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Quantal inversion of the cross section for the elastic scattering
of 200 Mev protons from C
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Fixed energy quantal inverse scattering theory has been used to analyze the differential cross
section from the elastic scattering of 200 MeV protons from C. Ambiguities in obtaining the
scattering function from the differential cross section are discussed and we illustrate by means of
example that not all scattering functions lead to physically reasonable potentials.

PACS number(s): 24.10.—i, 25.40.Cm

I. INTRODUCTION

Direct procedures are the most common ones used to
analyze (fixed energy elastic) scattering data that one
obtains from particle beam experiments, whether those
experiments are of nuclear, atomic, or molecular sys-
tems. In the main those direct procedures are purely
phenomenological with a parametric form chosen a pri-
ori to be the (central, local) interaction between the col-
liding entities. Increasingly, however, those interactions
(or at least the real parts of them) have been defined by
folding some underlying pairwise microscopic interaction
with the density distributions of the colliding quantal
systems. Whichever approach to the direct procedure
is used, there is a set of parameters that identify the
scheme; the values of which are adjusted to give a best
fit to the measured data. That best 6t is specified, usu-
ally, by finding a minimum chi square (g2) fit to the data
from variations in the 6xed parameter space. A better
measure though is to consider the chi square per degree
of freedom (g2/F) where the number of degrees of &ee-
dom is simply the difference between the number of data
points used in the search and the number of parameters
being varied.

Inverse scattering methods form a complementary pro-
cedural class with which to analyze the same data. With
inverse methods, the interaction between the colliding
pairs is extracted from the data without a priori assump-
tions as to the form of the interaction, although the spe-
ci6c inversion method used to obtain them usually de6nes
the broad class of potentials to which they belong. The
underlying dynamical equation of motion is assumed to
be known however, and in the case of interest that is
the Schrodinger equation. But there is always a ques-
tion of uniqueness as the experimental elastic differential
cross-section data at a given energy only determine the
scattering function at the physical (integer) values of the
angular momentum and, as we shall see in this paper,
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not necessarily uniquely. Very different 6ts with similar
statistical signi6cance can be obtained. Then only af-
ter interpolation has been made on the chosen scattering
function for all pertinent real values of angular momen-
tum, is the corresponding potential obtained by inversion
speci6ed uniquely.

Of all of the methods of inversion of fixed energy (cross-
section) scattering data, those predicated upon a rational
function representation of the underlying scattering (8)
function arguably are the most useful. Those forms for
the S function facilitate solution of the inverse problem
for the Schrodinger equation either by a semiclassical,
WKB, procedure (given that conditions are appropriate
for use of such an approximation) or by fully quantal
schemes. Of the latter, the Lipperheide-Fiedeldey (LF)
type [1] are of particular interest, and they have been
used quite extensively in recent years to analyze the elas-
tic scattering cross sections from the scattering of two nu-
clei. The attendant 6ts to measured data in those cases
were usually an order of magnitude better than any ob-
tained by direct methods of analyses [2].

Herein we consider the inversion, using a fully quan-
tal method, of the differential cross-section data [3] from
the elastic scattering of 200 MeV protons from C. At
present, the LF methods of data inversion do not allow
for a spin-orbit interaction and its role, however minor,
in de6ning cross sections. But it is of interest to study
this reaction with our inversion methods to ensure that
the fully quantal procedures can be used in such cases of
a very light projectile on a light ion. Also the 200 MeV
data are reasonably, but not supremely, well described by
direct means, whether they involve a purely phenomeno-
logical [3] or fully microscopic folding model [4,5] defined
optical potential. Of even greater interest, however, is
that the data are quite extensive both in number of mea-
sured values and in range of momentum transfer. Fur-
thermore, the data set has small nonstatistical errors. As
a consequence, a sensible error analysis of the potentials
given by inversion becomes feasible, enabling us to place
confidence bounds on that potential. This has been the
case in the past with electron-atom data [6].

Following a brief review of the inverse scattering theory
and of the LF methods that we have used in our analysis,
the results of the calculations are discussed in Sec. III.
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II. ELEMENTS OF FIXED ENERGY INVERSE
SCATTERING THEORY

Solutions of the Schrodinger equation with a central,
local interaction describing the collision of two quantal
systems, link to measured data via scattering amplitudes
that one extracts from the asymptotic forms of those so-
lutions. In the center of mass frame, the scattering am-
plitude is related to the differential cross section by

In the partial wave treatment of the scattering, the scat-
tering amplitude can be defined in terms of an S function
by

form:

N

S(A) = Sp(A) (6)

Then the total scattering potential [V(r) = VN(r)] can
be obtained by iteration as

V„(r) = V„,(r) + ~~"l(r), (7)

where, with Vo being the potential associated with the
reference S function Sp(A) and the increment function for
each additional pole-zero pair of the N set defining the S
function is given in terms of the 3ost solutions &om the
preceding iterate of the potential by

f(8) = ) (2l + 1)[S(t) —1]Pi(8),
t=o

(2)

where S(t) are the values of the S function, S(A), for
the (positive) integer values of the angular momentum
variable A (I = A —2). That S function relates to the
phase shift function, h(A), by

Therein I& (r) are logarithmic derivatives,

S(A) = exp[2ib(A)],

and is usually displayed in modulus and phase form, viz.

S(A) = lS(A)l exp[2iR(h(A))] . (4)

It also relates to the classical deBection function, a func-
tion that is a reQection of the physical processes involved
in the scattering, by

dh (A) d ln[S(A)]
dA dA

Usually S(A = t + 2) is determined from the difFerential
cross section by means of a least squares fitting proce-
dure. It is important to notice that not only is this pro-
cedure ambiguous, and that will be clearly illustrated in
this paper, but also the measured data are only sensitive
to that S function at the integer values of l.

The inverse scattering problem for fixed energy scat-
tering then resolves to the following: Given the S func
tion at a particular energy and as a function of the an
gular momentum, find the central, local potential ivhich
reproduces that S function. But the S function must be
defined at all (continuous) values of the angular momen-
tum variable, A & 0, before the potential obtained by
inversion is uniquely defined. Thus to proceed with in-
version of the Schrodinger equation for fixed energy scat-
tering, one must interpolate and extrapolate upon the set
of 8-function values, however they are obtained by fits to
measured data.

There are several methods of solution of the quan-
tal fixed energy inverse scattering problems. Herein we
will consider application of a fully quantal method based
upon a Lipperheide-Fiedeldey scheme, details of which
have been published [1]. In the simplest of those schemes,
one assumes that the fixed energy S function for scatter-
ing can be represented by a complex, rational function

III. RESULTS AND DISCUSSION

The final check on any fixed energy inversion study
of nuclear scattering is the comparison of cross sections
obtained &om the phase shifts one gets by using the po-
tentials derived by inversion, with the data that was used
in the first instance to find the input (S function) to that
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FIG. 1. The differential cross-section data and two fits to
them that result by using potentials obtained by inversion of
that data in the Schrodinger equation.

with f& (r) being the Jost solutions of the potential
[V„ i(r)] that asymptote as e+'"", respectively. Exten-
sion to a class of nonrational S functions has also been
achieved [1] and a "mixed" method [7], which employs a
product of rational and nonrational S functions, has been
used in applications as well [2].
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(p) i|t 1n[A +A, j (10)

inversion process. In the present case the 200 MeV p- C
cross sections so obtained are compared with the data
[3] in Fig. 1. There are two results shown and both are
in extremely good agreement with the measured values.
Specifically, those fits to data have y /F values of 1.006
and 1.018 for the solid and dashed curves, respectively,
when a reference S function of the form
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where g is the Sommerfeld parameter, was used. These
results are of similar statistical significance but have been
obtained by using quite different S functions, and con-
commitantly, phase shift and de8ection functions. The
total S and defiection functions (Coulomb scattering has
been included) are shown in Fig. 2. The S functions
are displayed in modulus and phase while the de8ection
functions are given in real and imaginary parts. Both
S functions were obtained assuming a rational form for
them and varying the parameters therein to 6t the cross-
section data directly. Model forms for the "experimental"
S function, such as used in past studies of heavy ion colli-
sions [2], have not been considered. The two results were
found by using quite different starting conditions in a
search upon the (complex) values of a set of five pole-
zero pairs (u„,P„) that define the rational scattering
function. In the 6rst search, the initial set of parameter
values were chosen arbitrarily (we denote the parameter
set so found after minimization as set 1). The second
set (set 2), on the other hand, was obtained by starting
with a set of pole-zero parameter values that map the S
function obtained &om using the best phenomenological
optical model potential [3] in the Schrodinger equation.
Those values were then varied to obtain an improved fit
to the data and the final results are listed in Tables I
and II. The reference S function used in both cases was
that of shifted point Coulomb form with parameter A,
having the value 3g. The pole-zero values are given to
10 decimal places to stress that extreme accuracy need
be carried so that the rational function will give the S-
function values with the many signi6cant digits that are
required to so accurately 6t the cross-section data.

It is evident &om Fig. 2 that the two approaches in
de6ning the S function have led to quite different min-
ima and they provide a striking illustration of the am-
biguity in the relationship between the differential cross
section and the scattering function. The Sand defiection
functions we 6nd with the parameters of set 1 are far
more structured and have significant values (in terms of
effect in fitting the cross-section data) for a very large

FIG. 2. The S and de8ection functions defined by the two
sets of rational form parameters that were found by fitting
the differential cross-section data. The curves are identified
in the text.

range of l values. It is not surprising to find there-
fore, that, when used in the appropriate fully quantal
inversion scheme of LF type, these two parameter sets
yield markedly different complex, local effective interac-
tions. The real and imaginary components of those po-
tentials obtained by inversion are compared in Fig. 3
with the best phenomenological (central) one [3], and
designated as a double Woods-Saxon (DWS) in that ref-
erence. The inversion result obtained &om set 2 is dis-
played therein by the solid curves, the result obtained
&om set 1 is shown by the dashed curves and the DWS
phenomenological interaction is represented by the dot-
dashed lines. Clearly the phenomenological potential has
an imaginary part very similar to that we 6nd with our
(initially) "constrained" search result (set 2). The real
part of both inversion potentials, however, are far more
attractive overall than the phenomenological one. But
it must be remembered that the phenomenological inter-
action does not give a very good fit to the cross-section
data. Both potentials obtained by inversion yield excel-
lent fits. The parameters of set 1 are quite unphysical
however. They yield a very strongly absorptive potential
and imply extreme long range effects; the consequence
of very many (too many) partial waves being required to
explain the data. Our preferred result is set 2 which was
based upon a starting optical model scattering function.
It is much more re&active than the other, and as such,
it is more like results one 6nds by folding realistic NN g
matrices with nuclear densities to define a (microscopic)
optical model potential [4,5] than are those obtained with
current phenomenological forms. As stated, the poten-
tial corresponding to set 1 we find to be quite unrealis-
tic; being extremely long ranged and excessively absorp-
tive. But it is a potential which when used in solving

TABLE I. The rational function parameters, set 1, that gave the fit to the 200 MeV p- C
cross-section data with y /F of 1.006.

Real
10.2446786946
26.5439785204
2.6881915849
-2.6559990678
-2.8946159284

Imaginary
-5.9807367075
-42.5669791285
-3.1400601804
-2.7192349896
-16.0423535307

Real
1.5796064650
0.4686569859
-4.4316628648
-12.4204548530
-23.2285401587

Imaginary
3.6195027016
2.6866969870
3.2510333349
11.1907290021
43.0799819080
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TABLE II. The rational function parameters, set 2, that gave the fit to the 200 MeV p- C
cross-section data with y /F of 1.018.

Real
-0.0548404233
-6.1751408446
-7.7899061381
10.6813616392
3.2755483843

Imaginary
-1.2599738423
-9.0868456370
-4.2929187247
-8.0296693873
-5.1539508135

Real
-0.1326287045
-3.7452076971
-10.3231568381
4.0784716287
7.8586850920

Imaginary
1.2346281412
3.8048412982
7.6141819546
7.7628740770
5.9266030850

the Schrodinger equation, gives an equivalent, excellent
fit to the measured data, and it is known that a re&ac-
tive interaction with short ranged repulsion is needed to
explain the structure of cross-section data at higher inci-
dent energies [4].

Finally, as the data are extremely good, we can apply
an error analysis. The cross sections have been measured
at many angles over a wide range of momentum transfer
and the values have small nonstatistical errors, whence
fits with y2/F of order unity allow a meaningful statisti-
cal error analysis to be applied. Such has been the case
with analyses of electron-He atom scattering in the recent
past [6] and, in a similar way here, confidence intervals
on the potentials obtained by inversion have been found
within a WKB approximation (which will yield similar re-
sults to a more computationally demanding fully quantal
analysis such as that done in Ref. [8]). The interpreta-
tion of these intervals is as follows: should another po-
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tential exist which fits the cross-section data with the
same y2/F, then there is about a 60% probability that it
will lie within the confidence band shown by the hatched
zones in Fig. 4. Clearly there is little overlap between
the confidence intervals on the two potentials we have

determined by inversion. This displays a nonuniqueness
with the chosen method to effect the inversion but, in
particular, that associated with the transformation &om
cross section to scattering function. Of the two poten-
tials, that found starting from initial pole-zero pair values
that reQect a conjectured interaction, has given a more

physical final result.

IV. CONCLUSIONS

A fixed energy quantal inversion method has been used
to extract effective local, complex potentials &om the
elastic scattering difFerential cross section for 200 MeV
protons off of C. The associated fits to the measured
data are extremely good in each case, and sufficiently so
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FIG. 3. The real (top) and imaginary (bottom) parts of
central potentials for 200 MeV protons on C. The dashed
and solid curves are the results obtained by inversion and
using the set 1 and set 2 parameters in the rational form of
the S function, respectively. The dot-dashed curves display a
central (DWS) phenomenological interaction.

FIG. 4. The real (top) and imaginary (bottom) potentials
obtained by inversion of the 200 MeV p- C cross-section data
and the confidence bands on each part. The results found

using set 1 parameters are displayed by the hatched curves;
those with set 2, by the open lines.
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that sensible error analyses of the results could be made.
The procedure used a rational function form for the S

function and the complex values of its poles and zeros
specified by a y minimization search to fit the data [3].
Two starting sets of parameter values (of a five pole-zero
pair set) led to two very distinctive and different S func-
tions, both of which gave data fits that were measured by
y /F being close to unity and were of similar statistical
significance.

The first search started &om arbitrary initial values
of the parameters in the rational scattering function and
led to the final result we have designated as set 1. The
second set was obtained &om initiating the search with
a set of parameter values that reproduce quite well the
S function found &om solution of the Schrodinger equa-
tion with a phenomenological optical model potential [3],
which itself gave a reasonable fit to the data. In this
second case, the optimal S function had far fewer sig-
nificant partial wave elements (so far as fitting the cross
section is concerned) than for set 1. Quantal inversions of
the two rational function forms then were made using a
Lipperheide-Fiedeldey theory, and smooth well-behaved
complex potentials resulted. That derived from set 1 was
not realistic however, being too long ranged and exces-
sively absorptive. The second parameter set (set 2) led
to a realistic interaction. It has an imaginary component
quite similar to that of the phenomenological potential
and a real part that, while more re&active than the phe-
nomenological one, resembles the result found by folding
realistic NN g matrices with the density matrices for the
ground state of 12C.

Our opinion that the interaction determined &om the
parameter set 2 is more physical than the one obtained
by using the set 1 values, clearly was not based upon

the quality of the fit to the cross-section data that the
use of each gives. Rather, our choice was based upon a
predjudice as to what the true optical model potential
should be like, particularly in the range of its action and
in the character of its re&action and absorption. The pre-
ferred potential is much more like the "best" interactions
found by totally phenomenological studies of scattering
and also it is much more like the (real) interaction other
studies have found by folding "realistic" NN g matrices
with nuclear density matrices for C.

It would be of help to have (equally well) measured
data taken at nearby energies, e.g. , at 190—210 MeV,
as then one might look for an appropriate energy de-
pendence with a physically realistic candidate inversion
potential. One expects some energy dependence with a
local potential (that leads to quality fits to elastic scat-
tering data) as that would reflect true nonlocality in the
optical potential and due to Pauli effects as well as to
the actual nonlocalities existing in the underlying NN g
matrices themselves. Possibly there is such quality data
at 160 MeV, but that incident energy is just too far from
the one of interest (200 MeV) for use to be made of it to
delineate between any results one may find by starting
with either set 1 or set 2 parameters found herein.

Finally, the quality of the data and the fits to it found
by these inverse scattering studies were such that error
analyses of the results were feasible. At about 60% confi-
dence, the two inversion potentials had little in common.
Clearly then, a bias must be invoked to select physically
sensible results &om sets of equivalent inversion poten-
tials (in terms of their fit to the data). Notably a bias
must be invoked to ensure that the mapping of the cross-
section data to S function results in a physically accept-
able parametrization.
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