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Deep inelastic scattering on the deuteron in the Bethe-Salpeter formalism:
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The deep inelastic scattering on the deuteron is considered in a fully covariant field theoretical
approach. A11 calculations are performed in the Bethe-Salpeter formalism and the Wilson operator
product expansion method within an effective meson-nucleon theory. By the operator product
expansion method we obtain an explicit form of the nucleon contribution and mesonic exchange
corrections to moments of the deuteron structure function I'2 . The structure function of the
deuteron is recovered by the inverse Mellin transform of the moments and is presented as the
sum of two convolution terms, viz. the nucleonic (relativistic impulse approximation) and mesonic
(contribution of the meson exchange currents) ones. The sum rules for the baryon number and
energy-momentum of the deuteron are derived using the normalization condition of the Bethe-
Salpeter amplitude and virial theorem of Geld theory. The numerical estimates of the nuclear effects
in the deuteron structure function in the Bethe-Salpeter formalism are also presented. It is found
that the binding effects of the nucleons are significant and relativistic calculations within the Bethe-
Salpeter formalism are compared with the previous nonrelativistic estimates.

PACS number(s): 25.30.—c, 13.60.Hb, 13.40.—f

I. INTRODUCTION

A. Preliminaries and motivations

The relativistic bound-state problem appears as one of
the most important and interesting in the modern the-
ory of strong interactions. In fact, the hadrons are the
bound states of the quarks, relativistically moving in a
confined volume. Also nuclei age the bound states of the
nucleons, which while much less relativistic than quarks,
may display relativistic properties in high energy pro-
cesses. Since the bound-state problem in @CD is still
unresolved, it is important to study the capability of the
effective theories in both the quark and hadron sectors
(see also recent discussion in [1]). It is feasible that an
investigation of a wide class of bound systems and reac-
tions involving bound systems within different effective
theories may give some clues for the creation of the "true
theory" of the strong interactions.

The relativistic description of the kinematics and dy-
namics of processes with bound systems may be based on
methods of the covariant Geld theory. The most direct
way to a description of the bound states in a Geld theory
lies through a consideration of the Bethe-Salpeter equa-
tion [2,3]. The approaches based on the Bethe-Salpeter
equation, or its approximations, within models using ef-
fective potentials [4,5] (for recent development see, e.g. ,
Ref. [6]), allow a successful description of the mass spec-
truln and the decay widths of mesons as bound systems
of two quarks (the qq system). The Bethe-Salpeter equa-
tion has also been applied to describe properties of the
bound state in the two nucleon system, deuteron [7], and
effective NN forces [1,8—12].

In the present context the deuteron is an exceptional

object for studying the techniques for relativistic bound
states. Indeed, the properties of the deuteron are well-
studied experimentally, and so there is ample information
to check any theoretical scheme. Besides, in the case of
the deuteron, many extra difficulties of the problem of
the relativistic bound state, such as the problem of the
confinement in the qq system, are absent. However, by in-
corporating modifications relevant to the effective quark
models, the methods developed for the case of deuteron
then may be applied to the mesonic states, at least in the
case of heavy quarks.

The present work is devoted to a relativistic theory
of deep inelastic lepton scattering on the deuteron. We
found the investigation of this problem to be useful and
instructive. In particular, it is possible to obtain a fully
consistent covariant description of the process within an
effective meson-nucleon model, based only on rigorous
methods of calculations and well-defined approximations.
Further, the observables of this reaction, the moments of
the structure functions, and its various combinations are
related to rigorous theorems, sum rules, arising from the
general properties of the Geld theory and symmetries of
the interactions. Therefore the consistency of the de-
scription of the reaction may be checked explicitly.

Fully relativistic calculations have obvious advantages
over the nonrelativistic approach [13,14]. First, such cal-
culations are valid in the kinematical regions, where non-
relativistic approximations are simply meaningless. Sec-
ond, a covariant description of the spin degrees of &ee-
dom is preferable in view of the relativistic nature of the
spin (or total momentum of the composite system), and
so we can expect some nontrivial effects in the polariza-
tion observables of reactions. However, at the same time
the deuteron is, essentially, a nonrelativistic system, and
it may be anticipated that the relativistic and nonrela-
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tivistic calculations will be in agreement at the bound-
aries of validity of the nonrelativistic approximations.

Our investigation is partially motivated by a number of
the existing and forthcoming experiments on the deep in-
elastic scattering of leptons by deuterons (SLAC, CERN,
DESY, CEBAF, etc.). A consistent relativistic theory of
this process will help in the analysis of the experimental
data. Of special interest are the spin-dependent structure
functions and structure functions near the single-particle
kinematics, as here we can expect to find differences be-
tween the nonrelativistic and. relativistic descriptions.

B. Formulation of the problem

Our goal is to develop a self-consistent covariant ap-
proach to the inclusive deep inelastic scattering of leptons
on the deuteron within an effective meson-nucleon theory.
Below we give the technical formulation of the problem
and then present a strategy for finding the solution.

The cross section of inclusive deep inelastic lepton
scattering on the hadronic target can be calculated in
terms of the hadronic tensor W„„, which is usually
parametrized in terms of the structure functions Fq 2,
g~ 2, etc. For the unpolarized scattering, for instance,
W„„ is writ;ten as

~~-(» q) = Fi(& q) I
-g~-+ ","

Iq' )
Fz(p, q) t' pq '( & pq

(, q' ) &
q' )

By unitarity, the hadronic tensor is proportional to the
imaginary part of the elastic amplitude of the virtual
photon-hadron scattering [15—18]:

T (p, q) = ~f d zd *(piT(zj (*)S (0))lp), (2)

where p is momentum of the target and q is the virtual
photon momentum (Q = —q ). Thus W„„ is connected
with the diagonal matrix element of the product of cur-
rents on the bound state. So the problem is split into two
relatively independent parts: a description of the bound
state and of the operator to be sandwiched between this
state. Clearly, both these tasks should be considered in
a self-consistent way; i.e., the approach must satisfy the
general requirements of the covariant field theory and all
calculations must be performed within the same field-
theoretical model.

It is well known that an accurate description of both
the NN interactions at energies up to 1 GeU and the
basic properties of the deuteron can be provided within
the meson-nucleon theory [1,7,19,20]. Such a description
can be either nonrelativistic, based on the Schrodinger
equation, or relativistic (or almost relativistic), based
on the Bethe-Salpeter equation or its various approxi-
mations [21]. Therefore we can start from the point of
view that the meson-nucleon theory allows us to solve

the first part of the problem, to describe the bound state
of the deuteron.

As to the second part of the problem, to describe
the interaction operator in (2) within the same meson-
nucleon theory, one must solve the problem of the short-
distance contributions. Indeed, the effective meson-
nucleon theory is the theory for the long-distance phe-
nomena, the phenomena of the nuclear scale. In the deep
inelastic regime, we study, however, the short distances
of the quark scale, and generally speaking, it is a nontriv-
ial problem to describe the phenomena at these distances
within a theory composed of only hadronic fields and pa-
rameters fixed at the nuclear scale. Fortunately, there is a
Geld-theoretical method to separate and parametrize the
short-distance contributions. This is the Wilson opera-
tor product expansion method [22,23]. For large momen-
tum transfers, Q2, the operator product expansion fac-
torizes the amplitude into pieces depending on short- and
long-distance physics. The short-distance terms, the Wil-
son coeKcient functions, which are related to the short-
distance contributions, are parametrized via the proper-
ties for the physical hadrons in this theory, while the long-
distance part is exactly calculable in the &amework of the
meson-nucleon theory [24,25,13,14]. Therefore, combin-
ing a particular formalism for the bound state in meson-
nucleon theory with the Wilson operator product expan-
sion in the same theory, we get a consistent description
of the nuclear effects in deep inelastic lepton scattering.

The idea to describe deep inelastic scattering on nuclei
in terms of the effective meson-nucleon theory was first
realized in Refs. [24,25] for the case of the heavy nuclei
(the "Dirac phenomenology" ) and in [26,13,14] for the
nonrelativistic limit of the theory, where the use of the
Wilson operator product expansion is an essential part of
the method. The attractive feature of such approaches is
a full consistency of the method and the absence of free
parameters, since all parameters are fixed by (i) the nu-
clear physics, such as the N¹cattering phase shifts and
properties of the nuclei, and (ii) properties of the physical
hadrons, such as structure functions of the nucleons and
mesons. This allows a consistent theoretical framework
to be developed to describe the phenomenon, including
matrix elements of the observables, rather than simply
suggesting new calculation schemes. The consistency of
the approach is checked by the charge conservation laws
and virial-like theorems.

In the present paper we utilize the Bethe-Salpeter for-
malism to describe the deuteron, a bound state of two
nucleons. Further considerations are close to previous
developments [24,25, 13,14]. In particular, the following
investigations are needed to solve the problem.

(1) To describe the deuteron as a bound state within
the meson-nucleon theory and the Bethe-Salpeter formal-
ism in the ladder approximation.

(2) To study the behavior of the deep inelastic ampli-
tude at high momentum transfer Q using the Wilson
operator product expansion method in the leading twist
approximation.

(3) To provide an explicit test of the consistency of the
approach by the analysis of the sum rules for the baryon
number and energy momentum.



49 DEEP INELASTIC SCATTERING ON THE DEUTERON IN THE. . . 2313

(4) The derivation of the explicit formulas for the
deuteron spin-averaged and spin-dependent structure
functions.

(5) To calculate the deuteron structure functions in a
realistic meson-nucleon theory (see, e.g. , Refs. [1,11,20]).

(6) To analyze the experimental data, applying the re-
sults of calculations. Special attention should be paid to
the topical problem of the extraction of the spin-averaged
and spin-dependent neutron structure functions &om the
combined proton-deuteron data.

In the present paper we concentrate on the formal-
ism and only some simple numerical estimates, namely,
points (1)—(3) and, partially, (4) and (5). The explicit
expressions for spin-averaged and spin-dependent struc-
ture functions of the deuteron and results of realistic cal-
culations and analysis of the experimental data will be
published in a separate paper.

In this paper we pay particular attention to the non-
relativistic limit of the relativistic approach and its con-
nection with the nonrelativistic description of deep in-
elastic scattering on the deuteron [13,14]. It is clear
that a realistic field-theoretical description of processes
with the deuteron must have a well-defined nonrelativis-
tic limit, since the deuteron is essentially a nonrelativis-
tic system. However, the nonrelativistic reduction of the
Bethe-Salpeter equation is a complex problem by itself.
Here we enunciate only the basic points of our approach
with regard to this question. This gives us material for
comparison and understanding of the relativistic calcula-
tions.

C. Organisation of the paper

problem, and it is simpler and easily applicable to deep
inelastic scattering. In Sec. III A we expand the spinor-
spinor Bethe-Salpeter amplitude in terms of the 16 scalar
amplitudes and obtain the corresponding set of equations
for these amplitudes, which is equivalent to the spinor-
spinor Bethe-Salpeter equation. In Sec. IIIB we extract
the solution for the deuteron state from the full ampli-
tude by partial wave decomposition and analysis of the
quantum numbers of the partial wave amplitudes. A
set of eight equations for the eight amplitudes of the
deuteron state is obtained. In Sec. IIIC we define the
Wick rotation procedure, which transforms the set of
equations into a form appropriate for numerical solu-
tion. Section IIID contains the formulas for the nor-
malization condition of the Bethe-Salpeter amplitude of
the deuteron and nucleonic contribution to the moments
of the deuteron structure function M„(FP).

In Sec. IV A we present numerical estimates of the nu-
clear effects in the deuteron structure function within the
Bethe-Salpeter formalism. The calculations are carried
out in a simplified model, which represents the deuteron
as a system of two spinor nucleons interacting by a scalar
meson exchange. We argue that this model is sufficient
to estimate, quantitatively, the nuclear corrections to the
unpolarized deuteron structure function F2 . It is then
shown that the effects of the binding of the nucleons are
significant and that relativistic calculations within the
Bethe-Salpeter formalism are in agreement with previ-
ous nonrelativistic estimates. In Sec. IVB we discuss
the open questions in the present investigation. These
are under study at this time. Finally we summarize the
main results of the paper in Sec. V.

This paper contains all necessary details to understand
the application of the Bethe-Salpeter formalism to deep
inelastic lepton scattering on the deuteron.

The paper is organized as follows.
Section II is devoted to the formalism describing deep

inelastic lepton-deuteron scattering. Section IIA con-
tains a very brief review of the previous approaches to
the process. Section IIB presents the basic ideas and
main formulas of the approach to deep inelastic scatter-
ing on the deuteron within the meson-nucleon theory.
The results of Sec. IIB can be used in any version of
the meson-nucleon theory, such as in the nonrelativistic
Tamm-Dancoff method, the Dirac phenomenology, or the
Bethe-Salpeter formalism. The calculation of the observ-
ables, such as moments of the structure function M„(F2D)
and structure function F2 in terms of the Bethe-Salpeter
amplitude is presented in Secs. II C and II D, respectively.
In order to check the consistency of the formalism, we
derive, in Sec. IIE, the main sum rules for the deuteron
structure function E2 in the Bethe-Salpeter formalism.
It is shown that the sum rules for baryon charge and
energy momentum are satisfied within the presented for-
malism. The last section of Sec. II is devoted to consid-
eration of the nonrelativistic limit of the approach.

Section III presents the method to solve the Bethe-
Salpeter equation for the deuteron. Our technique is dif-
ferent from the one used previously to solve the deuteron

II. GENERAL APPROACH TO DEEP
INELASTIC SCATTERING ON THE DEUTERON

A. Approaches to the nuclear effects
in deep inelastic lepton scattering

The case of the deuteron is generically related to pre-
vious investigation of the nuclear effects in deep inelas-
tic scattering, including the study of the famous Euro-
pean Muon Collaboration (EMC) effect on heavier nuclei.
Here we give a brief outline of the different approaches to
deep inelastic lepton scattering on nuclei; details may be
found elsewhere [15—17]. The aim of this section is to ex-
plain the difference of our approach from that of others,
which are related to two basic types, such as the nuclear
convolution and Q rescaling.

Very often calculations of the nuclear structure func-
tions (or hadronic tensor) in both the relativistic and
nonrelativistic approaches start &om the so-calIed "con-
volution formula" [15—17], which assumes that the nu-
clear structure function can be represented in the form
of a convolution of the structure functions of the phys-
ical constituent hadrons with their efFective distribution
functions. For example, for the nucleon contribution to
the deuteron structure function E2 one has
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M~/m
F, (») = f (y)F (»/y)dy, (3)

&N

where m and MD are the nucleon and deuteron masses,
respectively, x~ = —q /2pq is the nucleon Bjorken scal-
ing variable, fN~+(y) is the "nucleon distribution func-
tion" with y being the "longitudinal fraction of the
deuteron momentum, " and F2 is the structure function
of the physical nucleon. In spite of its clarity and quasi-
parton interpretation, this formula by itself does not give
a consistent method to calculate the distribution function
f~~+(y) Int.uitively, it is clear that f~~+(y) should be
related to something like the "spectral function" S(p)
giving the probability to find a nucleon (or other con-
stituent) with four-momentum p. To obtain an explicit
form of the distribution f+~+(y), one should solve the
dynamical problem for the bound state of the target nu-

cleus. So our viewpoint is that the convolution formula
may be derived as a result of detailed considerations, but
should not be considered as a basis of one.

Relativistic approaches starting from the convolution
formula [27—29] usually deal with the "relativistic im-

pulse approximation, " which takes into account the con-
tribution of bound nucleons to the nuclear structure func-
tion. Yet as the picture of nucleons interacting through
a potential is essentially artificial or, at least, incomplete
in the relativistic case, these approaches inevitably have
some internal difficulties. For instance, such approaches
have problems with the normalization conditions for the
distribution functions [28] and/or the recovery of the non-
relativistic limit [27].

An interesting attempt at a consistent analysis of the
process is given within the light-front-dynamic approach,
where the nucleus is considered as a compound system
of nucleons and mesons [30]. It is shown that the struc-
ture function of the nucleus is a linear functional of the
nucleon and meson structure functions if we assume that
the pions and nucleons contribute incoherently, i.e. , if
we assume the validity of the convolution-type formula.
Then the effective distribution functions are expressed in
terms of the relativistic wave functions of pions and nu-

cleons in nucleus. In practice, however, both the nucleon
and meson components of the nuclear structure function
are approximately calculated by using the nonrelativis-
tic momentum densities of nucleons and mesons in the
nucleus.

Within the usual nonrelativistic nuclear physics,
Eq. (3) is the basis for the x-rescaling model [31,32].
The main idea of the x-rescaling model is based on the
well-known fact that the properties of quasiparticle nu-
cleons differ from those of free nucleons. In particular,
the bound nucleons have an effective mass depending on
the shell energy. This leads to the renormalization of the
scaling variables x~ —i (m/m*)x~. The formula of the
model for the deuteron case is [13,26]

where @D(k) is the deuteron wave function. All the nu-
clear structure effects in (4) are encoded in the definition
of y. The x-rescaling approach presented by relations
such as (3) and (4) is consistent with the experimental
data for heavy nuclei (see, e.g. , [33,34]), but to some de-
gree is phenomenological in nature. However, it faithfully
catches the essence of the EMC effect.

The main distinction of this model is that the bound
nucleons carry only a part of the total momentum of the
nuclear target, i.e. ,

(y) = (1+sLi/m —(k )/2m + (ks)/m ) ( 1 .

The remaining part of the total momentum is attributed
to the quanta of the potential binding the nucleons in nu-
clei (e.g. , mesons). The contribution of the mesonic de-
grees of &eedom to the nuclear structure function within
the nuclear convolution approach is calculated in terms
of the nonrelativistic wave functions or densities [35,36].

In spite of the common starting point, the convo-
lution formula, the nonrelativistic and some of the
(quasi)relativistic approaches lead to different quantita-
tive estimates of the binding effects in the nuclear struc-
ture functions (see, e.g. , [27,29]). Therefore a consistent
analysis of the nuclear structure functions in the covari-
ant Bethe-Salpeter formalism with proper account of the
nuclear dynamics can clarify this situation.

An alternative approach is the /CD-motivated Q—
rescaling model [37—39], which utilizes the Wilson op-
erator product expansion method to analyze the Comp-
ton amplitude (2). Since the problem of large distances
is not solved in QCD, the operator product expansion
allows one to calculate perturbatively the Wilson coeffi-
cient functions, while the nuclear matrix elements have
a nonperturbative origin in @CD and consequently are
connected with phenomenology. The basic idea of the
Q2-rescaling model is the change of the initial point for
the Q evolution of the nuclear structure function relative
to the &ee nucleon in view of the change of the effective
radius of confinement in nuclei (sometimes referred to as
"swelling of the nucleon" ). The model gives a reasonable
estimate of the nuclear effects in the structure functions.
In spite of this and its attractive fundamental basis, the
Q2-rescaling model cannot be applied to the description
of the structure functions in the full kinematics region
[14]. However, it is interesting to note the possibility
to interrelate the @CD parameters with the nuclear ones
by comparing the Q2-rescaling model and the approaches
motivated by nuclear physics [37,14)).

B. EfFective meson-nucleon theory
and the Wilson operator product expansion

The covariant theory of the interacting nucleons and
mesons is based on a Lagrangian of the form

k2 A;+-
2m' m

(2')s q m )

xb~ y — 1+
m

&= &o+
(4)

where the standard form of Co reads

(5)
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&e = 2V(*)~~&"&(*)]

@( )@( )+ ([~~(*)] ~ ( )) (6)

& ~ = —
& &(&)&(&)&(&) ~ (7)

The approach can be generalized to include other mesons
[24].

It is known that to consider meson-nucleon phe-
nomenology, using an effective Lagrangian such as (5),
we should restrict ourselves to a low-order approxima-
tion. The reason is that such theory is not fundamen-
tal and calculations in high orders (heavy effective ex-
change masses) may be meaningless. We use the lad-
der approximation both for the kernel of Bethe-Salpeter
equation and for all further calculations with the Bethe-
Salpeter amplitude. Note that in the context of the

where g and P stand for the nucleon and meson fields,
respectively, and p is the meson mass. For realistic mod-
els with several types of mesons, one should take the
sum over all mesonic fields and include vector indexes
for vector mesons. However, for formal consideration
it is enough to take a particular type of mesonic Geld.
As an example, we present calculations within a theory
of spinor nucleons interacting with scalar mesons, the 0
meson:

Bethe-Salpeter equation this approximation is found to
be relevant to the weakly bound and weakly relativis-
tic system, such as the deuteron [3,40—42]. Then we
postpone discussions of the vertex form factors until we
deal with calculations within the realistic meson-nucleon
model, and for the present we treat these vertexes as
pointlike.

The deuteron state can be described within the lad-
der Bethe-Salpeter equation [7]. Therefore we discuss
deep inelastic lepton scattering on the deuteron, i e , .th. e
calculation of the amplitude (2), in the same approxi-
mation. A rigorous analysis of the product of the two
currents at high momentum transfers is accomplished by
the Wilson's operator product expansion method [23].
The operator product expansion provides a natural way
for calculation of the Compton amplitude (2) within the
field-theoretical forxnalism by using the Feynman dia-
gram technique [43], since it presents the T product of
currents in terms of the expansion on the set of local
operators of the theory. The present method to calcu-
late the deuteron structure function does not depend on
any additional assumption, such as the convolution form.
Moreover, the operator product expansion method allows
us, in principle, to study the boundaries of validity of the
convolution model.

We start with the operator product expansion of the
Compton amplitude (2) in the form [15,18,13]

&„.(», v) =

(2) ( q~q~ l (+ ) a,n~~PPx 2 I ~~&Pa) &
(8)

where 0"'""(0) is the set of the local operators providing the basis for the operator product expansion, a enumerates
operators of different fields of the theory, and C,„' are the Wilson coefficient functions.

Obtaining the structure function Rom (8) is achieved by using the dispersion technique [15,18]. To present the
results in a compact form, we define the reduced matrix elements p„

(»Io."' ""I»)= pg" pe"S.' (o = &, ~, . "),
which are related to the structure function (e.g. , F2D) moments and coeScients ( " by

1

M„ i(F2 ) = ) C(

ling

with M„(F) = F(z)x" dz,
CL

0
(10)

where x is the Bjorken scaling variable, 0 & z & 1.
We are now in a position to obtain the moments of the

deuteron structure function (10) in the meson-nucleon

theory. Fxrst, we note that the coefficients, | ', are(z,2)

target independent and they define xnoxnents of the phys-
ical nucleon, meson, and deuteron structure functions.
By consideration of the scattering on the free nucleons
and mesons, it can be shown that in the ladder approx-
imation the coefficients C~ ' are identical to moments

of the structure function of nucleons (a = 1V) or mesons
(a=0):

Second, if we define the set 0"'"'""(0) in the meson-
nucleon theory, then matrix elements in Eq. (9) are cal-
culated explicitly. For instance, it can be calculated in
the nonrelativistic Tamm-Dancoff approximation [13] or
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expressed in terms of the Bethe-Salpeter amplitude [43].
The operators that provide a basis for an operator

product expansion can be ordered by the twist v. As-
suming the deep inelastic kinematics Q2 )) m2, we ac-
cept the leading twist approximation. For deep inelastic
scattering the leading operators are of twist 2, 7. = 2, and
contributions of higher twists are suppressed by factors
of ( x m //Q ) [23,15]. For unpolarized lepton scat-
tering within the model nucleons and scalar meson fields,
the twist-2 operators are

W o, &

(»)

FIG. 1. Diagrams for the matrix elements (9) of the twist-2
contribution to the moments of the deuteron structure func-
tion in the ladder approximation.

1/t
2 (2)

n —i

g(@(0)+/22 g/22. . . g/2~/(0) } (12)

o"-"-= —
l

—
l

s(4(0)O" "O"-&(0)),1 (z)"
(13)

M„(F2 ) = M„(F~ )P„+, + M„(F~ )P„+, , (14)

where 8 symmetrizes the subsequent operator and re-
moves all traces in p, i p„.

From Eqs. (9)—(13) we then get the following general
form for moments of the deuteron structure function

considered as given.
Therefore, in an effective meson-nucleon theory and

operator product expansion method with the twist-2
approximation, the deuteron structure function is pre-
sented in the form of a convolution of the meson and
nucleon structure functions with their effective distribu-
tions. This result is valid in the exact deep inelastic limit
Q2 )) m2, which is studied in the present paper. How-
ever, the convolution approximation will break down be-
yond the leading twist approximation and one can antic-
ipate nontrivial observable phenomena at moderate Q2,
Q2 approximately few GeV2.

where p„and p„are interpreted as moments ofN!D cr/D

the effective distribution functions of the nucleons and
mesons in the deuteron, respectively. Moments of the
deuteron structure function in the form of a product of
the "elementary" moments M„(F2) and the effective dis-
tribution moments p,„means that the structure function
Fz+ can be presented in the form of a sum of convolu-
tion integrals such as (3), where the moments of effective
distributions are the matrix elements of the twist-2 oper-
ators on the deuteron state and in the framework of our
approach the meson and nucleon structure functions are

C. Relativistic description
within Bethe-Salpeter formalism

The matrix elements of the twist-2 operators (12) and
(13) on the deuteron state in Bethe-Salpeter formalism
are computed explicitly using the Mandelstam method
[43].

The corresponding moments of the deuteron structure
function in the ladder approximation (Fig. 1) have the
explicit form Eq. (14) with

NID 1 d4p

2,.@ (P)(~ '(P )(~'"+&' ')(P +P )" '

+~ (pl)( Yp + 'Y3 )(P20 + P23) )C D(P)

2 g4 g4 I k +k/D 9 d Pd P
C ( )( 0+ 3)

C, ( )M" (2vr) s (k2 —p2 ) 2

where the kinematical variables in the rest frame are defined by

P
p=(poP), p =(poP), k=p —p, P=(MDO), pz ——2+P, p2 ——

2
—p,

where p;), is kth (k = 0, . . . , 3) component of four-vector p, (i = 1, 2) and we use deep inelastic kinematics: pq-
qp(pp + p3) and the OZ-axis direction is chosen such that q = (qp, 0~, —q3). The vertex functions CD(p) and O'D(p)
are the Bethe-Salpeter amplitudes in momentum space:

2'(p) = f 1 z(O~T(e/te (Y —z/2) ) (Y+ e/12))~D)ze' e'e'

2'(p) = f d (D~T( /) (Ye+ z/2)eep|e(Y —z/2))~0)e
' e (19)
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~(p') = „; (2O)

8-'(p, ) =p, -m. (21)

and we denote the Dirac propagator and the inverse Dirac
propagator as

and (16) in the form of a simple cutoff at some p
The regularization is then removed by taking the limit

p ~ oo when the inverse Mellin transform has been
calculated. In the present paper, to estimate nuclear ef-
fects in the deuteron structure function at moderate x,
we calculate moments only at lowest n, where the regu-
larization procedure is not needed.

The inverse Mellin transform of (10) is defined as

D. Convolution form
of the deuteron structure function

Using the results of the two previous sections, we find
an explicit expression for the deuteron structure func-
tion by the inverse Mellin transform of the moments (14),
(15), and (16). In view of the inverse powerlike behavior
of the ladder Bethe-Salpeter amplitude in the momentum
space, the contributions (15) and (16) to the deuteron
structure function moments, (14) appear as divergent in-
tegrals at high enough values of n. A formal procedure
is adopted applying regularization in the integrals (15)

++too
F(z) = . dna "M„(F) .

2XC ygf gQQ

(22)

1

F;(*)= f""(OF,"(*«)«
0

(23)

where

Using the explicit form of the moments (14)—(16), we "re-
store" the deuteron structure function to a convolution
form:

d4
f (g) =

M 2
4cg)(p)S '(pz)(p0' +ps' ) ~(p)

X t5 P10 +P13 + 8 P10 P13 +P10+P13~ ~ P10+P13~
M~ ) ~ MD

(24)

d4 d4f' (&) = @ (p)
' ' l' (p')

MD (2z)s (k3 p

X 8 k0+ k3 — + 8 —k0 —k3
k0 + k3 ~ ( ~0 + ~3 l

ML1 y g M& )
(25)

In (24) we have taken into account the symmetry of the
deuteron with respect to the two nucleons. Note that
a natural variable in the operator product expansion of
the deuteron amplitude is z = —q /2M&q0 = @LE

(m/MD)zN, which is different from z~ in (3). The vari-
able 3:~ is utilized usually in discussions of the structure
functions, including the nuclear ones, and the experimen-
tal data are usually presented in this variable. The tran-
sition &om xD to x~ is trivial. However, the depen-
dence of the deuteron structure functions on the variable
xD shows that, in principle, the deuteron structure func-
tion (23) is defined in the region of xyg C (O, M~/m)
(MD/m is the exact threshold of the reaction), i.e., in-
cluding the region beyond the single nucleon kinematics
x~ ——1. This cumulative" region in nuclear case is
due to the Fermi motion of nucleons. For the analysis of
the structure functions at large x~, the high-n behavior
of moments of the structure functions is essential [14].
Therefore, when the region x~ & 1 is discussed, the be-
havior of the moments at large n must be studied more
carefuOy. In particular, the validity of using approxima-
tions, such as the ladder approximation and leading twist

1

fN/Dg)«
0

(26)

I

approximation, should be checked in the high-n limit.
It is to be stressed that the convolution formula (23)

is not assumed here, but it is a result of the calcula-
tion within the framework formulated in the Sec. IIB.
This formula has a clear and obvious physical interpreta-
tion. The first term on the right-hand side (RHS) repre-
sents the contribution of the nucleons to the full deuteron
structure function F2, the relativistic impulse approxi-
mation. Here both nucleons are manifestly ofF mass shell
with regard to the conservation of the four-momenta in
all vertexes of the Feynman diagrams for the process.
The second term is the contribution of the meson ex-
change current. In the model with several mesons, there
will be a sum over all mesons on the RHS of (23).

To have a normal physical interpretation, the functions
fN~+ and f ~~ must satisfy the normalization conditions
[44]. Since the baryonic charge in the present xnodel is
connected only with nucleonic fields, we should have
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where 2 is number of baryons in the deuteron. Then
the integral of the structure function I'2 of any hadron
target is proportional to the momentum carried by its
constituents. For the deuteron structure function (23)
we should have

following section is devoted to the derivation of the sum
rules (26) and (27) in the Bethe-Salpeter formalism.

E. Baryon number and energy-momentum sum rules

which means that all the momentum of the deuteron is
carried by its constituent, the nucleons and mesons. The

The Bethe-Salpeter amplitudes O~(p) and @D(p) sat-
isfy the normalization condition [3,43,45], which in ladder
approximation has the form

,@n(p)S (» i;p2)
d p —, c)S(pi, p2)

P2 —MD2

S '(pi, p2)4D(p) = —2iP„, (28)

where

S(&i,&2) = S(&i)S(&g) .

The physical meaning of the norxnalization (28) is clarified by an explicit calculation of BS(pi, p2)/OP„:

BS(pi, p2)
OP„

S(pi j p2) S(pl i »i2) (S(pl )gp + S(p2) Yp }S(pl i p2)
BS (pi, p2) 1 - (i) -

(2) (30)

Substituting (30) into Eq. (28) one finds that (28) is nothing but the expression for the conserved vector current:

(DI {eiQip„' gi + e2&2p„g&}ID) = 2P„(ei + e2) .

Thus the integral (26) is evaluated explicitly:

(31)

f
1 1 d4f"' (&)d&=,~'ri(&)S '(»)(&o '+ ~s ')@'D(&) = 2

as it should be.
It is easily shown that the twist-2, n = 2 operators (12) and (13) are related to the energy-momentum tensor of the

theory under consideration. Thus we begin the derivation of the integral (27) from a consideration of the trace of the
energy-momentum tensor 0„„.

For the theory with the Lagrangian (5), (6), and (7), the trace of the energy-momentum tensor is [46]

where 'R is the total Hamiltonian density. In the rest frame of the deuteron, one should have simultaneously

(Die/(0)ID) = 2MD

and

d z(DI'R(z)ID) = M~(DID) = 2M~V; (36)

i.e., in spite of the difference of the explicit expressions of e„(x) and 'R(2:), they should have the same matrix element
for the deuteron state. It can be shown that the difFerence between them is equal to zero in view of the virial theorem

(B6), (B7), and (Blo) (see Appendix B).
Coming back to the energy-momentum sum rule (27) for the deuteron, we see that (()Li is just a sum of the moments

p„~ and»i at n = 2. Taking into account the explicit form of the moments (15) and (16) and averaging for the
unpolarized deuteron, the following relations hold:

(Dio-"(o)ID) = (DIo-"(o)ID) = o (37)
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(DI~.&(o)~.4(o)ID) = —.'(DI~4(o)~4(o)ID)

(D14(o)(»~)@(o)I» = s(L11+(o)(~~)+(o)ID)

and we get

(() =
2M

(DI(e"(o)+8"(o))ID)

1 t 4( i- ++

,M, (DI o-"„(o)+—, I
--,@(o)(»)0(o)+~4(o)~4(o)+ -g.w(o)v(o)@(o) I ID) . (4O)

Therefore the sum rule (27) is satisfied in view of (35)
and the virial theorem (see Appendix B).

F. Nonrelativistic limit of the theory

There is a popular opinion that theoretical consider-
ations of nuclear processes at high momentum transfers
automatically require a relativistic description of the nu-

clear structure. It is very often, but not always, true.
The choice of kinematical conditions is important. For
instance, the structure functions F2 (z~, Q ) of nuclei in
deep inelastic scattering (Q2 )& 1 GeV2) for a wide region
of the Bjorken variable za (ziv ( 1) can be considered as
scattering on nucleons, which move nonrelativistically in
a nuclear potential, the z—rescaling model [31—34]. Only
beyond the single nucleon kinematics (zN ) 1) do the
high momentum components of the nuclear wave function
become important. However, a fully relativistic analysis
of the reactions is of course preferable, especially in the
problematic cases and in crucial regions of x~ and Q2.
Furthermore, there are some doubts about the equiv-
alence of relativistic and nonrelativistic descriptions of
deep inelastic reactions [27,29] and comparison of consis-
tent relativistic and nonrelativistic results would help to
clarify the issue.

The consistent nonrelativistic reduction of the Bethe-
Salpeter equation and/or Bethe-Salpeter amplitude is
unknown. Moreover a statement of the problem to re-
duce this equation or amplitude may be incorrect if it is
to be considered independently of the dynamics of the
initial 6eld theory.

An unambiguous way to 6nd the nonrelativistic limit
of the theory is to reduce the initial 6eld-theoretical for-
malism and then consider the dynamical problem within
a nonrelativistic theory. This can be done by a consistent
method suggested in [47] and is adopted to deep inelastic
scattering on deuterons in Refs. [26,13]. This method is
very similar to the famous Foldy-Wouthuysen transform,
and it is briefly outlined below (here we schematically
follow Refs. [26,13] and all details can be found therein).

The classical equation of motion for the theory with
Lagrangian (5), (6), and (7) has the form

where the Dirac bispinor field N(z) could be determined
in terms of the large and small components f(z) and

y(z), respectively.
Antinucleon degrees of freedom are eliminated by a

nonrelativistic reduction of the matrix Eq. (41). To
achieve this objective we employ Eq. (41) to express the
small component y(x) of the spinor field N(x) in terms
of a large component f(z) in leading order of the 1/m
expansion:

X(x) =-2 ~~f(x). (43)

0(x) =
I
I—,If(x) .

b, 5

8m') (44)

The case of the pseudoscalar exchanges is presented in
Refs. [47,26].

To compute any observable, the corresponding fully
relativistic expression should be rewritten using Eqs.
(43) and (44). For instance, the Hamiltonian is found
from the Lagrangian (5)—(7) and has the form

Note that the usual nonrelativistic limit is nothing but
the retention of only the leading terms in the 1/m expan-
sion. In interacting meson-nucleon theory, this approx-
imation restricts the calculations to the lowest order in
the coupling constant g2, which leads to the Schrodinger
equation with the static one-boson-exchange potential.

In principle, the expression (43) allows one to calcu-
late any covariant object in terms of the nonrelativistic
spinor field f (x) However, .it has been noted [48,47] that
the field f(x) does not obey conditions of normalization
of the probability density and charge and consequently
cannot serve as a true second-quantized 6eld. A new 6eld
Q(x) = (I + F)f(x) is introduced The op. erator I is a
unit operator, and F is defined so that the field g(x)
obeys all the conditions for a canonical second-quantized
6eld. For the case under consideration, we have

(i8 —m)N(z) = g P(x)N(x),

(0+ p )P(x) = gN(x)N(x), —

(41)

(42)

IIcF $3

(45)
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N
IIO +a 3 ~ t ~ + t

+g~ 8 x x

The same reduction should be applied to the interaction
operator in (2), i.e., in the leading twist approximation to
the operators (12) and (13). To compute the amplitude
(2), we need to solve the bound state problem, which
in the consistent nonrelativistic limit must lead to the
Schrodinger equation. The bound state can be found
from the following equation

The baryon charge in the present nonrelativistic theory
is by construction conserved. To check the consistency of
the approach, let us compute the matrix element of the
energy-momentum tensor, Eq. (33), with the deuteron
state:

(DIO„"(o)ID) =2, I

—
I
~'D(p)~D(p)

d'p & p'')
2m 2 ( 2m)

d Pld P2 Qo+29
(2 )s 4(k) @D(»)@D( P2)

(50)

HID) = MDID) . (46)
where k = pl+p2. Now we rewrite (50) in the coordinate
representation

Since the meson number operator commutes with the
Hamiltonian (45), the physical state can be represented
in the Tamm-DancoK method as a superposition of states
with bar nucleons and a varying number of virtual
mesons. For the deuteron one gets

+V(r) I @D(r), (51)

r
(DI8„"(0)ID) = 2m+ d r llfD(r) ——+ r v(r)—d

ID) = F11 —ZD&oDINX) + &Dl [XX~)
+(p2 IX¹rcr)+ (47)

where V is the nucleon-nucleon potential. Using the
virial theorem (see Appendix B) we have

where Z~ is the constant of renormalization of the wave
function determined by the condition (DID) = l. In the
rest system of the deuteron, it is convenient to rede6ne
the wave function po as

(rdV/dr) = 2(T), (52)

where (T) = (p2/m) is the mean kinetic energy of nu-

cleons in the deuteron and (V) = sD —(T). Then we

get

(pp (pll p2) (2z') b (Pl + P2)(po (Pl) (48)
(DIH„"(0)ID) = 2m+ sD = MD .

and then it obeys the usual Schrodinger equation with
the one-boson-exchange potential,

Po (P) 2 2 2 Po (P+ k) = sDPO (P) i

(49)

where sD = MD —2m and (d(k) = gk2 + )(f, . In what
follows we will use for the deuteron wave function yo
another notation 4D bearing in mind that when other
meons (z, ur, p, . . .) are included, lIfD will represent the
well-known nonrelativistic deuteron function computed,
for instance, by the Bonn or Paris groups [20,49]. The
wave functions (pl 2 are expressed in terms of the wave

function %D, and its explicit form can be found from
Eq. (46).

Thus we obtain a consistent nonrelativistic approach,
which allows a description of the bound state, the
deuteron, and the reactions with this data, starting from
a fully covariant theory. Note that this solution does not
utilize the Bethe-Salpeter equation and appears indepen-
dent of the Bethe-Salpeter formalism. However, it was
shown by Schweber [50] that the Schrodinger equation is
equivalent to the nonrelativistic Bethe-Salpeter equation.
Therefore, at; least in principle, there is the possibility of a
consistent nonrelativistic reduction of the Bethe-Salpter
equation.

Calculating the reduced matrix elements (9) by the
nonrelativistic reduction of the twist-2 operators (12) and

(13), a consistent nonrelativistic limit of the moments is
obtained [13,14]. The effective distribution function of
the nucleons in the nonrelativistic limit is

d3 2

f (w) =,II'+a(v)II' (&+ —*)&
I v — &+, + —*

(2z.)' m ( 2m' m )
CL Pd k k, l t'+, ~tD(p)V(k)~D(p+k) —~

I

u- 1+
(2~)s k, ( 2m) ( 2m) (54)

This distribution, like distribution (4), is normalized to one nucleon. In the g approximation, moments of this
function coincide with moments of the effective distribution of the nucleons of the x-rescaling model (4). The explicit
form of the nucleonic contribution to the moments of the deuteron structure function F2D [13,14] is

M„(F, ) = M„(F, ) I
1+ n'' ' + n' +n——

I
+O(g') .

1 2 (T) 2 (T) V
6 m 3 m m )

(55)
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This will be used in discussion of the results for the
Bethe-Salpeter formalism.

where A(p) = (p+ m) and D is the "two-particle scalar
propagator, "

III. BETHE SALPETER EQUATION
FOR THE DEUTERON

A. Spinor-spinor Bethe-Salpeter equation

D (pp, p ) = [~ (p) —po —4MD] —psMD . (59)

We parametrize the Bethe-Salpeter amplitude using
the decomposition in terms of a complete set of the Dirac
matrices, their bilinear combinations (A5), and the 4 x 4-
identity matrix, X, as

Here we use the technique, which is often utilized in
meson physics [4,5] and "canonical" studies of the prop-
erties of the Bethe-Salpeter equation [3],but has not been
applied to the description of the NN system in the kame-
work of the Bethe-Salpeter formalism with both nucleons
off mass shell [7—11,51]. A similar parametrization of the
relativistic nucleon-nucleon vertex of the deuteron was
utilized in the simpler case of a formalism with one nu-
cleon on mass shell [52]. In some details our technique is
similar to the one given by Gourdin [8], but our formal-
ism has an explicit covariant form and is easily applica-
ble to deep inelastic lepton scattering. The spinor-spinor
Bethe-Salpeter equation in the ladder approximation has
the form

~(p) = &4.(p) + ~.@,(p) + ~.4."(p) + ~.~.@."(p)
+o„„Q,""(p) . (60)

In the rest kame we use a speci6c notation for the three-
vector components:

&."(p) —= (4.'(p) &.(p))

&."(p) —= (&.'(p) @ (p))

(61)

(62)

Using the antisymmetric property of the tensor com-
ponent g~"", we introduce three-vector notation in the
rest kame:

g4 2I~ ~I~ ~ &~"(p) = @~(p) (63)

(56)

where p~ is the mass of meson B; I'~ is the meson-
nucleon vertex, corresponding to the meson B. For con-
venience, we introduce the "charge-conjugated" ampli-
tude

4 =Cp' or 4 = —4p, (57)

d p
4 I 2

~(p) =iD(p. p )). (, )4(„
xA(pg)I'~ @(p')I'~A(pz),

where p' is the conjugation matrix (A4).
In the general case, the amplitudes @ and 4 appear

as 4 x 4 matrices in the space of indices of the spinor
fields. Let the row index correspond to the indices of the
first particle and the column index to the second particle.
Thus Eq. (56) for amplitude @ reads

4r'(p) —= s*'"&~"(p) [&~ (p) =—&s(p)] (64)

where i, j, k = 1, 2, 3 and other tensor components are
equal to zero.

So we have four scalar functions g,

&.(p) &p(p) &.'(p) &.'(p)

and four three-vector functions tP,

+ (p) @ (p) @~(p) @~(p) . (66)

Inserting the parameterization (60) into (58) and using
the orthogonality of our basis (A6), we obtain a set of
equations for the components (65) and (66). Calculations
for exchanges of any kind are straightforward, but cum-
bersome. For example, for the scalar meson exchange,
we get

Q, (p) = K([m —p + 4M~]vP, + mMDQ„+ 2iMD(p. Q, )), (67)

@~(p) = K( [m + p —
4 MD]@„—2mpog + 2m(p . Q ) + 2MD (p .Q, )), (68)

g (p) = K(mMDQ, + [m + p —2po + 4MD]g„+ 2po(p . vP„) + 4im(p .
Q& )}, (69)

@.'(») = K(—2 pow + [
' p'+2po' ——,'M—'l@.' —2po(p. v.)), (70)
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Q„(p) = K(—2popg„+ 2p(p. g„) + [m + p —4M&]+„+iMD[p x Q ]+4impo@, + 4im[p x Q,]},

49

(71)

Q (p) = K(—2mpg„+2@ pg —iM [p x Q„] —2p(p-Q ) + [m —p + M-]Q +2mM Q,}, (72)

Q, (p) = K(2iMLipi/, + imp@„—impoQ„+ [m —p + 2po —4MD]g, —2p(p Q, ) + 2po[p x Q,]}, (73)

Q, (p) = K( 2M—-lips„—im[p x Q„]+ ,'mM—~Q + [m + p 2po+ 4M']'IP, +2po[p x 'I/p,']+2p(p'Q, )} (74)

B. Partial wave decomposition
and the deuteron state

To solve the set of Eqs. (67)—(74) we first perform
the integration on the angular variables. To do this we

expand the scalar functions i/ in spherical harmonics and
the vector functions Q in the vector spherical harmonics
[53,54]:

1
&(s) = ).&(&o Ipl JM)Y~M(~ ) (76)

Q(p) = ) g(p„ I pI; J —1JM)Y',-'(n, )

+&(po Ip I' JJM) YJM (fIp)

+$(po, lpl; J+ 1JM)Y~~+ (Qp) (77)

Then we expand the boson propagator in (75) as

l 2' ) Yi'„(0')Y~ (O„)Q (y„),
l, A

(7s)

where the operator K is de6ned by

d4 2

K0 = iD(po p'), ,;,0(&') (75)

and

&~(po, p) = ~.~(p. , -p)~. (s2)

Applying the 'P to (60) and taking into account the parity
of the spherical harmonics (76) and (77), we find that
the amplitudes (80) belong to the parity (—1)~ and (81)
belong to the parity (—1) + .

We are now in a position to de6ne the system of equa-
tions for the deuteron state by requiring de6nite quantum
numbers for the angular momentum (J = 1) and parity
('P = +1). Taking into account that J and M are good
quantum numbers and that only J = 1 is interpreted as
the deuteron state, we omit these quantum numbers in
formulas for the amplitudes. For the states with difFer-

ent I = J, J6 1, we introduce new indices (for the state
without quantum number I, we understand I = J). The
final notations are

@(po Ipl'1M) = 4'i(po lpl)

gp(JM), Q (JM), g (J —1JM), Q (J+1JM),
Q„(JJM), Q, (JJM), Qt(J —1JM), gt(J + 1JM).

(»)

This splitting is the result of the parity conservation in
XN interaction, and the two sets of amplitudes (80) and
(81) correspond to states with different parity. Indeed,
the parity transformation operator for amplitude (60)
reads

where Q~(y„) is the Legendre function of the second kind
(see Appendix C) and

for components Q~(JM) and Q (JM), and

4(po, lpl'01M) = &o(so Ipl) (s4)
lpl'+ lp'I'+ v' —(J o —po)'

(79)
&(so lpl 11M) = 0i(po, lpl) (s5)

Using the orthogonality properties of the harmonics
Yl, and Y&M and relations (C4)—(C10) from Appendix
C, we get a set of equations for the partial wave ampli-
tudes g. It is remarkable that the full system of equa-
tions splits into two independent subsystems for the am-
plitudes:

g, (JM), go(JM), @„(J—1JM), Q„(J+ 1JM),
g (JJM), g, (J —1JM), g, (J+1JM), g, (JJM)

(80)

4'(po Ipl 21M) = &2(po Ipl) (86)

for all remaining components. The states with L
0, 1,2 are states with S, P, D con6gurations in three-
dimensional momentum space. We also introduce the
notation 4g(po, p) for the deuteron Bethe-Salpeter am-

plitude. This amplitude has components listed in (81)
with J = 1, and aB other components are zeros.

For the scalar meson exchange, we get



49 DEEP INELASTIC SCA'I IERING ON THE DEUTERON IN THE. . . 2323

&nl(po Ipl) = Kl [m'+ p' —4MD]WP1 2mpo4 1

2~ '/'
+2mlx I @-o —

I

—
I @-2 + 2MDIPI3) $3

(87)

@ 1(po Ipl) = Kl —2mpogt 1+ m —p + 2po — MD @ 1 2polPI Q o —
I

—
I

4 3 (3) (88)

1 2 (2) '/'
&„1(po,lpl) = Kl m +p — MD—

4

1g.o +
3

(2) 1/2

+4tmp, y,', —4mlpl
E3)

1
Oto + gt2

3
(89)

MD IPI4.1

+ m —p + —MD Nap+ 2mMDWto
2 2 1 2

4

2 2 o (2l '/'
0 O(pp IPI) = Kl mlpIV' 1+ polpl@ 1+

I3 " 3

2 1 /'2i—~lpl' ~CO —
I 3 I (90)

2l/2 2l/2 o 1
&-2(po lpl) = Kl mlpl@ 1 — pplpl&.'1+

2~2 1 (2) 2 2 1+ Ipl 0 o
I I

o!oo + oo p + MA @ o+2mMoog'aoIE3) 4 (91)

X//2

4„(pp, lpl) = Kl —impoO 1+ m —p + 2po — MD Qtl + 2i—polpl
o . /'2l

4 " g3)
Oto + 4t2

3
(92)

1
mlply„, + mMD@.o-

2
@to(po, IX I) = Kl — MD IX Ill +

I 3 I

2 3

o+ m + P —2Po + —MD ~to + tPO IPlgtl41, 1 (2l"'
+2 Ix&l* Vco —

I 1 I
Coo ),E3)

~2 1 1
'42(po IPI) = Kl MDlplg„l + mlpl4'„1+ mMD4' 2—

2 3 " 3
"

2

+ m + p 2pp + ™D@t2 + tpolpl~tl
2, p

4 3

2~2 2 1 /'2l
IVIII* ~tao —

I ~ I Coo
E3

(94)
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where the operator Kj for the scalar theory is defined by momenta. It is also instructive to change the phase of one
of the amplitudes:

Ki& = —i~.'D(po, p') 2, Qr, (up)li(p'o lp'I).
1(po lpl) ~ i&.'i(po lpl) (98)

(95)

/ /

Pp&&p ~ &» &p & (96)

Note that Eq. (58) is invariant under the transformation

After these transformations the rotated system (87)—(94)
is real.

The transition (97) to the Euclidean space removes all
singularities f'rom Eq. (58). The propagator (20) now
reads

which is a consequence of the symmetry under the ex-
change of the particles and properties under the time-
reversal transformation of a state. Because of that, all
components g(po, lpl) are even or odd under po ~ —po.
From the explicit form of the set of equations (87)—(94),
we find that the components gioi and Qoi are odd and
other components are even.

D (p, p ) = [u (p) + po ™&]+ poMri . (99)

lpl'+ Ix
'I'+ ~'+ (po —po)'

2lpl Ip'I
(100)

Singularities from the exchange boson propagator are re-
moved by the new definition of y„ in (78):

C. % ick rotation

/ ~ /

Pp M zPO) Pp M zPp (97)

where we keep the "old" notations for the "new, " rotated,

To solve numerically the system of singular equations
(87)—(94), we use the well-known Wick rotation [55—57],
presented via the substitutions

Applying the transforms (97) and (98) to the system
(87)—(94), we get a system of rotated Bethe-Salpeter am-
plitudes for the deuteron.

D. Normalization condition and observables

The Wick-rotated deuteron amplitude iIIg(po, p) sat-
isfies the normalization condition, which is derived from
(28):

1 L d p
4

Dt D
3 ). 2 )

~(»@ (Po P)»& @M(Po P)(82 ™))
M

(101)

In the rest frame of the deuteron [P~ = (Mri, 0)], this leads to a normalization condition of the form

M~(&,'& +&."—&.'+ (&.' &.) + (&.' &.)+4(&t" &t)+4(&t . &c)]

+4[&,'(p 4~)+(p 4I)4.]+2i((4.' [ x4.])+([px@.'] 4.))) (102)

where the components of all Q and Q are the real solutions of the Wick-rotated set of equations (87)—(94).
The normalization condition is the first and simplest example of the calculation of observables in the Bethe-Salpeter

formalism. Other observables are the moments of the structure functions (14), which also can be calculated in terms
of the rotated amplitude 4M. It can be done, since there are no extra singularities in the integrals (15) and (16).
At the same time, to calculate the distribution functions (24) one needs to exercise care in handling of the singular b

functions. The explicit expression for the nucleon contribution to the moments of deuteron structure function reads

d4
M-(+. ) = M-(+.")-). 2,T (~ ~ '(p p)~ [(~ + ~.)(p ~ + p )" 'l~ (p P)(p — )) (103)
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To present the moments (103) in terms of the real com-
ponents, the definition of 4~~ and straightforward (but
tedious) algebra are used.

IV. NUMEKICS, RESULTS, AND DISCUSSION

A. Numerical estimation of the nuclear effects

To calculate the Bethe-Salpeter amplitude for the
deuteron and to perform a full analysis of the structure
functions, we should solve the Bethe-Salpeter equation
with a realistic NN potential [1,11,20]. However, for un-

polarized deep inelastic scattering it is possible to make a
first estimate of the nuclear effects on the structure func-
tion via a much simpler model. In fact, the nonrelativistic
estimate (55) prompts us that the deviation of the mo-
ments of the deuteron structure function I'2 from those
of the physical nucleon is defined by the mean values of
the kinetic energy (T) and the potential energy (V). It is
obvious that one can 6t these two parameters even in the
simplest deuteron model with scalar exchange; as such,
a model incorporates two parameters, the coupling con-
stant and the mass of the exchange meson. Therefore,
to perform the first quantitative estimate of the nuclear
effects in deuteron structure functions, we consider this
simplified model of the deuteron. Solving exactly the
dynamical problem for the deuteron in this model, we
obtain realistic estimates for off-mass-shell eff'ects (also
referred to as "binding effects" ) and, for effects of the mo-
tion of the nucleons in the deuteron, the Fermi motion.
Since the Bethe-Salpeter amplitude is quite a complex
object, we, unfortunately, are not able to present the an-
alytical estimates in a manner similar to nonrelativistic
ones (55). However, we obtain numerically the Bethe-
Salpeter amplitude, including explicit dependence on the
ofF-mass-shell energy of nucleons, and the observables of
deep inelastic scattering on the deuteron.

We are considering a system of two spinor 6elds, nu-
cleons with mass m, interacting with the exchange of a
light scalar field ("meson") with mass p. For the model
the following are given:

m = 0.939 GeV, M~ ——2m+ eD, e'~ ———2.2246 MeV,

(104)

and there is only one independent parameter p. %'e
choose the parameter p, 200—400 MeV, so as to have the
xnean value of the momentum of nucleons in the deuteron
(or radius of the deuteron). The dependent parameter g
must be defined such that the system has only one bound
state with total momentuxn J = 1 at 6xed energy cD.

The eigenvalue problem of the spinor-spinor Bethe-
Salpeter equation for the deuteron with scalar exchange,
(87)—(94), is solved numerically by using a standard pro-
cedure for two-dimensional integration with a Gaussian
mesh. The axnplitude is then normalized in accordance
with Eq. (101). Note that even in the simplified model
the deuteron has all eight components in the Bethe-
Salpeter amplitude 4~, though the D-wave components

are strongly suppressed in comparison to the case of a
realistic interaction.

To estimate the deuteron structure function F2 in the
medium xN region, 0.2 & x~ & 0.8, it is sufIxcient to
calculate the 6rst few moments of the structure function.
Indeed, let us consider the nucleonic contribution to the
deuteron structure functions, given by Eq. (3). Since
f ~D(y) has a very sharp peak near (y) 1, the inte-
grand in (3) can be expanded at this point and we get

(106)

The nucleonic contribution to the deuteron momentum
[see also Eq. (27)] can be written in the form

(y) =1 —b~, b~ &&1, (107)

where b~ is the part of the deuteron momentum carried
by the mesoiuc component. The value of b~ controls
the magnitude of binding effects in the deuteron. For
example, the nonrelativistic estimate (55) gives b~—
5.0 x 10 s, where we take (T) —15 MeV. The value
of b~ in the present model is dependent on the mass
parameter p. Our calculations for the deuteron with the
scalar exchange give b~ 3.9 x 10 s at mass p = 0.28m,
i.e., the same order of magnitude as the nonrelativistic
estimate. The results of the calculation of the moxnents
in the Bethe-Salpeter formalism are presented in Table I
for the various masses of the exchange meson.

Using the calculated values of (y) and (y2) and the
expansion (105), the behavior of the deuteron structure
function in the Bethe-Salpeter formalism is estimated.
The model dependence of the parameter p is shown in
Fig. 2. The model dependence of the results is weak,
and our estimates are in reasonable agreement with the
nonrelativistic calculations

To compare explicitly the results of the difFerent ap-
proaches to the deuteron structure functions, we present
the results of the Bethe-Salpeter forxnalism, the nonrel-
ativistic and the light-cone calculations in Fig. 3. The
binding effects in the model of the scalar deuteron are
of the same order as in the nonrelativistic calculation.
A more plausible evaluation of the deuteron structure
function will be obtained in calculations with realistic
meson-nucleon xnodels. However, it is clear that binding
efFects in the relativistic description are not negligible,
and they are of the same magnitude as those in the non-
relativistic approach. At the same time, results, in the
Bethe-Salpeter forxnalism difFer &om the light-cone cal-
culations, which give b~ = 0 [17,27,29,58].

(105)

The values (y) and (y2) are moments of f+~+(y) at n =
2, 3. The respective moments (15), obtained in other
variables, are transformed by
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TABLE I. First moments of the efFective distribution function of nucleons in the deuteron cal-
culated in diferent approaches.

(y)
(y')

Nonrelativistic
calculations

0.9950
0.9953

@=0.2
0.9964
0.9976

Bethe-Salpeter
formalism

p = 0.28
0.9961
0.9980

p = 0.425
0.9956
0.9987

Light-cone
calculations

1.0000
1.0086

B. Open questions and further investigations

Further calculations of the deuteron structure func-
tions should be based on realistic models of the meson-
nucleon theory. It is possible that observables calculated
in different realistic models will be in a reasonable agree-
ment. Special attention should be paid to the depen-
dence of the strong meson-nucleon form factors on the
cutoff mass parameter A [62,63]. To this end a detailed
numerical analysis within a realistic model is now being
undertaken.

The nuclear eKects in the spin-independent structure
function of the deuteron, I"2, clearly will be of the same
magnitude as in our simple estimates. The only excep-
tion is that we will be able to discuss the full range of
the Bjorken variable x~, including z~ & 1. The most
interesting case is to calculate the spin-dependent struc-
ture function gz and its first moment. The present for-
malism is very convenient for a covariant calculation of
the observables of polarized deep inelastic scattering on
the deuteron. Indeed, to include the polarized case we
should simply extend the operator product expansion ba-
sis to the axial operators [15,18,59]. The axial operators
0&'"'"" for a system of nucleons and scalar mesons are

and expressions for moments of the structure function

M„(gP) can be easily written down and are similar to
Eqs. (15) and (16). Then the structure function gP can
be recovered by the inverse Mellin transform. We would
like to remind the reader of some technical dif6culties
appearing in the numerical calculation of both the unpo-
larized and polarized structure functions via the Wick-
rotated amplitude. In fact, to compute the integrals of
the form (24) and (25) with the nonzero imaginary part
of the variable p, we should continue the Dirac b function
to the imaginary plane. After we do this we will get ex-
plicit formulas for the structure functions F2, gz, etc. ,
in a convolution form.

The convolution form of the structure functions is ap-
propriate for an analysis of the experimental data with
the aim to extract the neutron structure functions from
the combination of the structure functions of the proton
and deuteron. In the case of the spin structure function

gq, the unfolding of the convolution is, generally speak-
ing, an unresolvable task using the traditional methods,
because of the nodes of this function and special methods
must be utilized [60].

As to a second convolution term in Eq. (23), the me-
son exchange current contribution to the deuteron struc-
ture function, we anticipate its contribution to the spin-
independent structure function F2 at x 0.0—0.3 to
be small. Such a conclusion is based on the numerical

(108)
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FIG. 2. Ratio of the deuteron and nucleon structure func-
tions F2 (x)/F2 (2:) calculated in the Bethe-Salpeter formal-
ism. Solid curves present the results of the calculation of the
present work (see text) with the different mass of exchange
meson: 1,p = 0.2m; 2, p = 0.28m; 3, p = 0.425m. The dashed
line presents the result of the nonrelativistic calculations. The
structure function F2 is taken from Ref [14].

FIG. 3. Ratio of the deuteron and nucleon structure func-
tions F2 (z)/F2 (2:) calculated in different theoretical ap-
proaches. Curves (see also the text): solid, the results of cal-
culations within the Bethe-Salpeter formalism with the mass
of the exchange meson p = 0.28m; dashed, nonrelativistic
estimate; dotted, light-cone calculation. All curves are calcu-
lated by the formula (105) using the (y) and (y ) correspond-
ing to the respective approach (see Table I).
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estimate of bN and previous nonrelativistic calculations
[26,62]. To complete the phenomenological applicability
of the present approach at small z, we must develop a for-
malisxn to incorporate the nuclear shadowing corrections
to the reaction. This phenomenon gives the most signif-
icant contribution to the deuteron structure function at
small xi', say xiv ( 0.05 [29,61,62], which is the same re-

gion where the mesonic exchange currents contribute to
the deuteron structure function. This leads to a partial
cancellation of the mesonic and shadowing corrections
to the deuteron structure functions in the nonrelativistic
case [62,60].

V. CONCLUSIONS

We have considered a relativistic description of deep
inelastic scattering on the deuteron within the Bethe-
Salpeter formalism and the Wilson operator product ex-
pansion xnethod, where we make the usual well-defined
approximations: (1) The ladder approximation for the
Bethe-Salpeter amplitude; this approximation is rele-
vant for the weakly bound and weakly relativistic sys-
tem, such as the deuteron. (2) The tisist P. appr-oxima
tion in the operator product expansion method; this ap-
proximation corresponds to neglecting corrections of or-
der z2m2/Q2. As a result it is possible to provide a
fully relativistic description of the reaction.

One of the main advantages of the method is the pos-
sibility to consider the deuteron structure functions in
the whole range of the Bjorken variable x p (0, M~/m)
and to give a rigorous covariant description of the spin
structure of the deuteron.

In the standard operator product expansion xnethod
we obtain an explicit form of the nucleon contribution
and mesonic exchange corrections to moments of the
deuteron structure function F2D. The structure function
of the deuteron is recovered by the inverse Mellin trans-
form of the moments and is presented as the sum of two
convolution terms, nucleon (relativistic impulse approxi-
mation) and meson (contribution of the meson exchange
currents). The sum rules for the baryon number and en-

ergy momentum of the deuteron are derived using the
normalization condition of the Bethe-Salpeter amplitude
and a virial theorem of the field theory. It is found that a
fully relativistic approach to deep inelastic scattering of
leptons on the deuteron provides us with a self-consistent
description.

We have presented numerical estimates of the nu-
clear effects in the deuteron structure function evaluated
within the Bethe-Salpeter forxnalisxn. The calculations
are carried out in a model of the deuteron as a system
of two spinor nucleons interacting by the scalar meson
exchange. This model is relevant to estimate the magni-
tude of nuclear corrections to the unpolarized deuteron
structure function F2 . It is shown that the effects of
the binding of the nucleons are significant and relativis-
tic calculations within the Bethe-Salpeter formalism are
in agreement with previous nonrelativistic estimates. At
the same tixne, the results obtained in the Bethe-Salpeter
forxnalisxn differ &om light-cone calculations, since light-
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APPENDIX A:
METRIC, GAMMA MATRICES, AND VECTORS

We use the covariant normalization of the states

(P]P ) = 2Pp(2'�) b(P —P ) (A1)

with (2x)sb(P —P') ~ V when P' -+ P and the metric

10 0'0 )
P" 0 0 —1 0

(0 0 0 —1)
(A2)

The p matrices are chosen in the explicit form

cone calculations do not include the dynamics properly.
The reasonable quantitative agreement of the pre-

sented calculations of the deuteron structure function
at x 0.0—0.8 in the nonrelativistic and relativistic ap-
proaches confirms our expectation that these approaches
have to give similar results within the boundaries of va-

lidity of the nonrelativistic approximation. However, it
does not imply that the relativistic effects in the deuteron
structure function are small or negligible in general. It
only shows that in a slightly relativistic system such as
the deuteron (or any other atomic nucleus) we should find
specia/ kinematic conditions of the experiment to display
the relativistic effects. Polarized deep inelastic scatter-
ing of leptons on deuteron provides a possibility to search
for relativistic effects in the deuteron. These investiga-
tions are topical today in view of the numerous new and
anticipated experimental data with polarized deuterons,
which are expected to clarify the "spin crisis" [64]. Also,
we can expect nontrivial relativistic phenomena at high
x, where. an accurate account of the relativistic nucleon
motion will allow one to search for other possible de-

grees of freedom in nuclei, such as the b, isobar [65] or
multiquarks [17]. The precise evaluation of the structure
functions in this region is important for QCD analysis of
the experimental data, since a significant fraction of the
full momentum can be carried by the "superfast" quarks
[16,14]. This may lead to errors in the determination of
the QCD parameters, such as n, or Aqcn, from the nu-

clear data, when the behavior of the nuclear structure
function (1 —ziv)~ as z~ -+ 1 is assumed.
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fl 01 ( 0 ~')
o

(0 1&

The 15 matrices G; (i = 1, . . . , 15),

Yp~ Y» Y5 Yp~ Op+ ( Yp Y~ Y~ Yv)
2

(A5)

and Gq6 ——Il present the full basis in space of 4 x 4 ma-
trices, satisfying the Clifford algebra with orthogonality:

To transform the BS amplitude to convenient form we
deGne the conjugation matrix: Tr(G, G, ) =

I (A6)

p3Qg with property (A4) The I evi-Civita tensor

'
1 if aPpb is even permutation of 0, 1, 2, 3,

= —s p~g = ( —1 if nPp8 is odd permutation of 0, 1,2, 3,
0 in all other cases

(A7)

Components of the four-vectors, H= dx'Rx, ix . x (82)
& = (» p) = (» (p'l) = (» -(p')) . (A8)

For the three-dimensional (3D) vectors a and b we
denote the scalar and vector products in the form

Let us require that (Bl) imply a special class of varia-
tions. This special class is an in6nitesimal 3D dilatation
of the Gelds of the theory. Explicitly,

(a. b) and [a x b],

respectively.
The caret notation,

(A9) (t;(x, t) -+ (t;(x, t) = v A~g, (Ax, t),

A = 1+ e . (83)

Variation of (Bl) under (83) is then given as

p = y„p" = popo —(w p) (A1o)

APPENDIX B:
VIRIAL THEOREMS OF FIELD THEORY

~(gl&lg) =(glf &'»(*8)(*) "0'(*) , ")lg)

-(glHlg)

—:(sl f &'«)((*)lg) + G ('')

(84)

(85)

The virial theorem is a well-known theorem of classical
mechanics, statistical physics, and quantum mechanics.
Very often the proof of this theorem is based on speciGc
properties of the Hamiltonian of the system. The more
general method based on spatial (3D) dilatations [66,67]
is not so widely known. This type of transformations
of the field has been used in nonlinear field theories to
derive the virial-like theorems for these fields (see, e.g. ,
Ref. [68]) and in the effective relativistic theory of nuclei
("Dirac phenomenology" ) [24]. We consider here a proof
for the specific cases of Geld-theoretical virial theorems.

We start &om the general variational principle of quan-
tum mechanics for the ground state of the system:

Calculating the explicit form of 6'R(z), one gets the virial
theorem for the Geld theory:

(g I f &'«)((*)lg) = o (86)

Moreover, since the variation (83) and the integration in

(86) are independent we have also a stronger relation

(gl~)&(~)lg) = o .

To generalize these considerations to the case of any
eigenstate [n) of the Hamiltonian H one should follow
the general variational principle.

Examples. For nonrelativistic quantum mechanics
with the Hamiltonian of the form

b(g)H~g) = 0, (81)

where H is the total Hamiltonian of the theory and ~g) is
the ground state and eigenvector of H. The Hamiltonian
density is a polynomial form of the set (P;) of fields and
their differentials, with possible explicit dependence on
x:

H= dx m ~x x+
2m

+0'(*)&(*)0 (*)),
we get the well-known result

(88)
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„f ~., W"(*)W(*)
m

—0'(*)I"sv(*)1@(*)~l~)= o (»)

The virial theorem for the theory with the Lagrangian
defined by Eqs. (5), (6), and (7) has the form

( I

d'* --,&(*)(»)4(*)+~4(*)~4()

+2g-0(*)4'(*)4(*)~i~)=o 9»)

n&.M(fl, ) = ~ I I
~.:M(~p)2J+ 1)

) i/2

Y,'+'(n„)
'I, 2j+ 1)

/' J+1" YJM(alp) = —
I I

&~M(alp)JM P (2J+ 1)

n V~M(Ap) = 0,

( J ) 1/2

& YzM'(flp) =
I I

&~M(flp)JM p

(C4)

(C5)

(C6)

(C7)

APPENDIX C: SOME FORMULAS
CONCERNING SPHERICAL HARMONICS
AND VECTOR SPHERICAL HARMONICS

1 /y+ I)
2 (y —1) (Cl)

The explicit form of the Legendre function of the sec-
ond kind Q~(y) at particular l, ( J+11nx V~M (2J+ 1) YzM (~p)

( J ) 1/2

+ I(2J+ I ' YzM (~p)
t

X/2

ri x YgM (fop) = i
I I YzM(alp)

J
i2J+ 1) (CS)

(C9)

t'y+ I ~ 3
q2(y) = -(~y' —I)»

I I

—-y
4 Ey -1)

(C2)

(C3)

1/2

ri x YJM (fl ) i
I

I YJM(~p)
. ( J+11
i2J+ 1)

(C10)

Some useful relations, including spherical harmonics and
vector spherical harmonics [54],

where n = p/Ip] is the unit vector specified by the polar
angles Op = (tip, Pp) of momentum p.

[1] F. Gross, J. W. Van Ordern, and K. Holinde, Phys. Rev.
C 45, 2094 (1992).

[2] E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232
(1951)

[3] For a review, see N. N. Nskanishi, Prog Theor .Phys. .
SuppL 43, 1 (1969); N. Nakanishi, editor, Behavior of the
Solution to the Bethe Salpeter Equations -[Suppl. Prog
Theor. Phys. No. 95 (1988) (with complete list of refer-
ences

[4] C. H. Llewellyn Smith, Ann. Phys. (N.Y.) 53, 521 (1969).
[5] A. H. Guth, Ann. Phys. (N.Y.) 82, 407 (1974).
[6] P. C. Tiemeijer and J. A. Tjon, Phys. Lett. B 277, 38

(1992); X. Q. Zhu, F. C. Khsnna, R. Gourishsnksr, and
R. Teshims, Phys. Rev. D 47, 1155 (1993);J. R. Spence
and J. P. Vary, Phys. Rev. C 35, 2191 (1987); 47, 1282
(1993).

[7] M. J. Zuilhof and J. A. Tjon, Phys. Rev. C 22, 2369
(1980); J. A. Tjon, Nucl. Phys. A 483, 157c (1987).

[8) M. Gourdin, Nuovo Cimento 7, 338 (1958).
[9] J. L. Gamxnel, M. T. Menzel, and W. R. Wortman, Phys.

Rev. D 3, 2175 (1971).

[10] H. Ito, T. Murote, M. Nods, snd F. Tanaks, Theor. Phys.
(Kyoto) 51, 1115 (1974).

[11] J. Fleischer snd J. A. Tjon, Nucl. Phys. B84, 375 (1975);
Phys. Rev. C 21, 87 (1980).

[12] X. Q. Zhu, R. Gourishanksr, F. C. Khanna, G. Y. Leung,
and N. Mobed, Phys. Rev. C 45, 959 (1992).

[13] L. P. Kaptari, K. Yu. Kazskov, and A. Yu. Umnikov,
Phys. Lett B 293, 219 (1992).

[14] L. P. Kaptari, A. Yu. Umnikov, and B. Kampfer, Phys.
Rev. D 47, 3804 (1993).

[15] R. L. Jaffe, in Relativistic Dynamics and quark Nuclear-
Physics, edited by M. B. Johnson and A. Picklesimer
(Wiley, New York, 1987), p. 537.

[16] L. L. Frankfurt and M. I. Strikman, Phys. Rep. 160, 235
(1988).

[17] L. P. Kaptari, A. I. Titov, and A. Yu. Umnikov, Fiz.
Elem. Chsstits At. Yadra 51, 864 (1990) [Sov. J. Part.
Nucl. 51, 549 (1990)].

[18] A. Msnohar, in Symmetry and Spin in the Standard
Mode/, Proceedings of Lake Louise Winter Institute,
edited by B.A. Campbell, L. G. Greeniaus, A. N. Kamal,



2330 A. YU. UMNIKOU AND F. C. KHANNA 49

and F. C. Khanna (World Scientific, Singapore, 1992), p.
1.

[19] G. E. Brown and A. D. Jackson, The Nucleon N-ucteon

Interaction (North-Holland, Amsterdam, 1976).
[20] R. Machleid, K. Holinde, and Ch. Elster, Phys. Rep. 149,

1 (1987).
[21] M. M. Levy, phys. Rev. 88, 725 (1952); A. Klein, Phys.

Rev. 90, 1101 (1953); A. A. Logunov and A. N. Tavkhe-
lidze, Nuovo Cimento 29, 380 (1963); R. Blankenbecler
and R. Sugar, Phys. Rev. 142, 1051 (1966); V. G. Kady-
shevsky, Nucl. Phys. B6, 125 (1968); F. Gross, Phys.
Rev. 186, 1448 (1969); Phys. Rev. C 26, 2203 (1982).

[22] K. G. Wilson, Phys. Rev. 179, 1499 (1969); W. Zimmer-

mann, Ann. Phys. (N.Y.) 77, 570 (1973); C. G. Callan
and D. J. Gross, Phys. Rev. D 8, 4383 (1973).

[23] T. Muta, Foundations of Quantum Chromodynamics,
World Scientific Lectures Notes in Physics, Vol. 5 (World
Scientific, Singapore, 1986).

[24] B. L. Birbrair, E. M. Levin, and A. G. Shuvaev, Nucl.
Phys. A496, 704 (1989).

[25] B. L. Birbrair, E. M. Levin, and A. G. Shuvaev, Phys.
Lett. B 222, 281 (1989).

[26] L. P. Kaptari, A. I. Titov, E. L. Bratkovskaya, and A.
Yu. Umnikov, Nucl. Phys. A512, 684 (1990).

[27] L. S. Kislinger and M. B. Johnson, Phys. Lett. B 259,
416 (1991).

[28] K. Nakano, Nucl. Phys. A511, 664 (1990); K. Nakano
and S. S. M. Wong, ibid A530, 55.5 (1991).

[29] V. Barone, M. Genovese, N. N. Nikolaev, E. Predazzi,
and B. G. Zakharov, Z. Phys. C 58, 541 (1993).

[30] E. L. Berger, F. Coester, and R. B. Wiringa, Phys. Rev.
D 29, 398 (1984); E. L. Berger and F. Coester, ibid. 32
1071 (1985).

[31] S. V. Akulinichev, S. A. Kulagin, and G. M. Vagradov,
Pis'ma Zh. Eksp. Teor. Fiz. 42, 105 (1985) [JETP Lett.
42, 127 (1985)]; Phys. Lett. 158B, 475 (1985).

[32] B. L. Birbrair, A. B. Gridnev, M. B. Zhalov, E. M. Levin,
and V. E. Starodubski, Phys. Lett. 166B, 119 (1986).

[33] C. Ciofi degli Atti and S. Liuti, Phys. Lett. B 225, 215
(1989); L. S. Celenza, S. Gao, A. Pantzinis, and C. M.
Shakin, Phys. Rev. C 41, 2229 (1990); A. E. L. Dieperink
and G. A. Miller ibid. 44, 866 (1991).

[34] A. N. Antonov, L. P. Kaptari, V. A. Nikolaev, and A.
Yu. Umnikov, Nuovo Cimento A 104, 487 (1991).

[35] L. P. Kaptari, B. L. Reznik, A. I. Titov, and A. Yu.
Umnikov, Pis'ma Zh. Eksp. Teor. Fiz. 47, 357 (1988)
[JETP Lett. 47, 428 (1988)].

[36] S. A. Kulagin, Nucl. Phys. A500, 653 (1989).
[37] F. E. Close, R. L. JaKe, R. G. Roberts, and G. G. Ross,

Phys. Rev. D 31, 1004 (1985); F. E. Close, R. G. Roberts,
and G. G. Ross, Nucl. Phys. B296, 582 (1988).

[38] N. P. Zotov, V. A. Saleev, and V. A. Tsarev, Yad. Fiz. 45,
561 (1987) [Sov. J. Nucl. Phys. 45, 352 (1987)]; Pis'ma
Zh. Eksp. Teor. Fiz. 40, 200 (1984) [JETP Lett. 40, 965
(1984)].

[39] A. W. Hendry, D. B. Lichtenberg, and E. Predazzi, Phys.
Lett. 136B, 433 (1984).

[40] E. zur Linden and H. Mitter, Nuovo Cimento B 61, 389
(1969).

[41] B. A. Li, T. C. Hsien, S. Tan, T. L. Chen, C. Z. Yang,
and J. F. Lu, Phys. Rev. D 21, 3325 (1980).

[42] Ph. Caussignac and G. Wanders, Nuovo Cimento A 55,

45 (1980).
[43] S. Mandelstam, Proc. R. Soc. London A 233, 248 (1955).
[44] More complete discussions about the convolution for-

mulas and sum rules (26) and (27) may be found in
Refs. [15—18].

[45] K. Nishijima, Prog. Theor. Phys. 13, 305 (1955); G. R.
Allcock, Phys. Rev. 104, 1799 (1956); D. Lurie A. J.
Macfarlane, and Y. Takahashi, ibid. 140, B1091 (1965).

[46] C. G. Callan, S. Coleman, and R. Jackiw, Ann. Phys.
(N Y ). 5.9, 42 (1970).

[47] M. Rosa-Clot and M. Testa, Nuovo Cimento A 78, 113
(1983).

[48] A. Akhiezer and V. Berestetskii, Quantum E/ectrodyriam
ics (Wiley, New York, 1965).

[49] M. Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau,
j. Gote, P. Pires, and R. de Tourreil, Phys. Rev. G 21,
861 (1980).

[50] S. S. Schweber, Ann. Phys. (N.Y.) 20, 61 (1962).
[51] J. J. Kubis, Phys. Rev. D 6, 547 (1972).
[52] R. Bankenbecler and L. F. Cook, Phys. Rev. 119, 1745

(1960);W. W. Buck and F. Gross, Phys. Rev. D 20, 2361
(1979); B. D. Keister and J. A. Tjon, Phys. Rev. C 26,
578 (1982)

[53] A. R. Edmonds, Angular Momentum in Quantum Me

chanics (Princeton University Press, Princeton, New Jer-

sey, 1957).
[54] D. A. Varshalovich, A. N. Moskalev, and V. K. Kher-

sonskii, Quantum Theory of Angular Momentum (World
Scientific, Singapore, 1989).

[55] G. C. Wick, Phys. Rev. 96, 1124 (1954).
[56] A. Pagnamenta and J. G. Taylor, Phys. Rev. Lett. 17,

218 (1966).
[57] G. Tiktopoulos, Phys. Rev. 136, B275 (1964).
[58] L. P. Kaptari and A. Yu. Umnikov, Phys. Lett. B 259,

155 (1991).
[59] P. Hoodbhoy, R. L. Jaffe, and A. Manohar, Nucl. Phys.

B312, 571 (1989).
[60] A. Yu. Umnikov, F. C. Khanna, and L. P. Kaptari, Z

Phys. (to be published).

[61] N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 49, 607

(1991); N. N. Nikolaev and V. R. Zoller, ibid 56, 623.
(1992); B. Badelek, K. Charchula, M. Krawczyk, and J.
Kwiecinski, Rev. Mod. Phys. 64, 927 (1992); H. Khan
and P. Hoodbhoy, Phys. Lett. B 298, 181 (1993); S. Ku-

mano and J. T. Londergan, Phys. Rev. D 44, 717 (1991).
[62] W. Melnitchouk and A. W. Thomas, Phys. Rev. D 47,

3783 (1993).
[63] A. W. Thomas, Phys. Lett. 126B, 97 (1983); L. Frank-

furt, L. Mankiewicz, and M. Strikman, Z. Phys. A 384,
343 (1989); W.-Y. Hwang, J. Speth, and G. E. Brown,
ibid. 339, 383 (1991).

[64] EM Collaboration, J. Ashman et a/, Phys. Lett. B 206,
364 (1988); EM Collaboration, J. Ashman et al , Nucl. .

Phys. B328, 1 (1989).
[65] R. Dymarz and F. C. Khanna, Nucl. Phys. A516, 549

(1990); L. P. Kaptari and A. Yu. Umnikov, Z. Phys. A

341, 353 (1992).
[66] H. A. Gersch, Am. J. Phys. 47, 555 (1979).
[67] M. Toda, R. Kubo, and N. Saito, Statistical Physics I

(Springer, Berlin, 1992).
[68] J. Goldstone and R. Jackiw, Phys. Rev. D ll, 1486

(1975), and references therein.


