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EfFects of the three-body force in three-nucleon systems
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The effects of the three-body force are investigated in the three-nucleon systems. The three-
body Faddeev equation is completely solved with a phenomenological three-body force which can
reproduce the triton binding energy. The adopted two-body force is the PEST potential (or the
Ernst-Shakin-Thaler's separable expansion of the Paris potential) up to J = 2. Calculated results
of the differential cross section, and the values of the doublet and the quartet n-d scattering lengths,
agree very well with the experimental data. The calculated three-body-force effects on the N-d
scattering observables A„, iTqq, T20, TqI, Tqq are also discussed together with the Doleschall-type
Coulomb correction.

PACS number(s): 21.30.+y, 21.45.+v, 25.10.+s

The necessity of the three-body force has been claimed
by a number of investigations. Phillips observed a strong
correlation among the theoretically calculated n-d spin-
doublet scattering length sa„d and the triton binding en-

ergy [1].Slaus et aL claimed that the three-body force is
necessary to obtain consistent values of the a„„scattering
length from the reactions 2H(n, p)nn and H(p, s )nn
[2,3]. It was also mentioned that the discrepancy be-
tween the experimental and the theoretical triton bind-
ing energies and other observables which are related to
the triton wave function can be removed by the three-
body force [4—8]. In scattering problems, a few theoreti-
cal treatments have been carried out on the cross sections
and other related properties [9,10]. Non-Faddeev-type
approach to three- and four-nucleon calculations at neg-
ative energies has been extensively used by some authors
until the 1970s [11].

In this paper, we propose a new systematic treatment
to obtain the full calculation with the Faddeev equa-
tions using a three-body foce. Generally, the three-body
Faddeev equations are modified by the three-body force
amplitude (3BFA) which is obtained by the two-variable
Lippmann-Schwinger (LS) type equation with the three-
body force (3BF) [12—16]. Our treatment will not only
represent some well-known three-body equations but also
the probable interference between three-body force and
the Coulomb force will be foreseen. Therefore, in the
following, we will dare to trace them from the beginning.

Let us introduce modified Faddeev equations from the
three-body Hamiltonian with two-body forces V = V +
Vp + V~, and the three-body force W,

with

0 = p+ GsVO = p+ GsTV' (3)

Gs ——(E —Hp —W) (4)

where the boundary condition is given by

(E —Hp —W)y = 0.

The solution of this equation satisfies another IS equa-
tion by using the three-body Bee Green's function Gp ——

(E —Hp) i. This equation is

p = (pp + GpWp = pp + GpTppp = 4)pp, (6)

where u is the M@ller operator, and To is the 3BFA de-
fined by

Tp = W + WGsW = W + WGpTp

= W(1+ GpTp) = W(u

= (1+ToGo)W = (u'W,

Now, the three-body free to three-body free (or (3) -+
(3)) transition matrix is defined by

(p V0) = (p Tp) = (po ~'T~vo).

where Gs is the modified Green's function or the resol-
vent with 3BF which satisfies also

Gs —Gp + GpWGs = Go + GpTpGp = aGo = Gpa'.

(8)

The Schrodinger equation is given by

(E —Hp —W)@ = VQ. (2)

From Eqs. (3), (6), and {9),one obtains an operator equa-
tion

~'Tu) = o)'Vcu + cu*VG3Tu).

The formal solution of this equation satisfies the three-
body Lippmann-Schwinger (LS) equation,
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Here, ur'Ter corresponds to the (3) m (3) transition op-
erator. On the other hand, the elastic and the rearrange-
ment amplitudes are given by the (2) -+ (2) operator,
and the breakup amplitudes are given by the f2) -+ (3)
operator. In order to obtain the n+ d -+ n+ d scattering
amplitude, one should adopt the three-body operator T
instead of u'Tcu. Separating the M@ller operators &om
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both sides of Eq. (10), one obtains the three-body LS
equation

T = V+VG3T.

By the separation of the three-body amplitude T = T +
T~ + T~, the Faddeev equation is given by

T = T + T Gs(T + T7) + T (Gs —Gp)T . (12)

Upon further expanding the amplitudes T = P& T p,
one obtains the following modified Faddeev equation in
matrix form:

T p = T b p + ) T GsT7p + T God)GpT p. (13)
YW~

In order to obtain connected equations, let us introduce
operators U p and u p, which are defined by

Uap Tap Ta ~ap —Ta GO&ap GOTp. (i4)

By using Eqs. (12) and (13), it is seen that the operator
satisfies the following equations:

U P = T GPTPb P + T GPTPGPTP ) T Gob 7U7P

+) T GPTPGPU7P
7

withb p = 1—b p. Here, the second and the fourthterms
of the right hand side are extra operators which should be
emphasized in this paper. Introducing the separable ex-
pansion of the two-body amplitude by T = g 7. g, one
finds that the operators U p can be written as follows:

Uap —ga&a+ap7pgp ~ (16)

Here X p satisfies the Amado-Lovelace-Mitra (ALM)
equations [17] which are modified by 3BFA, i.e.,

Xop = Zop + ) Zo777X7p)

where the three-body potentials Z p are given by

Z~p —Z~p + Z~p

u p = (Go 'b
p + Tp) + Q(Go 'b 7 + Tp) GpT7Gpu7p

with Z'& ——g Gogpb p and Zop = g GpTpGogp ~ Equa-
tion (17) with (18) as a simple reduction of our operator
equation (10) is the same one as Eq. (3.3) of Phillips
[1] which was also rediscovered by some authors later on
[10]. Likewise, the Alt-Grassberger-Sandhas equations
are written by using Eqs. (14) and (15) [18]

equation. For the purpose of seeing the three-body-force
effects in the quickest way, we assume in this paper a
simple phenomenological 3BFA instead of solving Eq. (7):

6 = —= 0.0567 fm .
A2 (21)

H binding energy. The remaining parameter Ao is
fitted to obtain the experimental triton binding energy
H(BE). To this end we adopt the PEST1 iSo, sSi-

sDi potentials [19] for the Faddeev calculation, which
gives —7.46 MeV without 3BFA. Here, the calculation
was done by using the three-body generalized-separable-
expansion (GSE) method with 30 Gaussian points [17].
Results with and without 3BFA are shown in Table I. We
find that the use of Ao = —69.98 fm yields the experi-
mental value of —8.48 MeV.

n-d scattering length. The n-d scattering length has
been calculated by many authors [1,4,20—26]. The quar-
tet state n-d scattering length was well represented; how-

ever, the doublet-state result did not fit the experiment
except with the introduction of a sophisticated unphys-
ical pole near the threshold-energy region [21,23,24] or
three-body forces [1,4]. We confirm that our 3BFA can
reproduce both of them by the same parameter as in
the binding-energy case. Results are also listed in Ta-
ble I. The quartet-state scattering length is not strongly
affected by the 3BFA. On the other hand, the situation
in the doublet-state case is quite difI'erent; here the scat-
tering length is strongly influenced by the 3BFA. (See
Fig. 1.)

Digerentiat scattering cross section. The difFerential
scattering cross sections are calculated at neutron labo-
ratory energies of 2.5 and 5 MeV. Here, the channels and
potentials used are the same as in the 3H binding-energy
case. It is well known that the elastic cross section is
dominated by the quartet state [27]. However, our 3BFA
has a strong influence in the doublet state, but not in the
quartet state. Thus, the total cross sections are hardly
affected by 3BFA, although it can be seen from Fig. 2

TABLE I. The triton binding energy and the scatter-
ing lengths a g and a g of the n-d spin-doublet and
spin-quartet states. The calculations are carried out by using
the GSE method. The PEST1 potentials for So and Sq- D~
states are adopted. The results are obtained by taking into
account the three-body force amplitude (3BFA) with param-
eters Ao and b = 3a/4 = 0.0567 fm in Eq. (20).

To(p, q; p', q'; E) = Ao exp( —a(p + p' ) —b(q2 + q' )).
(20)

Because of this 3BFA must be strictly distinguished &om
3BF. For the sake of three-particle exchange symmetry,
we choose a = 4b/3 Th.en, the unknown parameters are
Ao and b. Furthermore, the range parameter b is related
to the well-known cutofl' parameter A = 800 MeV [4—6]
or

(19)

In our formalism, 3BFA (To) is obtained from 3BF
(W) by solving Eq. (7) which is a two-variable integral

Ao (fm )
0.0

—69.98
exp

H (MeV)
—7.46
—8.48
—8.48

'a g (fm)
1.56
0.662
0.65+0.04

'a„g (fm)
6.21
6.21
6.35+0.02
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FIG. 1. The values q cot$ for spin-doublet and spin-quartet
states. The dashed lines represent values mithout the
three-body-force amplitudes (SBFA), while the solid lines rep-
resent values with 3BFA. For the quartet state, the dashed
and solid lines overlap.

that our results are in very good agreement with experi-
mental values [28].

Polarizationa. %e are also interested in examining the
efFects of 3BFA on other scattering observables such as
the nucleon polarization Az, the deuteron polarization
iTqq, and the deuteron analyzing powers T2o, T2q, and
T22. It is vrell known that A„, irxly T2oy an~ T21
greatly affected by the p-wave nucleon-nucleon forces [29].
In the present work, we adopted PESTl potentials for

So, Sq- Dq states, PEST2 for Py, Po,
states, and PEST3 for "'Pz- Es states I.t is clear from
Figs. 3—5 that 3BFA strongly affects the quantities A„,
iTqq, and Tzs. Here, we have partly changed the value of
the parameter Ao (

—69.98 fms and/or —72.7 fm ) to see
the sensitivity to the sH binding energy; however, the
difference was within the drawing accuracy in Figs. 2—
4. Further one should expect that the p-wave N-N force
will also be coupled with higher partial waves of a realistic
3BFA.

p+ d scattering neith the Coulomb force In th. e p+ d
scattering, the above-mentioned formalism f'rom Eq. (1)
to Eq. (ll) are also available, because the potential W is
replaced by W(= W'+ V,), and also To by 7 (= To+ T, =
To + u't, u = W + WGsr = WQ = O'W), where

Vc + Vggstc with gs ——(E —Ho —W), and
the M@ller operators are given by 0 = (1+ Go+ and

du
dQ
(mb)
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FIG. 2. DifFerential cross sections of n-d elastic scatterings
at E„(lab) = 2.5 and 5.0 MeV. Solid lines are obtained with-
out 3BFA, while the dashed lines are obtained with 3BPA.
Calculations are done by using So, Sy- Dj PEST1 poten-
tials. Dotted line represents the experimental data given in
Ref. [28].

PIG. 3. The upper half is the proton polarization A„at
E~(lab) = 2.5 MeV. The solid line is the calculated results by
using PEST1 NN potentials for So, S~- D~ states, PEST2
for Pq, Po Py& Dg Dg states, and PEST3 for Pq- Fq
states, but without 3BFA. Dashed line is the value obtained
by using the same N-N forces plus 3BFA. The Coulomb cor-
rections were done by using Doleschall's technique. The ex-
perimental values are taken from Ref. [28]. The lower half
is the deuteron polarization iTqq at Eg(lab) = 5.0 MeV. The
other explanations are the saxne as those for A„.
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FIG. 4. Deuteron analyzing powers T&0 and Tz& at
Eq(lab) = 5.0 MeV. The explanations are the same as those
in Fig. 3.

0* = (1+7 Go). Therefore, in Eq. (10), u'Ter is sub-
stituted by O'TA, where T satisfies Eq. (11) with the
modified Green's function gs. Therefore, parameters of
the 3BFA will be fitted to the binding eaergy of He in the
framework of modified form of Eq. (18) for T. Such treat-
ments may be carried out by an appropriate Coulomb
correction method with a screened Coulomb potential.
However, if we assume that Coulomb effects in the term
~'t,~ could be separated into the long-raage part and the
short-range one, the short-range part may decrease the
three-nucleon binding energy, while the long-range part
modify the phase shift in the initial and the final state.
The former suggests that the outcome may be given by
using small modified parameters in 3BFA without the
rigorous three-body Coulomb amplitude. For the latter
assumption, an ad ho@ approximation for the long-raage
Coulomb parts was given by Doleschall et nl. , [30,31],
although geauine n-d scattering amplitude was used in
their method. In the preseat work we adopted the Do-
leschall approximation for simplicity (see Fig. 5). Due
to the replacement of the potential by W = W + V, it
seems that the cancellation between the Coulomb force
and 3BFA could appear in our formalism. One may see
it in the results of T22.

The aim of this paper is not to obtain a good phe-
nomenological 3BFA with many fitting parameters, but

FIG. 5. The deuteron analyzing power Tsg at Eg(lab) = 5.0
MeV. The calculations shown in the upper half plane are done
by using So Sy- Dy PEST1 N-N potentials, and also with
3BFA (solid line), and without 3BFA (dashed line). The cal-
culations shown in the lower half plane are carried out by
using the same N-N forces plus the Coulomb force. The
dashed line is obtained without 3BFA, and the solid line is
with 3BFA. The experimental data were taken from Ref. [28].

to call our attention to the effects of the 3BFA in the scat-
tering region. For our conclusions, it should be stressed
that genuine 3BFA should be obtained by solving Eq. (7)
with a three-body force. Nevertheless, our simple two-
parameter 3BFA is working well in the 3N calculations
and can represent the experimental data systematically.
It is clear from the present work that the 3BFA affects 3N
systems not only in the H binding energy but also in the
scattering properties. Our modified Faddeev equations
have diagonal terms in the kernels (Z = Zo P 0).
Such terms are not allowed in the genuine Faddeev equa-
tions because of the compactness property of the ker-
nel. More precise calculations with Coulomb force and
realistic three-body forces will also be carried out in the
scattering region.

This work was done by using IBM 9121/320 of Science
University of Tokyo, FACOM M1800/20 computer of
Kyushu University, FACOM M780/10S of INS (Tokyo),
and also FACOM M380R of RCNP (Osaka).
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