrix operator is defined by the
operator equation

One should note that this formalism differs from the
previous treatments of Coulomb effects in ppp calcula-
tions [11,14]. In those studies, the corrections were intro-
duced by using the pure Coulomb r-space wave function,
gc, to specify the complete nuclear wave function, g, as

T(K) = V [1+G(K)V), 0 = 0c+ (0 —4c), (io)
where

G(K) =
K2/2p —Hp —V (2)

and K = 2p(E + ie). For plane wave states, ~kq) and
[k2), the T matrix elements are designated by

and which is then inserted directly into the pygmy T matrix
amplitudes. As a result, what Heller and Rich refer to
as the "pure Coulomb bremsstrahlung" term is not the
same as the pure Coulomb term in this study which arises
from the effects of Tg alone.

Tg, g, (K) = (kg~T(K) ~k2)

and are fully off of the energy shell when kq and k2 are
both different from K. Half off of the energy shell k2 ~
K (k2 ——Kk2), and in the e ~ 0 limit, one finds

Tj„g,(k2)= lim (kg~T(K)~k2)

A. The T matrix on the energy shell

If the limit kq -+ kp (kp ——k2) is taken in Eq. (4),
then the on-shell T matrix, TI„(kq, k2), is obtained for
the momentum ko. Prom formal scattering theory, this
element is related to the scattering amplitude (in natural
units) via

= lim (kq~V[1+ G+(K)V]~k2)

= (4 ~V~@+(k2)),

where ~g+(k2)) is the actual wave-function solution of a
particle with initial momentum k2 in a potential, V. It is
important to note that in this formalism there is a con-
dition on V, being that it should fall oK faster than 1/r
in the r ~ oo limit. To include Coulomb effects in ppp
calculations, it is convenient to start with the Cell-Mann-
Goldberger two-potential formula [35] and thus identify
a Coulomb corrected hadronic T matrix, THC, by the
separation

T =Te+THc ~

Ts. (e) = 4,„f~.(~)

where kq k2 ——cos(8). We use this connection to study
the on-shell effects to the T matrix in general. We begin
with the relation between the S and T matrix,

S = S —2~zT. (12)

1 ((S-S.)+(S.—1)]
27ri

and identifying

The divergence associated with the Coulomb interaction
must be taken into account, and we do so by using [37]

where

and

Tc(E + ie) = Vc [1 + Gp(E + ie) Vc] (6)

1
Tc ——— . (Sc —1),

27ri

1
THc = — . (S —Sc),

27ri

(i4)

(15)

THc(E+ ie) = [1+VcGc(E+ ie)]tHc(E+ ie)
x [1+Gc(E+ ie)Vc] . (7)

Therein Vc = P/r (P= const) is the point particle
Coulomb potential, and the propagator with outgoing

since these terms are on-shell operators equivalent to
those given in Eq. (5).

Taking the expectation value of the T matrix operator
between initial and final plane wave states (respectively,
~k2) and ~kq)) such that kq ——kp ——k2, then
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[Tc(~)]1,= (~1ITc lic2) (16)

is the on-shell Coulomb T matrix. This is related to the
Coulomb scattering amplitude [from Eq. (11)] by

ITc(0)l~. = 4,„[fc(0)]~. (17)

where, with V(r) = /3/r and the Sommerfeld parameter,
g = pP/kp,

shifts; the latter being obtained &om the solutions of
the Lippmann-Schwinger equations excluding Coulomb
effects. This is possible if two approximations hold [37].
First, the Coulomb interaction must be essentially re-
quired only outside of the nuclear region and, second,
the &KB approximation must be valid in this outside
region. Then the full phase shifts may be expressed as

b,
' = (SH),'+ Crl .

and

[f (0)]
+/ 2icro —iq in[sin (8/2)]

2kp2 sin (8/2)
(18)

In terms of the T matrix elements, via Eq. (15) for un-
coupled channels, one Ands

(T )l (
2ib, 2iai

)
1

p

I'(1 + ig)
I'(1 —ig)

(19)

S
LL (Sc)Ii = e" ', (2O)

are standard Coulomb scattering quantities. Equation
(18) contains the complete Coulomb divergence so that
a partial wave expansion may be used for the remaining
terms in Eq. (13).

The operator THc involves essentially hadronic eKects
only, since the pure Coulomb S matrix has been sub-
tracted. Alternatively, as will be shown later in a discus-
sion of its half-ofF-shell extension, THC is the hadronic T
matrix but speci6ed in the Coulomb basis. A standard
partial wave decomposition of Eq. (15) which satisfies the
proper asymptotic condition leads, for uncoupled chan-
nels, to the relations

I

(
2a{bH), 1) 2i~(

2ikp

= (TH) Iie'*" (24)

Sj = e*"(SH)je*" (25)

and

0'
2 ( O

(26)

The coupled on-shell T matrix elements are obtained sim-
ilarly if the relation between the coupled S matrix, from
Eq. (21), for both interactions (Sj) and nuclear interac-
tion alone [(SH)j] is given by

~g2~+i U.e j (21)

where 6't is the total phase shift and ol = argl'(l+1+ig) is
the Coulomb phase shift. Due to the tensor force of the
nuclear interaction there will also be coupling between
the partial waves, represented by oE-diagonal elements
of the matrices. For coupled waves, following the Blatt-
Biedenharn convention [38], the coupled S matrix is a
2 x 2 matrix given by j 1

( H) i~l = ( ( H) lrl
2ikp

(27)

where ej q and uj+q represent the lower and upper cou-
pled channel Coulomb phase shifts, respectively. Equa-
tion (21) gives the forms of the Sj, (Sc)j, and (SH)j
elements. The nuclear interaction obeys the hadronic
equivalent of Eq. (14), and along with Eq. (15) the par-
tial wave expressions are

where Aj is a diagonal matrix, Uj is a unitary matrix,
with

S,'—»-1 S,'-»+1
)

j+1 j—1 j+1 j+1 )

j 1
(TH~)l 1= (SZ'l —(SC)l i)2ikp

where b~ ~ is the Kronecker delta. The equations are
slightly more complicated than in the uncoupled case,
but it is reasonably straightforward to show, if the ele-
ments of Eq. (25) are rearranged to match Eqs. (27) and

(28), that

(THC) j+1 j+1 ( H) j+1j+1

cosej s1ne~
~~

(
g

—sine~ cosej j (22) (THC)&~1 j+1—e + +' (TH)&~1 j+1 . (29)

ej is the coupling parameter and b are the upper and

lower phase shifts, respectively, when there is no coupling
(e, m 0).

It is desirable to express the total phase shifts, b-, in

terms of the Coulomb (o.l) and nuclear, (bH) . , pha~~

From Eqs. (17), (24), and (29) it is evident that the on-
shell e8'ect of including the Coulomb interaction in the
derivation of the complete NN T matrix is to add the
on-shell Coulomb T matrix, [T~(0)]i,„to the sum of the
partial wave hadronic T matrix elements, which are ro-
tated by the Coulomb phase shifts in the complex plane.



49 COULOMB CORRECTION CALCULATIONS OF pp BREMSSTRAHLUNG 2345

B. 08'-shell properties of the pure Coulomb T
matrices

and now [recalling that K2 = 2p, (E + ie) here]

g = pP/K, (3I)
The half-o8'-shell properties of the two proton T ma-

trices are required to analyze p~ data. To define those
properties, however, we must begin with the fully off-
shell forms [Eq. (3)] to identify the pole structure that is
introduced by inclusion of Coulomb effects.

Consider first the pure Coulomb operator, Tg. Dusek
[33] has made a partial wave expansion of its amplitude
and has studied the associated poles extensively. In mo-
mentum space, as there are no coupled states for the pure
Coulomb interaction, one may write [39] (units in which
5 = 2p = I are used hereafter)

(k~I[T~(K)]~Ikz) = dt t*"—Q~(z(t)), (30)
2K',„d

m. kg k2 s dt

in which Q~ is a Legendre function of the second kind

]

and

(32)

The small imaginary part of g in the t'" term allows the
singularities of these integrals to be handled, when the
Coulomb interaction is given by

2K'
Vc(r) = lim

e-+0 7'

Foregoing the details of the calculation, Dusek [33] de-
rived the expression

iK (kg+ K)'*" f k2 —E —ie)'"
I'(I+ g)l'(i —g) 8(&, g)R(&', —g) IF ] gk +Kg g k,' —E —ie)

+(Eg(kg, k2, K; ig))) + (gg(kg, k2, K; ig))( . (34)

Therein

and

k,'+ K
2k, K

I k22+ K
2k,K

and setting k2 ——ko, then

lim(Pg(kg, ko, K; ig))( = 0;

and for kq g K,

(40)

&( ) = P' "'(*)/P' "'(I) (36) lim(go(kg, kp, K;ig))) = 0 . (4I)

involves the Jacobi polynomials, P&
' (z). (Pg)& and

(Q~)~ are functions similar to the leading terms in Eq.
(34) and have been separated as they have a special prop-
erty in the half-off-shell limit; namely, that

lim (Xo(kg, k2, K;ig))) = 0;
A:g-+K

With these results, taking the limit k2 -+ ko in Eq. (34)
shows that the element (kq I[T~(K)]~Iko) oscillates due to
the on-shell Coulomb singularities. A renormalization
procedure [30,33] is required to obtain the conventional
half-off-'shell Coulomb amplitudes, which are given by

and for kq g K,

lim (g~(kg, k2, K; ig))) = 0 .
kq —+K

Defining the on-shell momentum, ko, as

ko ——lim K,
e-+0 (39)

= (k I[T (k )] Iko) M (42)' 'r~i —.„~(,„,)'"

Therein "LIM" means that amplitude is only defined
strictly in the limit and not by the simple substitution
k2 = ko. The half-off-shell pure Coulomb T matrix ele-
ments are then

.e " . I'(i+ 1 + ig) . (k& —ko)'" (k~ + ko) '+
(k I[T~(ko)l~lko)«M = '

k
I'(~ —~)q I

&~(» —'&) k' k'„—I'(~+ &)R-(» &) k.I'/+S-ig ' k, +k, "~

(43)

a result that can be obtained also by expressing the half-off-shell T matrix in terms of off-shell Jost functions [33,40].
As there is no restriction on I in this development and as the normalization factor is independent of the partial
wave value, the result holds for the complete pure Coulomb T matrix amplitude. However, in the absence of an
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alternative derivation, there are still ambiguities as to what is the correct Coulomb half-off-shell T matrix. We choose
the conventional form [29], which follows from Eq. (43). This point shall be pursued later, when we consider this
amplitude in analytic form.

The on-shell lixnit of Eq. (43) has been shown [33] to be

( k' —k'l " —
2
r)'rl' (k + k )2io

&(Tc)~.}I= l'
f I' '

k
'

~ (k I[Tc(k )]Ilk )+ 1'(1+ n)&i(» n) ', „', , (44)I,~~. I' 1 —i' q 4k,' 7t ] k' —k' *o

and to which we seek to equate from Eq. (17),

the known partial wave on-shell Coulomb T matrix ele-
ments. Note should be taken that the inclusion of the
second term in Eqs. (43) and (44) is necessary only for
the specific partial waves and equates to zero in the sum-
mation for the complete Tc matrix element.

liin
'

. = (ki ~T(kp) ~kp) LIM' 'r(r —
&) („.)'"

(47)

and

where VH converges faster than 1/r asymptotically so
that all of the poles of the total T matrix are contained
in Tc and the development leading to Eqs. (42) and (44)
can be generalized in terms of the complete operator T.
We have, therefore, the partial wave summed results

C. The T matrix half ofF the energy shell

Specification of the half off sh-ell -and on shetl -T
matt iced

(ki iT(kp) [kp)" "r (r - ) (
':-":)'"

0

(48)

We have interactions of the form

V= VH+Vg (46)

For the THC components, a partial wave decomposition
can be used without ambiguity, and hadronic channel
coupling can be included by conventional expansions [26].
Specifically, with Eqs. (4), (7), (47), and (48), one finds

lim ", = c(ki, k() —,t'~[tHc(kp)]'I, I~kp kp +, l)c(ki][THc(&))l Ilko)
' ' r(r —*,)(„.)'"

(49)

and

(k k —t'~[ (k )] ~k k

r(r-* ) (r': ":)'" (5O)

where ~ki, kp +, t) c are the outgoing half-off-shell partial
Coulomb waves given by

Eq. (9), they are defined as Coulomb corrected hadronic
T matrix elements.

ki ko2+is, l)c
Iki, ko +, l)c = lim

r'(r —iq) (4t. )

and

» kp +is, l)c = [1+(&c(ko + ie)}I(Vc)I]~ki,&) (52)

with
~
ki, i) being the plane partial waves. Hence,

after renormalization, the half-off-shell and on-shell
TH~ amplitudes are defined by the corresponding
Lippmann-Schwinger operator solution, tH~, taken be-
tween Coulomb wave functions. Considering the form of

2. Evaluation of the half off shell ampl-itud-es

The half-off-shell pure Coulomb T matrix may be ob-
tained as a three-dimensional analytic expression, the de-
sired form for practical purposes because of the slow con-
vergence of the pure Coulomb partial wave series. That
results by casting Eq. (47) into an equivalent form of Eq.
(4), namely,

[&c(ko)]I,I, = (~i~&c(ko)~~o)LIM (ki~Vc~4'c(~o))LIM ~

(53)

the wave function of which is most readily defined in r
space as
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1
v)& (r) =,e " ~ e'"'F (1 + ig) qFq [

—irI, 1, i(kr —k r)] .
(2~) ~

(54)

Substituting this into the right-hand side of Eq. (53) gives

dr
[&c(ko)]k,a, = e " I'(1+ ip) —e' "' "'l'zFz[ —ip, l, i(koan' —kp r)] .

(2~)s r

A contour integration method [41] may be used to evaluate these integrals. Such is shown in detail in Appendix (7.1)
of Ref. [29], and the result is

[Tc(kp)]g g =
&

e l'(1+ 2f)) llm
k 2 2 &+.

/2 ~ ~ (kl (k. + i~)')'"
27r2 x~o+ kg —kp + A +'&

Taking this amplitude on the energy shell (kq ——ko) gives
a scattering amplitude

[fc(t3)]'= —4& p[&c(ko)la a Ixi=IO

f (~)(l'(1 — )
'"'"""'"')

Amp+

where fg(8) is the conventional Coulomb scattering am-
phtude. Thus, Eq. (53) does not lead to the correct an-
swer on-shell, and the result also depends on the limiting
process used (e.g. , A ~ 0 then kq ~ ks). This discontinu-
ity was first noted by okubo and Feldman [42], and Ford
[27] confirmed its existence. Furthermore, the parameter
A in Eq. (56) represents a screening of the Coulomb po-
tential that is required as, on the energy shell, asymptotic
contributions are important and the long-range Coulomb
effects are strongest. This is consistent with the forward
scattering divergence of the amplitude fc(8). We note,
as an aside, that Ford has shown [28], by using the cutoff
Coulomb potential,

tH(E + ze) = VH + VHGp(E + ae)tH(E+ xt), (60)

where

1
Gp(E y ie) = E+ie —Hp

(61)

is the free Green's operator. Wave operators, Oo(E+ ie)
and Oc(E + ie), are defined [44] by

As the THg amplitude contains no singularities for
short-range hadronic potentials, VH, then the THc part
of Eq. (47) can be substituted directly into Eq. (4) for
the half-off-shell T matrix, as per Eq. (49). Using the
Coulomb interaction in the Lippmann-Schwinger equa-
tion poses major numerical problems. However, sta-
ble solutions have been obtained recently [43] whereby
partial wave momentum space matrix elements of the
Coulomb modi6ed hadronic interaction can be evaluated
using a mixed representation. Nevertheless, we proceed
in r space and begin with Eq. (9) and

V( )
P/r, if' (R
0, if')R ' (58)

and

Oo(E+ ie) = 1+Gp(E+ ie)tH(E+ ie) (62)

in the R ~ oo limit the limiting process is unimportant
and the correct off-shell Tg matrix is given in all cases,
except for when any two of the momenta (ks, kq, k2) are
equal. There are ambiguities as to what is the correct
half-off-shell expression for the Coulomb T matrix. A
meaningful definition, however, is to use Eq. (56) to rep-
resent the amplitude, in accordance with Eq. (43) and
the half-off-shell discontinuity is given by

Oc(E+ M) = 1+ Gc(E+ M)tH&(E+ ie),

so that Eqs. (60) and (9) may be rewritten as

tH(E+ ae) = VHOp(E+ xe)

and

tH~(E + ZE) = VHO~(E + i~),

(63)

(64)

I [&c(ko)]~,~. I

=
2n.2 (kg —ko)2

'~l'(1+ ig) ~,

if kg ——ko

, e" ~ ~I'(1+ ill)~, if k ( k

(E + IE —Ho —VH)Op(E + ac) = E + x6 —Hp (66)

and likewise, substituting Eq. (65) into Eq. (63) yields

respectively. Substituting Eq. (64) into Eq. (62) leads to

(59)

As noted by Ford [27], the long range of the Coulomb
potential distorts the incident and scattered waves at in-
finity, and thus Eq. (53) is not strictly correct for the
Coulomb interaction. However, as this distortion is rela-
tively weak, use of Eq. (53) is a good approximation.

(E+is —Hp —Vg —VH)OC(E+ ie) = E +it
Ho —Vc . (67)—

Tensor coupling in the nuclear interaction means that
matrix elements of these operators are to be taken be-
tween eigenfunctions of the total angular momentum, j,
and a mixed representation is introduced such that for
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plane waves with momentum magnitude q one has and P&, '. (r) are the usual tensor spherical harmonics,

(r~q, /sj m, ) = j~(«)&&.,'(r), P&,
'. (r) = ) (lspvjtm~)Yj„(r)~sv) . (69)

in which j~(qr) are the regular spherical Bessel functions Equation (66) then becomes

I(E +i e + (kj' —VH )(r
~

Oo (E + i~)
~
kq, l'sj m~ ) = (E + i e —k, ) j& (k&r)p, , '. (r)

for which kq is a general momentum magnitude in units of )rk /2p; p is the reduced proton mass. In this representation
the Coulomb waves are given by

(r~q, lsjm~)c = (71)

where F~(qr) are the regular Coulomb functions, and Eq. (67) is given by

(E+ i& —7 —(Vc + VH))(r~Oc(E+ ie)~kq, l'sjmq)c = (E+i'c —k) )
Fj (kyar), .

)l's j (72)

Equations (62) and (63) can now be written as

and

(rlOp(E+ i~) ~ki, l'sjm, ) = jt (krr)J, ,' (p) +f dr'(r Go (E +jr) ~r')(r'~t„(E + ir) ~k, , i'rj m) (73)

(r ~Oc(E + ie) ~kz, l'sj mz) c = Xr '(r) i- f dr'(r~~Gt (E+ tr)~~r')(r'~~tttt (E + ir)~kt, t'rjm, )t;,
1T

(74)

respectively. The asymptotic boundary conditions in each case are carried in the Green's functions so that in the
limit ~ ~ 0

(r~Go+(ko) ~r') = —k() ) j((kpr()h(+(kor))Y( (r)Y(* (r ),
lm

where h((z) is a spherical Hankel function, and

.F(k ) II,+(k )

QT QT
lm

(76)

where

H,+(z) = G((z) + iF((z), (77)

in which G~(z) are the irregular Coulomb solutions. Using the properties of the spherical Bessel functions and Eq.
(68) one can show that Eq. (73) is asymptotically

lim (r(Oo (kp) ~k), l'sj m~) = ) (sin(kyar —zl'm)8~ (+ ky(kp, lsjm~~tH~k), l'sjm~ )e' " &. )p(, ' (r) . (7.8)
kyar

j)). similar result is derived from Eq. (74) with the replacement of the argument,

qr m qr —gin(2qr), (79)

and Is

lim (r~Oc(ko) ~kg, I'sjm~)c =

(8O)

) (sin(k) r —)7'In(2kzr) ——l'vr + a'j')bt'i + kx c(ko, lszm~ (tHc~kz, l spmz)c
k T 2

1

i(I(..or —gin(2ko~) ——l~) q ~qmj gXe
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where rl' = yP/ki and the asymptotic form of the regular
Coulomb function, Ej (kir), also contains the phase shift

at . Defining

d2
2 l(l+ 1)+ko- —vH t ko, k~, r

d7.2 7.2

= (kp2 —k,')e' ~'io~+(ki7 ), (89)
(kp lajmi ltHIki t sjmi): (tH(kp ki' kp)}ll'

and

c(ko, &»m~ ~tHc~ki, t sgm&) c —(tHc(ko, ki, ko) }u

(s1)

(82)
fi(ko, ki, r) (90)

in which ip&+(z) are Riccati-Hankel functions. The solu-
tions of Eq. (89) are constrained to have the asymptotic
forms

time reversal invariance then gives

(t+(kp, ki, kp)}'„=ft+(ki, kp, kp)}',;, ,

so that Eq. (82) is equivalent to Eq. (49). Thus, the
half-off-shell elements of tHc can be obtained from the
asymptotic solutions given in Eq. (80). Note that the
substitution ki ——kp therein gives the correct on-shell t
matrix elements.

Solutions of Eqs. (70) and (72) involve the ansatz

Clearly for kz ——kko, these are the irregular solutions
of the Schrodinger equation, given by the Jost solution,
fi(+kp r) = fi(kp +kp r). For the Coulomb modified
solutions, one merely makes the replacements

ur&+ (kir) +

H&+ (kir) in Eq. (89) [where H&+ (z) is defined by Eq. (77)]
and kir + kir —i!ln(2kir) in Eq. (90).

III. INCLUSION OF THE T MATRICES IN THE
PROTON-PROTON BREMSSTRAHLUNG

CALCULATION

(rl~'(ko) lki, t'»m, ) = ).«(ko k )&.'( )
kyar

(84)

in accordance with the asymptotic form of Eqs. (78) and
(80), and substituting this into Eqs. (70) and (72) yields
the radial equations

2 + kp —
2

—VH «& = (ko —ki)ui(kir)bi i,(
t(&+ 1)

(s5)

where ui(z) = zji(z) are the Riccati-Bessel functions,
and

z + kc — i —(Vc +Vc)) Acr
d 2 t(l+ 1)

= (kp —ki2)F)(kir) bi i . (86)

( +(k k k )} ~("p
~

fi("o i) —fi( o —i) (87)
(ki ] tiki f)(kp, kp)

where

kl e—il~/2(2) + 1)
fr(ko, ki) =

~~
lim r f~(ko, ki, r) . (88)2k+ 1!!

The fi(kp, ki, r) are solutions of the equations

Thus to determine the hadronic half-off-shell t matrix ele-
ments, with or without Coulomb corrections, a procedure
similar to that of the usual matching problem for the on-
shell t matrix can be used. Essentially the only difference
is that the Schrodinger equation now contains an inhomo-
geneous term. Alternatively the half-off-shell elements of
tH and tHc may be obtained [36] from the small r behav-
ior of the off-shell Jost solutions, fi(kp, ki, r). Consider-
ing uncoupled channels for simplicity, one has with this
alternate scheme

To develop the complete ppp 7 matrix amplitude,
the Gell-Mann —Goldberger two-potential formalism [35]
is used with the electromagnetic interaction, V, , and
the nuclear T matrix operator. Therewith, the total
bremsstrahlung transition operator 7 is given by

7 = V m+ [T (Ef)]tG+(Eg)V ~+ V, G+(E;)T+(E;)
+[T (Ef)]tG+(Ey)V, G+(E;)T+(E;), (91)

in which the indices i and f refer to initial and final pro-
ton states, respectively, the (-) and (+) superscripts refer
to incoming and outgoing boundary conditions, respec-
tively, E is the energy of the two protons, and G(E) are
the propagators for the protons. As the leading term
represents radiation by a &ee particle, it does not con-
tribute to calculations. The second and third entries are
the single scattering terms while the last is the rescatter-
ing term.

In the current work the rescattering term is calculated
using the modified soft photon approximation (MSPA)
[23] in order to simplify the numerical integration. Exten-
sions have been made to second order in the rescattering
spin correction terms [45]. The pure Coulomb (Tc) am-
plitudes are very small for the energy domain in which
the rescattering term becomes relevant and have been
neglected. However, the more important Coulomb cor-
rected hadronic T xnatrix has been included by direct
substitution (TH ~ THc) in the rescattering amplitude
and thus leaves the forxnal expressions unchanged.

As developed, the Coulomb interaction enters the nu-
clear T matrix as per Eq. (5). The total 7 matrix el-
ements are to be constructed with the relative motion
proton states ~p, 8, M) and photon states ~k), with p,
S, and M being relative proton momentum, total spin,
and spin projection, respectively, while k is the photon
momentum. Using subscripts 1 and 2 to represent the
incoming protons and the primed subscripts for the out-
going protons, the amplitude from the single scattering
terms is
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(S,M,
~ ~

S ) - (S"M" -', (r i —p2 —k) IT (Ex)12(pi —p2) S™)&S"M"IV'-'ISM)
(Es —E~, -) —E~.)

+
(S"M",2(pi —p2+ k)iT (Ey)i 2(p, —p2), S'M')*(S"M"iVQiSM)

(E~ E E ~)

(S'M'iVQ iS"M")(S"M",
2 (pi —p2 + k) iT+(E;)

i 2 (pi —p2), SM)
(E, —E ~ „—E )

(s'I'I&'" l~"I")(~"I"i(PI Ps &)I&+(@)ll(vi —r ~) +M)
)I(E. E, E, )P1 P2+k

in which the energies are E~ = g(pc)2 + (mc2)2. Two forms of nuclear T matrix elements,

(S'M', p'iT+(Ep) ip, SM) (93)

(S'M', p'iT (E~) ip, SM)' (94)

enter according to whether the initial or final state is on shell. Parity conservation and the antisymmetry of the wave
function restrict them to having no singlet-triplet transitions, whence S = S.

We substitute Eq. (5) into these amplitudes and make partial wave decompositions of the THc components, viz. ,

(sv p I[TH~(Ep)]+I» sv) =—
pl I TTl~ fry~

tran~
g

(s+1+1 odd)

i' ' [THg(p', p;Ep)]~,'(' '+(lsmiv~jm, )(l'sm( v'j~m, )Yi*, (p)&j „(p'),

in which the equations are antisymmetrized. The partial
wave amplitude boundary conditions are related via

([T(p', p;En)1('&' l' = [T(I',p;Ep)]', ;" (96)

so both elements [Eqs. (93) and (94)] are given by

[THc(p', p; Ei, )]i,'i +. For the pure Coulomb ampli-
tudes, antisymmetrization gives

(SM'i T~ (Ep) i
SM)

for the half-oK-shell case, where [Tg(p)]+, is given by

Eq. (56), and

(SM'iT~ (Ep)]SM)

= ([T~(~)],+ + (—1)'[T~(~ —~)],+}~M M (98)

for the on-shell case, where [T( (()))]+ is given by Eq. (17).
In order to evaluate the observables for the four nu-

clear amplitudes in Eq. (92), the z axis may be taken to
lie along the incident beam, p, and subsequently each ma-
trix element rotated from its individual reference frame
to the overall gory c.m. frame with quantization along a
chosen single axis. However, inclusion of the rescattering
term in the MSPA makes it most convenient to use Eq.
(95) and thus to avoid rotating the amplitudes.

IV. RESULTS AND DISCUSSION

In all of the calculations, the results of which are pre-
sented herein, all single scattering amplitudes, the rescat-
tering terms, relativistic spin corrections (RSC), and ex-
act half-ofF-shell T matrices derived from the Paris in-
teraction [18] have been used. The center of momentum
frame of reference (c.m. ) has been used in these evalua-
tions whence the rescattering terms, being proportional
to the c.m. momentum to leading order, are smallest.

To demonstrate the role of Coulomb forces in calcu-
lations of pp bremsstrahlung, we compare the results
of four model prescriptions. The complete calculations
based upon the theoretical development given in Sec.
IIC, and so including the exact half-ofF-shell Coulomb
and the half-off-shell Coulomb modified hadronic (two
proton) T matrices, gave the results designated hereafter
by "full Coulomb. " The results found from calculations
as detailed above but with the free hadronic t matri-
ces (solutions of the Lippmann-Schwinger equation) are
identified by the label "simple Coulomb. " A third set
of calculations was made with no Coulomb efFects taken
into account at all and are identified by "no Coulomb. "
Finally, we have made calculations using the approxima-
tion proposed by Workman and Fearing [20) which is a
simple Coulomb calculation, but with the pure Coulomb
T matrices themselves taken to be on the energy shell.
The results of this fourth type of calculation are denoted
by "on-shell Coulomb" and are described by Eqs. (17),
(24), and (29).
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Calculations of the photon angular distribution cross
section and analyzing powers (A„) have been made us-

ing the coplanar, symmetric geometries with the specific
proton scattering angles (30', 30'), (12', 12'), and (5',
5 ), or a similar geometry when data were available.
The measurables have been calculated for incident en-

ergies of 5, 42, 157, and 280 MeV, and are presented
in Figs. 1, 2, 3, and 5, respectively. In these diagrams
the full Coulomb, no Coulomb, simple Coulomb, and on-
shell Coulomb results are displayed by the solid, dotted,
dashed, and dot-dashed curves, respectively. Also, with
cross sections given in the left-hand and analyzing pow-
ers in the right-hand panels, the 5', 12', and 30 proton
angle cases are displayed in the bottom, middle, and top
segments, respectively.

The 5 MeV results are given in Fig. 1 &om which it is
evident that the full Coulomb cross sections have a typi-
cal electric quadrupole shape [26] but are approximately
one half the size of the very similar results of the no
Coulomb and simple Coulomb calculations. Obviously,
the major Coulomb contributions come from the correc-
tion to the hadronic T matrix at all proton angles. But
the on-shell Coulomb result is sizeably different as the
proton angle decreases and has already become invalid by
(12', 12'), growing worse at more forward angles. The
divergence is not evident in the 5' cross section graph as
it is two orders of magnitude larger in scale. This refIects
the on-shell divergence of the pure Coulomb T matrices
for forward scattering. It is also noted that our results
are markedly larger at the forward proton angles than
comparable ones found by Heller and Rich [14], which
we attribute to their use of the Hamada-Johnston inter-
action.

The analyzing power results shown in Fig. 1 are sin-

gularly uninspiring. With the exception of the erroneous
on-shell Coulomb result at small proton angles, the an-

alyzing powers are unlikely to be measurably different
&om zero. Nevertheless the cross section magnitude
strongly refiects the Coulomb modification of the NN
t matrices fmm their no Coulomb values.

The results obtained with an incident energy of 42
MeV are displayed in Fig. 2. For the largest proton
angle (30'), the Coulomb effects have become irrelevant.
All four model calculations yield cross sections which are
essentially indistinguishable. The discrepancies with the
data noted by Workman and Fearing [20] for these copla-
nar geometries at 42 MeV are obviously not resolved
by inclusion of the Coulomb and rescattering correction
terms, but are rather due to the binning and resolu-
tion errors described in Ref. [46]. The associated analyz-
ing powers are likewise indistinguishable for (30', 30'),
but at the other angles the differences between the full

Coulomb, no Coulomb, and simple Coulomb model re-
sults are noticeable, although quite reduced in compari-
son to the 5 MeV case. At the smaller proton angles the
on-shell Coulomb result again diverges markedly. The
lesser importance of the Coulomb effects makes this ap-
proxirnation a better one than at 5 MeV, but it is still
too poor at (12', 12'). The analyzing powers are not suf-

Bciently difFerent, it seems, for such measurements to be
able to discriminate between the other three model calcu-
lations. Nevertheless, at 42 MeV as well, it is important
to treat the Coulomb effects properly as the gross on-
shell Coulomb calculation remains very problematic for
proton scattering angles below 20'.

The 157 MeV results are shown in Fig. 3. As noted
previously [26], the magnetic component of the electro-
magnetic transition operator becomes more important
with increasing energy and is dominant especially for for-
ward proton scattering. This is evident from the change
in qualitative behavior of the cross section at the forward
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FIG. 1. The 5 MeV pp7 photon cross section (left) and
analyzing powers (right) for proton scattering angles of 30'
(top), 12' (middle), and 5' (bottom). The results of calcu-
lations made using the "full Coulomb, " "no Coulomb, " "sim-
ple Coulomb, " and "on-shell Coulomb" prescriptions are dis-
played by the solid, dotted, dashed, and dot-dashed curves,
respectively.
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FIG. 2. Same as Fig. 1 but for 42 MeV. Data are taken
from Ref. [47].
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the top panels. Data are taken from Ref. [7].

»m THc(q, p';E~ ) = lim THc(q p 'Ei, ) = 0
q —+0 p' —+0

whereas the pure hadronic So T matrix remains finite for
small on-shell and ofF-shell momenta. Consequently, the

proton angles. The cross section barely distinguishes any
Coulomb contributions and the on-shell Coulomb cal-
culation is vastly improved compared to the (12', 12')
at 42 MeV. The analyzing powers now have distinctive
and measurable magnitudes that increase markedly for
forward proton scattering. The decreasing importance
of the Coulomb interaction with increasing energy for

ppp competes with the growth of A„at the forward pro-
ton angles. Quantitatively, the largest Coulomb effects
to the analyzing power occur at roughly 160 MeV and
(5', 5'). The full Coulomb, no Coulomb, and simple
Coulomb results are all very similar and are quite dif-
ferent from the on-shell Coulomb model result. In sum
though, the specific Coulomb effects are quite small at
this energy and furthermore, the (5', 5') cross section
becomes quite featureless and contains little discrimina-
tory information, in contrast to A„. The rapid decrease
in the Coulomb effects coincides with the suppression of
contribution from the So two-nucleon channel. This
is apparent from simple kinematical considerations. In
general, the bremsstrahlung amplitude in the c.m. is
dominated by the process in which the photon is emit-
ted before the strong interaction [first two terms in Eq.
(92)]. These nuclear T matrices are on the energy shell
for the relative momentum of the two outgoing protons
p' = 2[pi —p2]. For a given incident energy, this quan-
tity is small at forward proton angles and photon emis-
sions near the incident axis. Thus the relative S-wave
contribution of the amplitude and the magnitude of the
pure Coulomb T matrix [Eq. (56)] are enhanced. More-
over, the hadronic Coulomb correction is also increased
at small p' and, particularly for the S channel,

U
CV

0)

C4

b

3.0

2.0—

30 60 90 120 150 180

0 (deg)

FIG. 4. The photon cross section data from 157 MeV pgry

in the "Harvard noncoplanar geometry" [13] for (30', 30')
with diverse noncoplanar angle, 4). The solid, dashed, and
dotted curves give the results with P being 0', 0.5, and 1.0',
respectively. The dot-dashed curve is the P = 0.5' result
when rescattering terms are neglected. Data are taken from
Ref. [7].

Coulomb barrier reduces the hadronic S-wave amplitude
at small momenta; the effect of the hadronic Coulomb
correction is destructive in kinematic situations charac-
terized by small p' and S-wave dominance. This can
clearly be seen from the cross sections in Fig. 1 and the
(12',12') and (5',5') diagrams of Fig. 2.

The magnetic transitions of the singlet channels are
also very weak whence the variation (with proton an-
gle) of cross sections from typical electric quadrupole to
magnetic dipole character is consistent with the other
observations of iSo channel suppression [26].

The cross section data shown in Fig. 3 were measured
with a noncoplanar acceptance angle, P, of 0 to 1' in the
"Harvard noncoplanar geometry" [13]. In Fig. 4, the full
Coulomb cross sections we find from calculations using
the coplanar (0'), midrange (0.5'), and limit (1') values
of that acceptance are compared with the data. These
results are displayed by the solid, dashed, and dotted
curves, respectively. Clearly the current data set does
not distinguish readily between those results although the

per data point values are 1.94, 1.79, and 2.,00, respec-
tively. Also shown, by the dot-dashed curve, is the cross
section one obtains when the rescattering corrections are
omitted from the otherwise full Coulomb P = 0.5', non-
coplanar calculation. This curve gives a y per data point
fit of 2.67 specifically.

By energies near pion threshold, the Coulomb effects
are hardly essential to predict either cross sections or an-
alyzing powers. This is evident in Fig. 5 wherein the 280
MeV results are displayed. Again the on-shell Coulomb
model fails abysmally at the very forward proton scat-
tering angles (of 5'), but the notable feature is the im-
provement of that model calculation to the point where,
for (12', 12'), the divergence is not yet dominating the
total 7 matrix amplitude. This is also evident for the
analyzing powers with data shown from the (14', 12.4')
TRIUMF measurement. All model calculations provide
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FIG. 7. The coplanar (5', 5') photon cross sections calcu-
lated with the "full Coulomb" model and for 5 MeV (solid),
42 MeV (dashed), 157 MeV (dot-dashed), and 280 MeV (dot-
ted).

FIG. 5. The coplanar 280 MeV ggry photon cross section
(left) for proton scattering angles (Hq, Hz) = (2?.8', 28') (top),
(12.4', 12') (middle), and (5', 5') (bottom), where Hz is for
the "low-energy proton, " detected on the same side of the
beam line as the photon. The analogous analyzing powers
are shown in the right panels except that for the middle panel

(Hq, Hz) = (12.4', 14'). The results of calculations made using
the "full Coulomb, " "no Coulomb, " "simple Coulomb, " and
"on-shell Coulomb" models are displayed by the solid, dotted,
dashed, and dot-dashed curves, respectively. Data are taken
from Ref. [16].

a good 6t to the data. Shown in Fig. 6 are four calcula-
tions for the 280 MeV (14', 12.4') analyzing power, A.„,
wherein the full Coulomb result is given by the solid curve
and the same calculation, but excluding rescattering con-
tributions is given by the dashed line. The dot-dashed
and dotted curves shown therein are the results of the
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FIG. 6. The 280 MeV analyzing power for (12.4', 14')
coplanar geometry. The "full Coulomb" results with and
without rescattering terms are represented by the solid and
dashed curves, respectively. The "on-shell Coulomb" pre-
scription with and without rescattering terms gave the results
displayed by the dot-dashed and dotted curves, respectively.
Data are taken from Ref. [16].

complete on-shell Coulomb calculation and the same cal-
culation without rescattering, respectively. The latter is
the model used by Workman and Fearing [20j and lies
closer to the full Coulomb curve than the dashed line al-

though addition of the rescattering terms alters the result
markedly at the forward photon angles. The exact treat-
ment of Coulomb effects is slightly less important at this
energy and geometry than the inclusion of rescattering
contributions.

Finally, the energy variation of the 5' proton cross sec-
tion and analyzing power is shown in Fig. 7. Only the
full Coulomb results are shown with the different energy
cases identified by the solid, dashed, dotted, and dot-
dashed curves for the 5, 42, 157, and 280 MeV values,
respectively. The cross sections reveal the trend from
electric quadrupole to magnetic dipole character with in-
creasing energy. The energy variation in the 20'-30' pho-
ton angle region grows from 0.1 to 0.4 pb/sr rad over this
range and as such could easily be discerned by measure-
ment. The same angular range gives observable changes
with the analyzing power, although this observable be-
comes appreciable in size only for energies in excess of
100 MeV.

Physically, the small sensitivity of the ppp reaction ob-
servables to the Coulomb interaction at higher energies
refiects the closer approach of the colliding protons in the
process. For a given geometry, the Coulomb effect on the
ppp observables becomes less important with increasing
energy of the projectile. On the other hand, if the en-

ergy is fixed, Coulomb effects are enhanced at forward
proton angles, i.e., in the region of small p', large photon
momenta, and thus large off-shell effects. For energies
near pion threshold, however, Coulomb effects are rela-
tively small, even for the analyzing power in the extreme
off-shell domain.

V. CONCLUSIONS

The purpose of this study was to de6ne and assess,
as fully as possible, the effects of the Coulomb interac-
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tion in pp bremsstrahlung. To this end, we defined the
two proton Coulomb t matrices half off of the energy
shell and their hadronic t matrices in a Coulomb basis as
is required from use of the Gell-Mann —Goldberger two-
potential formalism. Those t matrices were used in the
single scattering terms for ppp. Our full Coulomb calcu-
lations also included RSC and rescattering terms. With
the latter, as we evaluated transition amplitudes defined
in the c.m. kame, Coulomb effects are expected to be
small and were ignored. Coplanar, symmetric scattering
was considered in particular.

The proper treatment of Coulomb effects is most im-
portant at low energies and for forward proton scatter-
ing. At the lowest energy considered (5 MeV), the full
calculation gave cross sections that were half the size of

those found without Coulomb effects or with a simple
model approximation to them. With increasing energy,
the cross sections changed to those characteristic of mag-
netic interaction dominance and the specific differences
due to Coulomb effects diminished. At pion threshold,
where the So two-proton channel is least important, the
cross sections are essentially independent of the inclusion
of Coulomb terms. But the on-shell approximation for
Coulomb amplitudes is very poor at all energies due to
its forward scattering divergence. The analyzing power
is less revealing of exact Coulomb effects since at low en-

ergies all results are extremely small in magnitude. It
is unlikely that experiments could discriminate between
our full results for the analyzing power and those found
with no Coulomb effects at all.
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