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Tvm-neutrino double beta decay of 48Ca
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We have performed quasiparticle random phase approximation (QRPA) calculations for the 2vPP
decay matrix element M&T of Ca using realistic effective interactions derived from the Paris, Bonn,
aud Reid potentials. Unlike earlier QRPA calculations where the BCS self-energies were suppressed,
we have retained these self-energies together with the use of the single-particle levels provided by
a Ca core. Different choices for the single-particle levels are employed, and their effects on MGT
are compared. A majority of our calculated MGT matrix elements are in good agreement with
the experimental bounds of ~M&T~ ( 0.05 MeV, and exhibit good stability with respect to the
variation of the particle-particle interaction strength g„„.

PACS number(s): 23.40.Hc, 21.30.+y, 27.40.+z

There are about ten [1—4] nuclei whose two-neutrino
double beta (vvPP) decays have been observed, and
among them Ca is of particular theoretical interest.
Most PP nuclei are far from the closed shells, and for
them exact shell model calculations are prohibitively dif-
6cult. To treat these nuclei one is compelled to employ
the commonly used quasiparticle random phase approx-
imation (QRPA) (see, for example, Ref. [5]).

Ca is a double closed-shell nuclei, and it is the light-
est known nucleus whose vvPP decay has been observed.
Comparing with other PP-decay nuclei such as rsGe,

Ca is much more suitable for being treated by the nu-
clear shell model. A relatively small model space con-
sisting of the four Of lp orbits outside a closed 40Ca core
may be adequate. Hence Ca has been a favored nucleus
for theoretical PP studies as it can be investigated using
either QRPA or exact shell model methods [6—12]. And
it is probably the only nucleus for which a high accuracy
PP calculation can be made [10].

In this Brief Report we wish to perform a 2vPP calcu-
lation for Ca using a modified QRPA method recently
suggested by Stout and Kuo [13]. This method differs
from earlier QRPA methods mainly in its treatment of
the single-particle (s.p. ) energies. In earlier QRPA cal-
culations of PP decays, the s.p. self-energy terms given
by the BCS gap equations were generally suppressed.
Stout and Kuo have found that the retention of those
self-energies was important in stabilizing the QRPA re-
sults with respect to the variation of the particle-particle
interaction strength and in reproducing the experimental
MGT matrix elements of Ge, Se, and Mo. Thus it
may be of interest to further examine their method by
applying it to a MGT calculation for Ca.

In the following we shall first briefiy review the QRPA
formalism in order to discuss the BCS self-energies. Two
major inputs to PP-decay calculations are the s.p. ener-
gies and the efFective nucleon-nucleon (NN) interactions.
We shall carry out several calculations using difFerent

Permanent address: Physics Department, State University
of New York, Stony Brook, NY 11794.

choices for the s.p. energies, to investigate the depen-
dence of our calculated MGT on these choices. For the
effective NN interactions we shall use the G-matrix in-
teractions [14,13] derived from the Paris, Bonn-A, and
Reids NN potentials. (From now on the Bonn-A poten-
tial shall be referred to simply as the Bonn potential. )
There have been various schemes in assigning the energy
denominators used in QRPA calculations of MG2T. To our
knowledge, studies concerning the choices of such energy
denominators have hardly been reported in the litera-
ture. We shall also perform a series of calculations using
difFerent choices for the energy denominator and discuss
our results.

As is well known [14], in QRPA MG2T calculations a
first step is to solve the following BCS gap equations
separately for the active protons and for the active neu-
trons:

b, = . ) /2j + lu vs( —1) 'G(aabb0), (1)/2j. +1

G(abcdJ) = ——(1+ b s) I (1+b,d) I (abJ~V, tr~edJ),
1

2
(2)

p = . ) (2J + 1)vt, G(ahab J),2j +1

(4)

ectp [(s p) 2 + ~2]1/2

A = ) (2j + l)v .

In the above, 4 is the pairing gap, p is the s.p. self-
energy, and Vg is the NN eHective interaction to be
derived &om the Paris, Bonn, and Reid NN potentials.
c is the unperturbed s.p. energy and e~ denotes the
quasiparticle energy. v and u represent respectively
the occupation and emptiness of the s.p. orbit, and A is
the chemical potential determined by the condition that
the total number of active nucleons is A, which, for ex-
ample, represents the number of active neutrons when
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Di(a) = [E + Qpp/2+ m, —R]
(7)

(8)

Here Qpp is the PP-decay Q value, which is 4.271 MeV for
Ca. m~ is the electron rest mass. The Gamow-Teller

reduced matrix elements are given as

0,'. ) = ) (pll~lln&[X. "u„~„—Y."u„u„]
p ) fL

(0y lit ~Ill,+) = ).(J I]~]In&[XC"0 u —Ys'"u 0 ].
p ) YL

The overlap integral

(1+ii+& = ) (Xs"X""—Yq""Y ")
p 7 fl

(10)

between two J states belonging to two different sets is
introduced. The quantities without (with) a bar are de-
fined with respect to the parent 0,+. (daughter 0& ) state.
The u and v coefBcients are obtained &om solving the
gap equations. The RPA amplitudes (X and Y) and (X
and Y) are obtained from the pnQRPA equations [18] for

Ca and Ti, respectively. As usual, a strength param-
eter g„„[18]is introduced in the pnQRPA equations.

In Figs. 1 to 4 we present some of our results for the

solving the neutron gap equations. Recall that the above
gap equations are solved separately, once for the active
protons and again for the active neutrons. When solving
the neutron gap equations, clearly p of Eq. (3) repre-
sents the average interaction of neutron a with all the
other active neutrons. p does not involve the interac-
tion of neutron a with any other protons. Similarly p,

of the proton gap equations also does not involve any
proton-neutron interactions.

Following Stout and Kuo [13] we take the s.p. energies
e as those given by a Ca core, and retain the self-energy
correction p given by the gap equations. There are dif-
ferent ways of determining the s.p. energies with respect
to a Ca core, and it is not clear which set of the s.p.
energies one should use for PP calculations. As presented
in Table I we have considered three such sets of s.p. en-
ergies. The column under OKW [15] corresponds to the
experimental s.p. energies for a valence nucleon (hole)
outside a Ca core. These s.p. energies are often used
for particle-hole calculations of Ca. The column under
WS denotes the Woods-Saxon s.p. energies correspond-
ing to a 4oCa potential well [16]. The s.p. levels of 4oCa

have been successfully described by Hartree-Fock calcu-
lations using the Skyrme-type effective interactions. We
have also considered one set of such s.p. energies, de-
noted SKII [17] in Table I. Note that for OKW and WS
the neutron and proton s.p. energies are taken to be
the same, while for SKII they are different, mainly by a
nearly constant upward shift of the proton s.p. levels.

Within the general framework of proton-neutron (pn)
QRPA (see, e.g. , Ref. [18] and references quoted therein),
the two-neutrino Gamow- Teller matrix element is written
as

MGT ) (0+y lit-o Ills+& (1g+11+)(1+
I
lt-o 110+)Di(a)

a, b

TABLE I. Diferent sets of Ca single particle energies,
in MeV, and the Ca PP decay matrix element Mar at
g~„= 1.0. The experimental bounds [20] for this matrix
element is ~Mar~ ( 0.05 MeV . The various effective in-
teractions used in the calculation are explained in the text.

OK& WS SKII
nlrb

Od5/2

Od3/g

lsd/
0fvys
0fsg2
1p3/2

1p1/2

—13.5
—7.3
—9.8

0.0
6.5
2.1
4.1

—17.1
—13.4
—13.0
—5.3

1.0
—1.5

0.5

—15.68
—10.17
—9.6
—1.07

5.39
3.11
4.39

—22.75
—17.13
—16.67
—7.73
—0.79
—2.69
—1.30

MGz Paris G —0.063
LESU —0.031

—0.050
—0.051

—0.023
—0.014

Bonn G
LESU

-0.080 —0.063
—0.155

—0.027
—0.035

Reid G —0.036
LESU —0.071

—0.031
—0.012

—0.013
0.003

MG& matrix element of Ca. They have been obtained
with three choices [13,18] for the effective interactions,
each using both the Paris and the Bonn NN potentials.
(1) G: Here we consider the effective interaction as given
by the bare G matrix only, calculated with a Pauli exclu-
sion operator specified by (ni, n2, ns) = (6, 15, 28) and
harmonic oscillator parameter Ru = 10.0 MeV. (2) G-
2nd: Here the effective interaction is given by the sum of
the nonfolded diagrams Grst- and second-order in G. In
this scheme a large pairing contribution is given by the
well-known core polarization diagram Gs„ih. (3) LESU:
The effective interaction in this choice is given by the Q-
box folded. -diagram series, calculated with the Lee-Suzuki
iteration inethod, with the Q box given by irreducible di-

agrams 6rst- and second-order in G.
Figure 1 displays our results using the WS s.p. spec-

trum of Table I and the effective interactions derived &om
the Paris NN potential. At gpp 1 the MG& matrix
element given by effective interactions G and LESU are
quite close to each other, and both are within the exper-
imental limit of ~MG2&~ ( 0.05 MeV i. The calculation
with G-2nd becomes unstable at g„„-G.9.

The above are obtained with the Ca s.p. energies and
with the self energies p retained. A main difference of our
present calculation with earlier QRPA calculations is on
the treatment of the self energies p. Thus it may be of
interest to repeat our calculation according to the earlier
treatment of the s.p. energies, namely using the Ca
Woods-Saxon s.p. energies together with the suppression
of p. The results are generally not as good. For example,
the curve denoted by circles in Fig. 1 is obtained with
the above Ca procedure and using the bare reaction
matrix G as the effective interaction. It is seen that M&&
calculated in this way becomes unstable before g„p: 1
and tends to exceed the experimental bounds.

A few words about some numerical aspects of our cal-
culations may be added. All the seven orbits of Table
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FIG. 1. MGT matrix elements calculated with the WS s.p.
spectrum of Table I and the Paris NN interaction.

FIG. 2. Same as Fig. 1 except for the use of the Bonn NN
interaction.

I are included in our gap-equation calculation. For the
neutron gap equations, the sd orbits are nearly all full
and this had given us difBculty in obtaining gap-equation
solutions with high accuracy. However, this difficulty can
be overcome by using a carefully designed iteration and
interpolation procedure and we have done so.

Let us now return to present more results obtained
with our present treatment about the s.p. energies. Our

MGT matrix elements calculated with the Bonn poten-
tial and the 4oCa WS spectrum are shown in Fig. 2.
Generally speaking, the Bonn potential seems to give
stronger particle-particle interaction. Comparing with
Fig. 1 where the Paris potential is employed, the results
of Fig. 2 seem to have the tendency of becoming unstable
at smaller g„„values. At gpp

——1, the calculated MGT
values of Fig. 2 are outside the experimental bounds.

In Fig. 3 we present our results using the SKII s.p.
spectrum of Table I and the Paris NN potential. The re-
sults presented in Fig. 4 are the same except for the use
of the Bonn NN potential. In both figures, the results for
G and for LESU are rather close to each other, and are
within the experimental bounds at gPP = 1. The efFective
interaction G-2nd seems to be too strong, mainly due to
the strong pairing force provided by the G3ppp core po-
larization diagram, and consequently the calculated MG2T

using G-2nd becomes unstable way before gpp
——1.

The use of the OKW s.p. spectrum of Table I has
given results generally worse than those shown in Figs.
1 to 4, the calculated MG2T often exhibiting a stronger
dependence on gp„. For example, as indicated by "*"of
Table I, there is no solution for MGT at g~ ——1 when
using the OKW spectr»m together with the Bonn LESU
efFective interaction. At this point, the QRPA has com-
plex eigenvalues and consequently the RPA amplitudes
X and Y become undefined [13].

The numerical values of our calculated MGT matrix el-
ements at g~ = 1, using the Paris, Bonn, and Reid N1V
potentials are s»mmarized in Table I. Generally speak-
ing, the results obtained &om the Ca WS and SKII s.p.
spectra are better than those given by the OKW spec-
tr»m. For the Paris and the Reid cases, the results given
by G and by LESU are essentially equivalent to each
other. Zucker et al. [10] have performed an essentially
exact shell model calculation for the two-neutrino double

0. 2

0. 1

8( SKI I ) + Par i s

G
G —2nd
LES U

xpt

-0. 1

—0. 20. 0 0. 2 0. 4 0. 6 0. 8 1. 0 1. 2 1. 4

gpp

FIG. 3. Mc T matrix elements calculated mith the SKII s.p.
spectrum of Table I and the Paris NN interaction.

beta decay for Ca, obtaining a value of 0.04 MeV for
the MGT matrix element. It is encouraging that their
value and our MGT values are rather close to each other.
But it must be borne in mind that our calculation and
theirs have a number of differences. They used a modified
Kuo-Brown efFective interaction which is similar, but not
exactly the same, to our Paris-G and -LESU interactions.
Also, ours is an sd fp shell -approximate (pnQRPA) cal-
culation while theirs is an "exact" fp-shell calculation.
Rigorous comparisons between pnQRPA and feasible ex-
act shell model results will be very useful in assessing the
reliability of the former. Some studies in this direction
have been carried out by Brown and Zhao [12]; they have
compared the 4 Ti(n, p) and 4sCa(p, n) Gamow-Teller
transitions obtained both by exact shell model calcula-
tion and by a modified QRPA method.

The results presented so far have all been calculated
with the denominator Di(a) of Eq. (8), which has been
adopted by several authors (see Ref. [18] and references
quoted therein). Because of the two different sets of inter-
mediate states involved in Eq. (8), there is actually some
ambiguity about the adoption of this energy denomina-
tor. For example, it would seem to be also reasonable to
use an average energy denominator [19],namely, replac-
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FIG. 4. Same as Fig. 3 except for the use of the Bonn NN
interaction.

FIG. 5. Comparison of MGT matrix elements obtained
with three difFerent choices for the energy denominator.

ing Dq(a) by

D2(ab) =— + pp+
2 '2'.

where (Es —E;) is the excitation energy corresponding
to the daughter nucleus (4sTi). We have performed cal-
culations using D2(ab). In addition, the choice of

D.(at) = 2[D~(a)+D~(h)] (»)
has also been studied.

In Fig. 5 we present some of our results for comparing
the above three denominators. Using the above three
denominators, the MGT matrix elements shown are all
calculated with the same Paris LESU interaction and the
same Ca WS s.p. spectrum. At small gpp values, the
matrix elements exhibit some noticeable dependence on
the choice of the eaergy deaomiaators. But it has been
a surprise to us that the MGT values at gpp 1 are
remarkably close to each other. This is a desirable and
welcoming result, and would be of interest for further
investigation.

In summary, we have performed QRPA calculations of
MGT for Ca using realistic efFective interactions derived

from the Paris, Bonn-A, and acid NN potentials. We
have considered two treatments for the s.p. energies; one
using the s.p. eaergies provided by a 4~Ca core and with
the BCS self energies p, retained and the other using Ca
s.p. energies together with p suppressed. Within the con-
text of our present calculations, the former seems to give
more desirable results; in providing a better stability with
respect to the variation of the particle-particle interaction
strength gpp and in attaining reasonably good agreement
with the experimental bounds. As found before [14,18],
the results for MGT given by the efFective interactions
G and LESU are rather similar to each other, while the
efFective interaction G-2nd seems to give a too strong
pairing interaction. We have also performed calculations
using various choices for the energy denominators, and
for our present calculations the MGT matrix elements
given by the three commonly used forms for the eaergy
denominators are practically identical to each other.
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