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Three-body resonances by complex scaling
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It is demonstrated that the complex scaling method can be used in practical calculations to
localize three-body resonances. Our model example emphasizes the fact that in three-body systems
several essentially different asymptotic behaviors can appear. We show that the possibility of these
different asymptotic configurations can lead to an apparent, resonance-like structure in the three-
body continuum.

PACS number(s): 21.45.+v, 24.30.Gd

Three-body resonances (systems that decay into three-
body final states) play an important role in few-body
physics. The description of these states is somewhat eas-
ier than that of scattering processes that lead to three
(or more) particles in the outgoing channel. The study of
three-body resonances therefore will help to clarify some
aspects of the many-body scattering problem.

One of the main difBculties in the general formulation
of the quantum mechanical X-body resonance (and scat-
tering) problem is the specification of the asymptotic be-
havior. There is a fundamental difference between prob-
lems where only short-range interactions occur and those
where a long-range force (e.g. , Coulomb force) is present
[1]. There are xnethods that avoid explicit reference to
the unknown or partially known asymptotics (e.g. , the J-
matrix method [2] or the potential separable expansion
method [3]) but until now these methods have been de-
veloped only for two-body systems. In the case of bound
states the question of the asymptotic behavior is not a se-
rious problem, and the majority of the methods work be-
cause, in most cases, the bound state asymptotics hardly
affect the physically observable quantities. However, the
asymptotic behavior is crucial for resonances and scat-
tering states.

The complex scaling method (CSM) [4] reduces the de-
scription of resonant states to that of bound states, thus
avoiding the problem of asymptotics. This method han-
dles the non-Coulomb and Coulomb cases on equal foot-
ing and can be extended to two-body scattering states
[5]. The possibility of generalizing this method to general
many-body scattering states is therefore intriguing. Until
now, three-body resonances have been investigated using
the Faddeev method [6], real stabilization [7], and the
time delay matrix formalisxn [8]. In this paper we study
them using the complex scaling method. Although the
CSM has been used to describe three-body systems above
three-body breakup [9], those authors did not specify
how they identi6ed three-body resonances. The present
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work was prompted by the contradictory theoretical re-
sults concerning the existence of a soft dipole resonance
in the neutron halo nucleus sHe [10,11]. This problem
is complicated by a mixture of the underlying nuclear
physics and three-body dynamics. Here we clarify some
points about the three-body dynamics.

We begin by recalling the main points of the CSM in
the two-body context. In coordinate space, resonance
eigenfunctions, corresponding to the complex energy so-
lutions of the Schrodinger equation

Hli) = (T+ v)l4) = El@),

show oscillatory behavior in the asymptotic region with
exponentially growing amplitude, exp[i(r —ip) r]
(K, p ) 0). Thus, the resonance eigenfunctions are
not square integrable. In the complex scaling method
the eigenvalue problem of the transformed Hamiltonian

Hg = U(8)HU (8):

Hgl@g) = Egl4'g) (2)

is solved instead of Eq. (1). U(8) is an unbounded sim-

ilarity transforination [12], which, in coordinate space,
acts on a function f(r) such that

U(8)f (r) = es' I f (re' ).

[If 8 is real, U(8) means a rotation into the complex co-

ordinate plane, if it is complex, it means a rotation and
scaling. ] The two problems are connected by the Aguilar-

Balslev-Combes theorem [13]:If V is a (dilation) analytic

operator, then (i) the bound eigenstates of H are the

eigenstates of Hg, for any value of 8 within 0 ( 8 ( a/2;

(ii) the continuous spectrum of H will be rotated by an

angle 28; (iii) a complex generalized eigenvalue of Eq.
(2), E„, = e —i2I', a, I' ) 0 (with the wave number

k„, = v, —ip, K, p ) 0), belongs to the proper spectrum of

Hg provided 28 )
l arg E„,l. Roughly speaking, the com-

plex scaling transformation changes the asymptotic wave

function from exp[i(K —ip)r] to exp[i(r —ip)r exp(i8)],
which, in the case of 28 )

l
arg E„,

l

= 2l argk„, l, local-
izes the diverging wave function.

If we have N particles, we can transform the problem
&om one-particle coordinates to certain interparticle rel-
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ative coordinates (Jacobi coordinates):

where the origin is fixed at the center of mass, so that

1 m, r; = 0, where m; are the particle masses. The
application of the CSM in this case means that we trans-
form all relative coordinates under the action of U(8).
Note that the transformation (4) is linear. Therefore the
complex scaling transformation in a certain set of Ja-
cobi coordinates results in the same transformation in all
other possible sets of relative coordinates. As a conse-
quence, we cannot choose the rotation angles indepen-
dently in the different configurations, like in the multi-
channel CSM [14].

Our present model problem consists of three particles
with masses m~, m~, and m3. In order to have only two
different systems of Jacobi coordinates, we choose mq ——

mq. The interactions between the particles are separable
forces

(5)

1 1T= —— +&(-)
P(x~)3

(6)

where the Laplace operators are differential operators in
the appropriate Jacobians. It is easy to show that the ap-
plication of the complex scaling transformation (3) to our
potential and kinetic energy operators is equivalent with
the change of b to b exp(i8) in (5) and the multiplication
of the right-hand side of (6) by exp( —2i8).

As the CSM localizes the resonant wave functions, we
can use any bound state method to describe them. Here
we use the wave function expansion method. We consider
three different trial functions. In coordinate space

4 1 —) ij(Pci(t12)(Pj (t(12)3)~ (7)

@2 ) dij Pi(t23)Pj(t(23)1)s

and the sum of these two, 4'3 ——4q + 4'g. The expansion
coeKcients c and d are to be determined from a varia-
tional principle. As our potentials act only between 8
waves, each oscillator function carries zero angular mo-
mentum in (7) and (8). We choose the oscillator size
parameter of the wave functions, 6, different &om b in
order to make the trial functions more Bexible. The sum-

where
I po (b) ) is the eigenfunction of the three-

dimensional harmonic oscillator with n = l = 0, b is
the oscillator size parameter, and A,~ are the potential
strengths. In coordinate space the interactions depend
on the various relative coordinates. Each interaction has
a natural Jacobi coordinate system in which it has the
simplest form: e.g. , in the (12)3 coordinate system [there
is a relative coordinate between particles 1 and 2, t12 and
another between (1,2) and 3, t(12)3] the V12 interaction
depends only on t12.

The kinetic energy operator is easy to express in any
coordinate system: e.g. , in (12)3 it is given by

mation limits in the wave functions are chosen to reach
stable convergence.

For the necessary matrix elements we need to calcu-
late the overlap of the product oscillator states between
different Jacobi coordinate systems, and the Laplace op-
erator between such states. Using the Talmi-Moshinsky-
Tobocman transformation [15] we can express a product
of oscillator states, given in a certain Jacobi coordinate
system (n), in terms of product oscillator states in an-
other system (a'), e.g. ,

I I I

&' ( 23)& ( (»)1) = ) 'i~«i (»)«( (»)3)

where the sum is finite, and the transformation coefB-
cients can be calculated, for example, by the program de-
veloped in [16]. Using these transformations, and in ad-
dition the overlap between two oscillator functions with
different size paraxneters, and the matrix element of the
Laplace operators between such oscillator functions (for
the formulas see, e.g. , [17]),all necessary matrix elements
can be calculated analytically.

We choose mq ——mq ——2, and m3 ——4, b = 1.0, and
b = 2.0 (5 = 1 and atomic mass units are used). The
use of separable interactions allows us to set up their
strengths in such a way that resonances occur at pre-
scribed energies in the two-body subsystems [18]. The
choice Aqq

——0.6377+i0.0697 results in a resonance in the
(1,2) subsystem at E = 1.5 —i0.5. The %13 —%23 —1.0
strengths give a resonance in the (1,3) and (2, 3) sub-
systems at 1.7553 —i0.2438 energy. As an illustrative
example we show in Fig. 1(a) the result of a CSM calcu-
lation for the (1,2) subsystem. The operation of the CSM
is evident: the discretized continuum points are rotated,
and the resonance is revealed.

In Figs. 1(b)—(d) we show the results of three-body
CSM calculations using the 4'q, 4q, and 43 trial func-
tions, respectively. We can see that as the rotation an-
gles are large enough to localize the resonances in the
subsystems, there are discretized continuuxn points lying
on straight half-lines that start &om the position of the
resonances of the subsystems. These starting points act
as nonreal thresholds. For example, in Fig. 1(b) the half-
line starts at 1.5 —i0.5, which is the resonance energy in
the (12) subsystem. This is in full agreement with the
mathematical theorems [19,20].

In addition to the continuum points, there is an iso-
lated point at 4.128 —i0.337 in each figure. The position
of this solution is stable against the variation of the rota-
tion angle 8. We can identify this point as a three-body
resonance. The fact that this point occurs in each figure
shows that this state of the three-body systexn can ex-
hibit both (12)3 and (23)1 asymptotic behaviors, exactly
as expected for a three-body resonance. This behavior
gives us a method to identify three-body resonances in
practical calculations. But what can we say about the
continuum states that lie on the half-lines starting &om
the resonance energies of the subsystems' For example,
in the (23)1 configuration there is a resonant state in the
(2, 3) system and a scattering state between 1 and (2, 3).
These continuum states are essentially different from a
pure three-body scattering state, which is represented by
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FIG. 1. Energy eigenvalues

(in atomic units) of a com-
plex scaled (a) two-body prob-
lem with m1 ——mq ——2, and
Agg ——0.6377+ i0.0697; (b)—(d)
three-body problem with m&

mg —— 2, m3 —— 4,
A1~ —— 0.6377 + i0.0697, and
A 13 —A/3 —1 0. The trial wave
function is (b) @q, (c) 4q, and

(d) 4s. The 8 rotation angle is
0.4 rad in each igure.
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the continuum points lying on the half-lines that start at
the origin. These resonance+scattering continuum states
represent a kind of sequential decay, where the lifetime
of a quasistationary subsystem (2, 3) is longer than the
time needed for the 1 and (2, 3) scattering.

The fact that different types of continuum states can
be present in a three-body system means that the three-
body continuum has structure beyond that of the three-
body resonances. Let us speculate a bit about this ad-
ditional structure. In Fig. 2 we show the distribution
(in energy bins 0.2 wide) of the continuum points of
the model whose wave function is 43. We note here
that there is no qualitative difference between unscaled
(0 = 0) and complex scaled results because the CSM
causes only a contraction of the continuum points, while
the resonances remain stable. We can see in Fig. 2 the
resonant structure around 4.2. But, in addition, there are
concentrations of the continuum points around 1.6 and
2.0, which coincide with the real parts of the resonance
energies of the subsystems. These resonance-like struc-
tures are apparent and they are the consequence of the
fact that if the energy is larger than the threshold energy
of a subsystem's resonance, a new, resonance+scattering,
asymptotic behavior can appear.

We should note that the shape of the background dis-
tribution in Fig. 2 is surprising. In the case of two parti-
cles, the wave function expansion method can be thought
of as enclosing our system in a box whose size is the 6-
nite spatial region of the trial function. This leads to
a spectrum E„n~ (n = 1, 2, . . .), and the number of
continuum points that are in an interval AE around E
(if AE is small) is b,N AE/~E. We have checked in a
two-body model that this is a good approximation. How-
ever, our three-body spectrum in Fig. 2 differs strongly
Rom such a shape. In the case of three particles, the
radial Schrodinger equation in the hyperspherical coor-

dinate can be cast into a form which is similar to a two-

body equation (see, e.g. , Ref. [21]). If all angular mo-
menta are zero, a centrifugal barrier occurs in this re-
formulated Schrodinger equation with L = 3/2. This
nonzero L leads to a reduction of the low energy solu-
tions, but this is a marginal decrease. There must be
another effect which supresses the low energy spectrum.

In conclusion, we have shown that the complex scal-
ing method can be used in practical three-body calcu-
lations. In this method, three-body resonances can be
identi6ed as those resonant energy solutions that appear
in all Jacobi coordinate systems. We have pointed out
that the possibility of resonant+scattering-type asymp-
totic behavior can lead to an apparent structure in the
three-body continuum. The case of the 6He soft dipole
mode is very similar to our present example. That nu-

cleus is a genuine three-body, cr + n + n, system [22,23].
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FIG. 2. Distribution of the continuum energy solutions of
the three-body problem speci6ed in Fig. 1, with the trial func-

tion 43. The energies of the solutions are binned in intervals
of width 0.2.



49 BRIEF REPORTS 2247

There are two resonances in the o. + n subsystem at
0.89 —i0.60 MeV and 4 —i4 MeV energies [24]. (And
there is an antibound state in the n+n subsystem, which
is beyond the scope of this Brief Report. ) From what we
can learn &om our present model, it is quite possible that
the structure in the He continuum, which has been in-
terpreted as a signature of a three-body resonance (the
so-called soft dipole resonance), is nothing but a conse-
quence of the three-body dynamics.

Of course we have considered here only one side of the
problem. The question of the He soft dipole resonance
can only be answered in a model that contains both the

correct nuclear physics and the proper three-body dy-
namics. The application of the complex scaling method
to such a realistic model of He is in progress.

This work was supported by the Fulbright Founda-
tion and NSF Grant Nos. PHY90-13248 and PHY91-
15574 (USA), the Science Policy Office (Belgium), and
by OTKA Grant No. 3010 (Hungary). I wish to thank
D. Baye, B. Gyarmati, and Z. Papp for interesting dis-
cussions, and S. E. Koonin and K. Langanke for useful
comments on the manuscript.

[1] R. G. Newton, Scattering Theory of Waves and Particles
(Springer-Verlag, New York, 1982).

[2] H. A. Yamani and L. Fishman, J. Math. Phys. 16, 410
(1975).

[3] B. Gyarmati and A. T. Kruppa, Phys. Rev. C 34, 95
(1986); Z. Papp, J. Phys A 20, 153 (1987); Phys. Rev. C
38, 2457 (1988); and private communication.

[4] Y. K. Ho, Phys. Rep. 99, 1 (1983); N. Moiseyev, P. R.
Certain, and F. Weinhold, Mol. Phys. 36, 1613 (1978);
Proceedings of the Sanibel Workshop Complex Scaling,
1978 [Int. J. Quantum Chem. 14, 343 (1978)]; B. R.
Junker, Adv. At. Mol. Phys. 18, 207 (1982); W. P.
Reinhardt, Annu. Rev. Phys. Chem. 33, 223 (1982);
Resonances The Un—ifying Route Towards the Formula
tion of Dynamical Processes, Foundations and Applica
tions in Nuclear, Atomic and Molecular Physics, edited
by E. Brandas and N. Elander, Lecture Notes in Physics
Vol. 325 (Springer-Verlag, Berlin, 1989).

[5] T. N. Resigno and P. Reinhardt, Phys. Rev. A 8, 2828
(1973).

[6] Y. Matsui, Phys. Rev C 22, 2591 (1980); A. Eskandarian
and I. R. Afnan, ibid 46, 2344 (19.92).

[7] P. Froelich, K. Szalewicz, and R. Stab, Phys. Lett. A
129, 321 (1988).

[8] J.P. Svenne, T. A. Osborn, G. Pisent, and D. Eyre, Phys.
Rev. C 40, 1136 (1989).

[9] C-Y. Hu and A. K. Bhatia, Phys. Rev. A 42, 5769 (1990);
P. Froelich, A. Flores-Riveros, and S. A. Alexander, ibid.
46, 2330 (1992).

[10] Y. Suzuki, Nucl. Phys. A528, 395 (1991).

[11] B. V. Danilin, M. V. Zhukov, J. S. Vaagen, and J. M.
Bang, Phys. Lett. B 302, 129 (1993); L. S. Ferreira, E.
Maglione, J. M. Bang, I. J. Thompson, B. V. Danilin,
M. V. Zhukov, and J. S. Vaagen, Phys. Lett. B 316, 23
(1993).

[12] P. O. Lowdin, Adv. Quantum Chem. 19, 87 (1988).
[13] J. Aguilar and J. M. Combes, Commun. Math. Phys. 22,

269 (1971); E. Balslev and J. M. Combes, ibid. 22, 280
(1971);B. Simon, ibid. 27, 1 (1972).

[14] A. Csoto, Phys. Rev. A 48, 3390 (1993).
[15] W. Tobocman, Nucl. Phys. A357, 293 (1981).
[16] Y. Gan, M. Gong, C. Wu, and C. Bao, Comput. Phys.

Commun. 34, 387 (1985).
[17] A. T. Kruppa and K. Kato, Frog. Theor. Phys. 84, 1145

(1990).
[18] A. Csoto, B.Gyarmati, A. T. Kruppa, K. F. Pal, and N.

Moiseyev, Phys. Rev. A 41, 3469 (1990).
[19] E. Balslev, in Resonances Models an—,d Phenornen, a,

edited by S. Albeverio, L. S. Ferreira, and L. Streit, Lec-
ture Notes in Physics Vol. 211 (Springer-Verlag, Berlin,
1984), p. 27.

[20] B. Simon, Int. J. Quantum Chem. 14, 529 (1978).
[21] D. V. Fedorov, A. S. Jensen, and K. Riisager, Phys. Lett

B 312, 1 (1993).
[22] M. V. Zhukov, B.V. Danilin, D. V. Fedorov, J. M. Bang,

I. J. Thompson, and J. S. Vaagen, Phys. Rep. 231, 151
(1993).

[23] A. Csoto, Phys. Rev. C 48, 165 (1993).
[24] F. Ajzenberg-Selove, Nucl. Phys. A490, 1 (1988).


