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Checking a neutron halo from elastic scattering
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We study the relative difference E(q) of elastic scattering differential cross sections as function of
the momentum tranfer g. Applied to neighboring nuclei incident on the same target, it yields qual-
itative information on the relative changes of matter distributions in an almost model independent
way. Variations of the radius and of the surface thickness produce radically different pattern for
E(q). The method is well suited at medium and high energies. In the absence of data of sufficient
quality, we consider ' C and ''Li elastic scattering on *2C at about 60 MeV /nucleon incident energy

for illustrative purpose.
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Nuclei close to the particle drip line offer a unique
opportunity to study weakly bound systems subject to
strong interactions. In this domain, much attention has
been devoted to the spatial extension of the wave func-
tion. For instance, in the case of !!Li, probing the neu-
tron halo resulted from measurements of the total reac-
tion cross sections and dissociation [1,2]. On the other
hand, elastic scattering is known to provide information
on the geometrical properties of the beam-target systems.
Theoretical studies have investigated the influence of the
11, neutron halo on the differential cross sections at low
and intermediate energies [3,4].

The purpose of the present work is to show that the
relative difference of two differential cross sections is well
suited to emphasize shape differences. Furthermore, in
spite of the fact that interpretating the scattering of
strong interacting particles requires a model, the relative
difference underlines specific features merely connected
to geometrical aspects. Consequently, such an analysis is
practically model independent, at least at a qualitative
level.

The situation is well illustrated by the model of Inopin
and Berezhnoy [5,6]. Ignoring spin and isospin complica-
tions, the scattering amplitude is given in this case by

tkRo

F(g) = —2Ji(qRo)e P’ (1)

where Ry is the strong interaction radius of the system,
B simulates its surface thickness, k is the incident mo-
mentum in the c.m., and ¢ = 2k sinf/2 is the momentum
transfer.

The relative difference between two differential cross
section is by definition
— oy

o1
E(q)=2 2+—22
(9) P

(2)

where o; =| f(q) |2, for Ry = R;, B = B;.
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It is then immediate to check that, in this simple
model, E(q) displays radically different patterns accord-
ing to whether the two systems differ by their radii
(R1 # Ra, (3 fixed) or by their surface thickness (8, # B2,
R fixed). Indeed, E(q) undergoes strong oscillations with
poles in the first case, and varies very smoothly in the
second case. The same general behavior remains valid in
more sophisticated calculations, although variations of R
and B cannot be always disentangled.

As a second example, we have worked out another sim-
ple model, somewhat more realistic, to support the inter-
pretation of E(q). In a very crude way, the double convo-
lution integral representing the beam-target interaction
through an effective interaction

f(r) = /Pa(l")Pb(l‘")Veff(r —r' +r")dr'dr”

has been parametrized by a two-parameter Fermi func-
tion

f(?") = pPo Y ) (3)

1+ exp(75°)

assuming spherical symmetry. Spin and isospin degrees
of freedom are averaged, and the scattering amplitude is
calculated by means of the asymptotic formula of Amado,
Dedonder, and Lenz [7], which approximates the Glauber
model with accuracy for ¢ > 1 fm~!. The differential
cross section is then given by

2 k?
o(@) = § 575 | 2mpopye? [*/% €¥cosh(2X) + cos(2¥)].

(4)
Here we have
® = —7mfBq — ZRet + %Re(ozz/?’)(qc)l/3 cos g ,

£ = —$Im(a®/®)(gc)"/* sin § + nlmt. — 7 Imi ,
¥ =32 — 2TImf + gc + $Re(a?/?)(gc)/sin §

+%Im(az/3)(qc)1/3 cos T .
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Furthermore,

Ret = 1.46p9(278)Y%(c? + n2B%) % cos 22 |
Imf = 1.46p9(278)"/?(c? 4+ n2B%)/*sin 22 |

a = mPpocy/1 + r2eit= |

¢o = —arctan(r),Imt. ~ —2 arctan(%@) .

The notation follows the one of Ref. [7], and we refer
the reader to this original article for details. The interac-
tion strength is parametrized by v = §(1 —ir), where o
is the effective nucleon-nucleon total cross section and r
is the ratio of real to imaginary part. Actually, o appears
always multiplied by po, so that the relevant quantity is
A = (0po)~?, as can be checked easily. For the present
purpose, A will be considered as a free parameter, a point
of minor importance since in first approximation E(q) is
independant of A.

As usual, n is the Sommerfeld parameter. The quan-
tity £ is related to the profile function given by t(b) =
ffooo f(r)dz. Similarly, t. is the profile function of the
Coulomb interaction folded with the density.

By taking the logarithmic derivative of Eq. (4) with
respect to ¢ and 3, respectively, we can check how E(g)
is reflecting a change in radius or in surface thickness. In
spite of the complexity of the full expression, it is easy
to verify that E(q) is dominated by two factors of o(q).
The first one is the exponential falloff, e~27%4, leading to
a linear variation of E(q) under a change in 8. The sec-
ond one is the gc component in the cos(2¥) term, which
induced the oscillatory behavior of E(g) due to a change
in radius. The typical patterns of E(q) corresponding to
the variation of either ¢ or 3 are displayed in Figs. 1
and 2, respectively. They are less schematic than those
produced by the Inopin- Bereznhoy [6] model, but the
general trends are confirmed. Note that the large ampli-
tude oscillation at low ¢ (g < 1 fm™! ) is not relevant, as
it lies outside the domain of validity of Eq. (4).
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FIG. 1. Relative difference E(q) corresponding to a varia-
tion of the radius c. The scattering amplitude is calculated
by using the asymptotic formula of Amado, Dedonder, and
Lenz [8]. The parameters are those fitting ' C-12C scattering
at 60 MeV /nucleon.
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FIG. 2. Same as Fig. 1 for a variation of the surface thick-
ness .

Since a neutron halo is expected to develop a long tail
in the density distribution, and thus to increase notice-
ably the surface thickness of the nucleus it belongs to,
the function E(q) appears a good tool to exhibit such an
effect, provided the reference nucleus is well chosen, i.e.,
has approximately the same radius. The present work
being devoted to !'Li with a rms radius ~ 3.2 fm, the
reference nucleus should be taken among the 2s— 1d shell
nuclei. Such a choice, however, results in a large charge
number difference, which could induce inconvenient ef-
fects arising from the Coulomb phase, especially at low
energy.

Indeed, the most favorable data to be analyzed along
with the relative difference method would be elastic dif-
ferential cross sections on a proton target at 0.8-1.0
GeV /nucleon incident energy. In this range, the nucleon-
nucleon interaction is rather well known, the Glauber
model is reliable, and Coulomb effects are small except
at very forward angles and at diffraction minima. No
such data are yet available. For illustrative purposes, we
shall discuss the case of 'Li and ''C on a 2C target at
637 MeV and 620 MeV, respectively. These data have
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FIG. 3. Relative difference E(q) of ''Li and ''C scattered
by '2C at 60 MeV/nucleon. Experimental data are taken
from Ref. [8]. The solid curve corresponds to Ei1(g) and the
dashed curve to F2(q), two model calculations as explained
in the text.
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been collected in the same experiment [8], and are the
only ones at the moment providing us with an estimate
of E(q).

Comparing the two patterns of Figs. 1 and 2 to the
experimental values of E(q) displayed in Fig. 3, we con-
clude that the data indicate a superposition of changes in
both radii and surface thickness. The large radius differ-
ence is, however, hiding somewhat the increase in surface
thickness, which is essentially given by the slow average
decrease of E(q). In order to explore the situation in
more details, we have proceeded as follows.

In a first step, calculations have been performed for
11C-12C elastic scattering at 620 MeV [8] by using Eq.
(4). This is a four-parameter fit to the experimental data.
We have only retained the best-fit values according to a
x? test to data at ¢ > 1 fm™!. For the two parameters
fixing the interaction we obtained A = 1 fm and r = 1.72;
this last value is close to the one which can be inferred
from the work of Satchler, McVoy, and Hussein [3]. The
two geometrical parameters are found to be ¢ = 5.62 fm
and 8 = 0.63 fm. Keeping the interaction parameters
fixed, we next have varied ¢ and (3 so to fit the experi-
mental data of 11Li-12C at 637 MeV [8]. Note that these
data do not correspond to purely elastic scattering; some
inelastic contributions could not be eliminated. They are
used essentially to show how the method is working, and
to give a preliminary feeling in the absence of data of
higher quality. We obtain ¢/ = 6.33 fm and 3’ = 0.72 fm.
From these two set of parameters, the resulting E;(q) is
displayed in Fig. 3, and compared to experimental val-
ues. Note that the actual c¢ difference of 0.7 fm reflects
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the measured rms radius difference between ''Liand !1C,
which is about this value.

As the shape of the experimental E(q) clearly indi-
cates a superposition of an increase in radius and surface
thickness, we have calculated a second theoretical curve
E2(q). It combines in a linear way the two logarithmic
derivatives with respect to ¢ and (3 calculated from the
11C parameters with Ac = 0.6 fm and AB = 0.1 fm.
This second curve provides us with a fit comparable to
the first one, which means that the Coulomb phase does
not produce drastic effects on E(q).

From the present attempt we conclude that E(q)
constitutes a good tool to exhibit matter distribution
changes, at least at a qualitative level. Consequently, it
should be successful in checking the presence of a neutron
halo. In the absence of sufficiently accurate data at high
energies, the low energy case we have analyzed shows the
potentiality of the method, although the 'Li data are
contaminated by some inelastic contributions. These re-
sults are nevertheless encouraging, and the method is ex-
pected to yield reliable conclusions once applied at proper
incident energies. Furthermore, with higher velocities,
the influence of the Coulomb phase will diminish and
varying the reference nucleus towards heavier elements
may bring very interesting variations of E(q) with A.
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