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Color collective effects at the early stage of ultrarelativistic heavy-ion collisions
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Hard and semihard processes lead to a copious production of partons at the early stage of ultra-
relativistic heavy-ion collisions. Since the parton momentum distribution is strongly anisotropic, the
system can be unstable with respect to the specific plasma modes. The conditions of instability are
found and the characteristic time of its development is estimated. Then, the screening of the static
chromoelectric field in the nonequilibrium plasma is studied. Importance of the two phenomena for
heavy-ion collisions at the Brookhaven Relativistic Heavy Ion Collider and the CERN Large Hadron
Collider is critically discussed.

PACS number(s): 12.38.Mh, 25.75.+r

I. INTRODUCTION

A copious production of partons, mainly gluons, due to
hard and semihard processes is expected in ultrarelativis-
tic heavy-ion collisions [1—10]. For example, the number
of gluons generated at the early stage of the central Au-
Au collision is estimated [6] as 570 at the Brookhaven
Relativistic Heavy Ion Collider (RHIC) (+s = 200 GeV
per N Ncollision-) and 8100 at the CERN Large Hadron
Collider (LHC) (+s = 6 TeV per N Ncollision-). Since
the nucleons from the initial state are colorless, one usu-
ally ass»mes that the produced many-parton system is
not only globally but also locally colorless, and conse-
quently collective effects due to the color degrees of free-
dom are neglected when the temporal evolution of the
system is studied [7—9]. The local color neutrality can be
obviously violated by random color auctuations. Their
role, however, is not very important if the fluctuations
are effectively damped and the local neutrality is restored
fast. This is the case of the plasma which is close to the
thermodynamical equilibrium [11—13]. When the mo-
mentum distribution of partons is strongly anisotropic,
as happens at the early stage of ultrarelativistic heavy-
ion collisions, one expects, in analogy to the electron-ion
plasma case [11], an existence of the unstable plasma
modes with amplitudes exponentially growing in time.
Then the system dynamics is dominated by the mean-
field interaction and its behavior is essentially collective.

The main goal of this study is to show that the many-
parton system generated at the early stage of ultrarel-
ativistic heavy-ion collisions is indeed unstable with re-
spect to the plasma modes. We use the methods of the
electron-ion plasma physics [11] within a framework of
the quark-gluon transport theory [12,13]. The quark-
gluon plasma is assumed to be perturbative, i.e., weakly

interacting. We believe that such an assumption can be
justified in the following way.

When hadrons collide only hard parton-parton inter-
actions, those with the momentum transfer much greater
than the /CD scale parameter AqcD = 0.2 GeV, can
be treated in a perturbative way. One usually mod-
els soft nonperturbative interactions assuming existence
of the colorless strings or clusters, which further decay
into hadrons. When numerous partons are produced and
their density p is so large that p l' )) AgcD, the asymp-
totic freedom regime is presumably approached due to
the screening of color forces and then even soft parton
interactions can be treated in a perturbative way. There-
fore the strings or colorless clusters are expected to dis-
solve into partons. Then the transverse momentum cutoff
which separates the perturbative from nonperturbative
domain should be reduced.

In that way we have arrived at the second goal of
this study, which is the color screening. Specifically,
we compute the screening lengths of the static chromo-
electric field in the nonequilibrium plasma, which have
been briefiy discussed in [6]. These lengths appear to be
smaller than the confinement scale A&&D. Therefore the
perturbative analysis seems to be plausible.

The results of this study have been earlier partially
published [14]. This paper, which, except for some new
results, gives a more systematic and detailed presenta-
tion, is organized as follows. In Sec. II we formulate the
objectives of our considerations. Using the so-called Pen-
rose criterion [11],we discuss the stability conditions in
Sec. III. The next section presents an explicit unstable
solution of the dispersion equation. In Sec. V the charac-
teristic time of the instability development is estimated
and the relevance of our findings to heavy-ion collisions
at RHIC and LHC is discussed. The discussion of the
color screening is given in Sec. VI. At the end we sum-
marize our considerations and speculate about possible
ewperixnental consequences of our Bndings.

Electronic address: MROWOPLEARN. bitnet
We call a system locally colorless when not only the color

charge, but also the color current, vanishes as well.

II. DISPERSION EQUATION

The spectrum of plasma modes, which refIect the col-
lective behavior of the system, is determined by the dis-
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persion equation. As has been shown within the kinetic
theory of the quark-gluon plasma [12,13], the disper-
sion equation of the (small) plasma oscillations in the
anisotropic system coincides with that one of the electro-
dynamic plasma and reads [13,15]

det ~k 8'i —k'k~ —tu e'i(u, k)~ = 0, i, j = x, y, z, (2.1)

d3
e" ((u k) = b" +

(2x)sar —k v

( k v'I

(d

Bn(p)
+ i0+ Bp'

k'v
+

(2.2)

where k is the wave vector and u is the frequency.
is the chromodielectric tensor, which in the collisionless
limit (see below) is

where y, pll, », and p denote parton rapidity, longi-
tudinal and transverse momenta, and azimuthal angle,
respectively. Equation (2.4a) gives the parton number
distribution (dN/d»dy), which is flat in the rapidity
interval (—Y; Y), while the parton number distribution
(dN/d»dpII) corresponding to Eq. (2.4b) is flat in the
longitudinal momentum interval (—'Pll, 'Pll). We will fur-
ther refer to Eqs. (2.4a) and (2.4b) as the flat y and flat

pll distributions, respectively.
The solutions u(k) of Eq. (2.1) are stable when Im~ (

0 and unstable when Imu ) 0. In the first cases, the
amplitude exponentially decreases in time, while in the
second one there is an exponential growth. In practice, it
appears difficult to find solutions of Eq. (2.1) because of
the complicated structure of the chromodielectric tensor
(2.2). However, the stability analysis can be performed
without solving Eq. (2.1) explicitly.

where o., is the strong coupling constant and

n(p) = n, (p) + nq(p) + 6ns(p), (2.3)

III. UNSTABLE CONFIGURATION
AND PENROSE CRITERION

with nq, nq, and nz being the distribution function of
quarks, antiquarks, and gluons normalized in such a way
that the quark and gluon densities are

d'p d p,n. (p) t. = g .n. (p)2' 3 2' 3

The quarks and gluons are assumed to be massless,
and consequently the parton velocity v equals p/~p~.
The plasma is locally colorless, homogeneous, but not
isotropic. It should be also stressed that in spite of the
similarity to the electrodynamic formulas, Eqs. (2.1) and
(2.2) take into account the essential non-Abelian effect,
i.e. , the gluon-gluon coupling [13].

We discuss the dispersion equation (2.1) in the col-
lisionless limit, where the mean-field interaction is as-
sumed to dominate the system dynamics. The assump-
tion is correct if the inverse characteristic time of the
mean-field phenomena, v, is substantially larger than
the collision frequency v. Otherwise, the infinitesimally
small imaginary quantity i0+ from Eq. (2.2) should be
substituted by iv. Such a substitution, however, se-
riously complicates analysis of the dispersion equation
(2.1). Therefore we solve the problem within the colli-
sionless limit and only a posteriori argue validity of this
approximation.

The dielectric tensor (2.2) and consequently the so-
lutions of Eq. (2.1) are fully determined by the parton
momentum distribution, which we assume to be the same
for quarks and gluons. In the further discussion, we con-
sider two forms of the distribution function

1 1
n(V p~ &) = o-(Y —u)e(Y+v)h(»)2Y pi cosh g

(2.4a)

1
n(pll~»~+) 2~ 8(PII pll)0(PII +&II)h(»), (2.4b)

+ll

H((u)—:k —~ e' (ur, k) = 0, (3.2)

where only one diagonal component of the dielectric ten-
sor enters.

The Penrose criterion states that the dispersion equa-
tion H(~) = 0 has unstable solutions if H(u = 0) ( 0

[11].The meaning of this statement will be clearer after
we will approximately solve the dispersion equation in

When the momentum distribution is a monotonously
decreasing function of ~p~, as is the case of (2.4), the
longitudinal modes, those with the wave vector k par-
allel to the chromoelectric field E, are stable [11]. Thus
one should look for instabilities among transversal modes.
When the instability occurs, the kinetic energy of parti-
cles is converted into the field energy. Since the energy
of the parton motion along the beam direction, which
we identify with the z axis, exceeds the perpendicular
energy, the instability is expected to appear when the
chromoelectric field is along the z axis while the wave
vector is transversal to it. Thus we will consider the con-
figuration

E = (0, 0, E), k = (k, 0, 0). (3.1)

Let us mention that the unstable mode, the so-called fil-

amentation instability, has been just found for this con-
figuration in the two-stream system of the quark-gluon
plasma [15,16]. As we shall briefly discuss at the end
of the next section, the instability studied here also pro-
vides the characteristic pattern with the filaments along
the beam with the color currents of the opposite sign in
the neighboring filaments. It is also interesting to note
that the electron-ion plasma ft. om the pinch experiments
is "hotter" in the transverse direction (due to magnetic
squeezing) and then the instability appears in the config-
uration where the electric field is perpendicular and the
wave vector longitudinal to the pinch axis.

With the configuration (3.1), the dispersion equation
(2.1) simplifies to
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the next section.
Let us compute H(0), which can be written as

H(0) = k' —q', (3.3)

with

d'p v,' Bn(p)
0 2~~s

(2vr)s v Bp
(3 4)

where the plasma &equency parameter is

dsp Bn(p)
lds ——27l Ae vz (3.5)

As we shall see below, uo gives the &equency of the stable
mode of the configuration (3.1) when k ~ 0.

Substituting the distribution functions (2.4) into Eqs.
(3.4) and (3.5), one finds the analytical but rather com-
plicated expression of H(0). In the case of the Hat y
distribution, we thus take the limit coshY )) 1, while
for the Hat p~~ distribution we assume that (p~~) && (p~),
where (p~~ ~) is the average longitudinal or transverse mo-
mentum. Both limits are obviously satisfied in the ultra-
relativistic heavy-ion collisions. Then we get

n. e~ ( dh(p&) l
dpi' h(pg) + pg4x Y dp~ )

for the flat y distribution and

~s dh(pi)
x = +[] dp&

4m dpi'

(3.6a)

(3.6b)

for the flat pal distribution.
After performing partial integrations in Eqs. (3.6),

these equations can be rewritten as

a e~
X' —= 4' Y

pT'"h(pT'") (3.7a)

X' —= 4'&(~h(pT. ") (3.7b)

where p&'" is the minimal transverse xnomentum and the
function h(p~) is assumed to decrease faster than 1/p~
when p~ M 00.

As seen, the sign of H(0) given by Eq. (3.3) is (for suf-
ficiently small k2) determined by the transverse momen-
tum distribution at the minimal momentuxn. There are
unstable modes (3.1) if pT' h(p&'") & 0 for the Hat y dis-
tribution and if h(pz' ) & 0 for the Hat p~~-distribution.

Since the transverse momentum distribution h(p~) is
expected to be a monotonously decreasing function of
p~, the instability condition for the flat pll distribution
seems to be always satisfied. The situation with the flat
y distribution is less clear. So let us discuss it in more
detail. We consider three characteristic cases of h(p~)
discussed in the literature.

(1) The transverse momentum distribution due to a
single binary parton-parton interaction is proportional
to p& [2] and blows up when p~ -+ 0. In such a case
p&' h(p&'") & 0, there are unstable modes and pm&'"

should be treated as a cutoK parameter reflecting, e.g. ,

the finite size of the system.
(2) The transverse momentum distribution propor-

tional to (p~ + m~) with m~ ——2.9 GeV has been
found in [6], where except binary parton-parton scatter-
ing the initial and final state radiation has been taken
into account. This distribution, in contrast to that &orn

(1), gives p&' h(p&'") = 0 for pT' ——0, and there is no
instability, although one should remember that the finite
value of m~ found in [6] is the result of infrared cutoK
parameters used when h(p~) has been computed. Thus
it seems more reasonable to use the distribution from (1),
where the cutofF explicitly appears.

(3) One treats perturbatively only partons with p~ &
p&'" assuming that those with lower momenta form col-
orless clusters or strings due to a nonperturbative inter-
action. It should be stressed that the colorless objects
do not contribute to the dielectric tensor (2.2), which is
found in the linear response approximation [12—14]. Thus
only the partons with p~ ) p&' are of interest for us.
Consequently, p&' h(p&'") is positive and there are un-
stable modes. It will be shown in Sec. VI that the screen-
ing lengths due to the large parton density are smaller
than the confinement scale in the vacuum. Therefore,
as discussed in the Introduction, the cutofF parameter
p&' should be presumably reduced &om 1—2 GeV usu-
ally used for proton-proton interactions to, let us say,
0.1—0.2 GeV.

We cannot draw a firm conclusion, but we see that the
instability condition is trivially satisfied for the flat pll
distribution and is also fulfilled for the Hat y distribu-
tion under plausible assumptions. Let us mention that
the difference between the instability conditions for the
flat y and ply distributions is due to a very specific prop-
erty of the y distribution which is limited to the interval

(—Y, Y). The point is that y -+ koo when p~ -+ 0,
and consequently, the lixnits in the rapidity suppress the
contribution &orn the small transverse momenta to the
dielectric tensor. For this reason we need for the insta-
bility the distribution h(p~) which diverges for p~ ~ 0
in the case of the flat y distribution, while the instabil-
ity condition for the flat ply distribution is satisfied when
h(0) is finite. If we assumed the Gaussian rapidity distri-
bution instead of (2.4a), the instability condition would
be less stringent.

In any case, we assume that the Penrose criterion is
satisfied and we look for the unstable modes solving the
dispersion equation (3.2).

IV. SOLVING THE DISPERSION EQUATION

The dispersion equation (3.2) for a cylindrically sym-
metric system is

pll
k —cc + QJO

—
2 dp~ dphil4Vr2 0 p2 + p2 PL

I

= 0, (4.1)a —cosP+ i0+
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with the plasma frequency uo given by Eq. (3.4) and a
denoting

2 2
Plla=-

k pg
1+4P

rl
8 CtJO

. (4.6a)

To check whether these conditions can be satisfied, we

compare il to ere. Assuming that h(p~) pz, one
finds, from Eqs. (4.3) and (4.4),

We solve Eq. (4.1) in the two limiting cases ~~/k~ &) 1
and ~k/cu~ && 1. In the first case, the azimuthal integral
is approximated as p /pili= —ln~ (4.6b)

dP cosP vr= —,+Oa '.
a —cos P+ iO+ a2

Then Eq. (4.1) gets the form

2

k —u +uo+g —=0,

where q, as uo, is a constant defined as

(4.2)

Since P = 6 [2,6], we get r12 & 3us2. Therefore the solution
(4.5) for k2 « A&02 should be correct.

Let us now solve the dispersion equation (4.1) in the
second case when ~k/~~ )) 1. Then the azimuthal integral
&om Eq. (4.1) is approximated as

dP cosP = —2' + O(a),a —cosP+ i0+

~o — '
dpi' h(p~),8Y (4.3a)

and

dpgpgh(pg)
2RPll

(4.3b)

dh(p~) &
rI' =— '

dp L -h(p&) —p&16Y (4 dpi'
(4.4a)

n,
l

f 'P~~
d 2 dh(pg)

4'P, ((p )) d
(4.4b)

The solutions of Eq. (4.2) are

~~ = —'(k~ + ~~~ 4: g(k~ + ~~)~ + 4@~k~.

~n(p)
"Io = — dPlldP& r 24~ Pll + P»

We have computed uo and g for the flat pll and y dis-
tributions. In the limit coshY )& 1 and (p~~) )) (p~),
respectively, we have found

and we immediately get the dispersion relation

2 k2 2 (4.7)

with y2 given by Eq. (3.6) or (3.7). As previously, we
have assumed that coshY &) 1 and (p~~) )) (p~). Equa-
tion (4.7) provides a real mode for k ) y2 and two
imaginary modes for k2 & y2. Since the solution (4.7)
must satisfy the condition ~k/ur~ )) 1, it holds only for
k )) ~k2 —y ~.

The dispersion relation of the unstable mode in the
whole domain of wave vectors is schematically shown in
Fig. 1, where the solutions (4.5) and (4.7) are combined.
Now one sees how the Penrose criterion works. When

= 0, the unstable mode disappears.
Using the Maxwell equations, one easily finds the

space-time structure of the instability. It starts when
a fluctuation generates a small color current along the
beam. If this current changes in the transverse direction
at a length which is greater than y, the fluctuation
grows and the initially colorless system splits into the
filaments of thickness vr/k, where k is the wave vector,
with the color current flowing in the opposite directions
in the neighboring filaments. Unfortunately, the linear
response analysis performed here does not allow one to
follow the instability development beyond the moment
when the deviation from the color neutrality is large.

One sees that co+ & 0 and u & 0. Thus there is a pure
real mode co+, which is stable, and two pure imaginary
modes ~, one of them being unstable. As mentioned
previously, u+ ——uo when k = 0.

Let us focus our attention on the unstable mode, which
can be approximated as

' —"k2 for k2 (( ~2

fork ))~ .
(4.5) u

One should keep in mind that Eq. (4.5) holds only for
~u/k~ )) 1. We see that u can satisfy this condition
for k2 (( ~2 jf ~2 )) ~2 and for k2 )) ~2 jf g2 (( ~2

FIG. 1. Schematic view of the dispersion relation of the
unstable mode.
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More specifically, the distribution function n' = n + hn,
which describes the deviation from the colorless state n,
must satisfy the condition ~n~ )) ~bn~ [13].

V. CAN THE INSTABILITY OCCUR IN
HEAVY-ION COLLISIONS?

The instability studied here is relevant to the heavy-ion
collisions if the time of instability development is short
enough, shorter than the characteristic time of evolution
of the nonequilibrium state described by the distribution
function (2.4).

Let us first estimate the time of instability development
which is given by 1/Imu. As seen in Fig. 1, ~1m'~ ( g.
Thus we define the minimal time as r;„= 1/g. To
find 7;„we estimate the plasma frequency. We con-
sider here only the Bat y distribution, which seems to be
more reasonable than the Hat p~~ distribution. Approx-
imating f dp~h(p~) as f dp~pgh(p~)/(p~), the plasma
frequency (4.3a) can be written as

Aq7l 9too: 2 2]s (Nq + Nq + 4Ng))
p

(5.1)

where Nq, Nq, and Nz are the number of quarks, anti-
quarks, and gluons, respectively, produced in the volume,
which has been estimated in the following way. Since we
are interested in the central collisions, the volume corre-
sponds to a cylinder of the radius rpA ~ with rp = 1.1
fm and A being the mass number of the colliding nuclei.
Using the uncertainty principle argument, the length of
the cylinder has been taken as 1/(p~), which is the for-
mation time of partons with transverse momentum (p~).

Neglecting quarks and antiquarks in Eq. (5.1) and sub-
stituting there Ng = 570 for the central Au-Au collision
at RHIC (Y = 2.5) and Ng = 8100 for the same colliding
system at LHC (Y = 5.0) [6], we get

wp = 280 MeV for RHIC, up ——430 MeV for LHC

for o., = 0.3 at RHIC and o., = 0.1 at LHC. Using Eq.
(4.6a) with P = 6, one finds

;„=0.4 fm/c for RHIC,

~;„=0.3 fm/c for LHC.
(5.2)

The plasma has been assumed. to be collisionless in
our analysis. Such an assumption is usually correct for
weakly interacting systems because the damping rates of
the collective modes due to collisions are of the higher
order in o., than the frequencies of these modes; see,
e.g. , [13]. However, it has been argued recently [17] that
the color collective modes are overdamped due to the
unscreened chromomagnetic interaction. However, it is
unclear whether these arguments concern the unstable
mode discussed here. The point is that Ref. [17] deals
with the neutralization of color charges which generate
the longitudinal chromoelectric field, while the unstable
mode, which we have found, is transversal and conse-

quently is generated by the color currents, not charges.
Let us refer here once again to the electron-ion plasma,
where the charge neutralization is a very fast process,
while currents can exist in the system for a much longer
time [11]. In any case, the above estimates of the insta-
bility development should be treated as lower limits.

Let us now discuss the characteristic time of evolution
of the nonequilibrium state described by the distribution
function (2.4). Except for the possible unstable collective
modes, there are two other important processes respon-
sible for the temporal evolution of the initially produced
many-parton system: free streaming [18—20] and parton-
parton scattering. The two processes lead to the isotropic
momentum distribution of partons in a given space cell.
The estimated time to achieve local isotropy due to the
flee streaming in the central slice of 1 fm width is about
0.7 fm/c at RHIC [20]. As one finds in Fig. 10(a) of
Ref. [9] where the parton cascade was studied, the equi-
librium is reached after about 1 fm/c at RHIC and about
0.5 fm/c at LHC. All estimates concern the central col-
lisions of the heaviest nuclei. Thus the three time scales
of interest are very similar to each other. Therefore the
color unstable modes can play a role in the dynamics of
a many-parton system produced at the early stage of a
heavy-ion collision, but presumably the pattern of insta-
bility cannot fully develop.

Let us brieQy discuss possible consequences of the in-
stability. The growth of the color Huctuation, with the
chromoelectric field along the beam and the wave vec-
tor perpendicular to it, leads to a conversion of the ki-
netic energy related to the parton motion along the beam
to the transverse energy. It is known &om electron-ion
plasma studies that such an energy transport is very ef-
fective [11]. Thus the instability speeds up the equili-
bration process, leading to a more isotropic momentum
distribution. One should keep in mind, however, that
the collective modes discussed here are due to the mean-
field interaction and that therefore they do not produce
the entropy. Consequently, the instability contributes to
the equilibration indirectly, reducing relative parton mo-
menta and increasing the collision rate.

In contrast to the electron-ion plasma, the time of equi-
libration due to collisions is not much greater than the
time of instability growth in the quark-gluon plasma.
Therefore the instability contribution to the equilibra-
tion process is presumably not very large. The inter-
play between the instability development and equilibra-
tion needs further studies.

VI. SCREENING

In this section we study screening of the static longi-
tudinal chromoelectric field previously discussed in [6].
We consider the capacitor embedded in the quark-gluon
plasma generated at the early stage of a nucleus-nucleus
collision. Such a capacitor is a very simple model of the
string where the chromoelectric field is spanned between
the color charges at the string ends.

The field modification in the presence of the plasma is
determined by the dielectric tensor (2.2). More specifi-
cally,
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D'(tu, k) = e*~(m, k)E~(u, k), i, j = x, y, z, (6 1)

O2 . kl
D, (~ = 0, k) = E sin ——

,
k 2' (6.2)

where l is the distance between the capacitor plates which
are located at z = &/2 and z = —l/2; E is the induction
between the plates in coordinate space. Since the capac-
itor Geld is assumed to be static, only the zero-frequency
component of the field is nonvanishing.

Let us now compute the dielectric tensor. We Grst
observe that the distribution function (2.4) is symmetric
with respect to the momentum inversion, i.e. ,

where D'(~, k) is the Fourier transform of the chromo-
electric induction, i.e., the chromoelectric field in the
perturbative vacuum, while E'(~, k) is the actual chro-
moelectric Geld. The color indices are suppressed in Eq.
(6.1) since, as shown in [12,13], the dielectric tensor de-
rived in the linear response approximation is proportional
to the unit matrix in the color space. So there is no mix-
ing of the field color components due to Eq. (6.1).

We further consider two situations: The capacitor Geld
is along the beam (z axis), and the field is parallel to the
z axis. Let us start with the first case. Then there is
only a z component of the wave vector k = (0, 0, k) and
the Fourier transform of the induction vector is dsp 1 Bn(p)

(2m. )s v Bp
(6.7)

Substituting the distribution functions (2.4) into (6.5)
and (6.7) one computes the screening masses. In the
limit cosh Y' )) 1 for the flat y-distribution (2.4a) and

(p~~) )) (p~) for the flat p~~-distribution, respectively, we
Gnd

II

'
dPgh Pz ) (6.8a)

which is illustrated in Fig. 2.
One sees that the capacitor field is modified in the

plasma not only at finite distances from the plates, but
at the plates as well. This difFers &om the screening of
a point-like charge which is screened at finite distances
r but the screening disappears when r ~ 0. Let us also
observe that E,(z = I/2 —0+) —E,(z = I/2 + 0+) =
E . This means that the charge collected at the plates is
conserved.

When the capacitor Geld is parallel to the x-axis the
wave vector k = (k, 0, 0), the only nonvanishing compo-
nent of the dielectric tensor is e and we get the result
analogous to (6.6) with m~ instead of m~~, which is

"(p) = "(-p) (6.3) m()
— '

dpgpgh(pg)
271 Pll

(6.8b)

and consequently the momentum derivatives of the dis-
tribution function are antisymmetric. Then one easily
shows that the oK-diagonal components of the dielectric
tensor e'* and e'" vanish and the dielectric tensor can be
trivially inverted. It is essential here that there be only
a k, component of k which is nonzero.

To take the limit ur ~ 0 of e"(ur, k), one uses the
identity

and

o. e~
+ p&'"h(p&'"),

4~ Y

m~ = ''P(( h(p~'—")

(6.9a)

(6.9b)

kv, - (kv, )

m2ll
e (id=0, k) = 1+ (6.4)

and observes that only the terms with odd n contribute
to the integral because of the symmetry (6.3). Finally,
one arrives to the result

One sees that the transverse mass is very large for the
unstable system [cf. Eq. (3.7a)]. This result is, however,
rather meaningless. When the system is unstable and the
transverse energy grows very fast, one cannot study the
static screening in this direction.

Let us estimate the longitudinal screening length All
——

m for the fIat y distribution. Repeating the consider-
II

ations which led us to the estimate (5.2), we find

with

dsp 1 Bn(p)
(6 5)

All
——0.5 fm for RHIC, %II

——0.3 fm for LHC.

(6.10)

Substituting Eqs. (6.2) and (6.4) into Eq. (6.1), one
finds the field after transforming it to coordinate space
as

E,(z)

E0
I

E,(z) = &

E exp — 2~~ cosh(m((/z/)
) foi )zi ( I/2,

Eexp( —
m(( [zf) sinh—

for ]z[ & t/2,

(6.6) /2

FIG. 2. Capacitor field modified in the plasma.
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According to these estimates, which agree with those
given in [6], the screening lengths are smaller than the
confinement scale A&D. Thus we can believe that the
perturbative analysis is not senseless. The estimates
(6.10) also suggest that strings of length I = 1 fm have
to dissolve in the plasma generated at the early stage of
ultrarelativistic heavy-ion collisions.

It is instructive to compare the screening lengths (6.10)
with the Debye screening length AD computed for the
equilibrium gluon plasma at the temperature T (see, e.g. ,

[12,13], which is

= 4ma, T .

One finds that the screening lengths (6.10) correspond to
the temperature about 0.2 GeV at RHIC and 0.6 GeV at
LHC.

VII. SUMMARY AND SOME SPECULATIONS

We have intended to show in this paper that in spite of
the initial local colorlessness of the colliding system, spe-
cific color fluctuations can grow, leading a collective be-
havior of the many-parton system produced at the early
stage of ultrarelativistic heavy-ion collisions. Using the
Penrose criterion, we have found the instability condition
and have argued that this condition is satisfied in heavy-
ion collisions at RHIC or LHC. Then we have solved ap-
proximately the dispersion relation and have found ex-
plicitly the unstable mode. The development of such a
mode leads to the characteristic filament structure of the
color current. We have estimated the time of the insta-
bility growth, which seems to be somewhat smaller than
the time needed to equilibrate the many-parton system
due to the parton collisions or &ee streaming. Therefore

there is a chance that the instability can, at least to some
extent, develop in heavy-ion collisions.

The quark-gluon plasma has been treated as a weakly
interacting system in our analysis. We have showed that
in spite of rather small values of the coupling constant a,
which we have been assumed (0.3 for RHIC and 0.1 for
LHC), the screening lengths are smaller than the confine-
ment scale A &D. Thus the perturbative approach seems
to be reasona le.

At the end, let us briefly speculate on possible experi-
mental consequences of the plasma instability. Since the
longitudinal energy is converted into transverse one when
the instability grows, broadening of the transverse mo-
mentum distribution is expected. The instability initi-
ates as a random color fluctuation. Thus there should
be collisions where the unstable mode develops and col-
lisions without this mode. The aximuthal orientation of
the wave vector should also change &om one collision to
another. Therefore the instability is expected to produce
significant fluctuations of the transverse momentum in
a given phase space cell, in contrast to the parton cas-
cade simulations [7—9], where fluctuations are strongly
damped due to the large number of uncorrelated partons.
The event-by-event analysis of the fluctuations might be
a tool to observe experimentally the instability.
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