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Nuclear fragmentation and its parallels
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A model for the fragmentation of a nucleus is discussed. A general framework for obtaining
the canonical ensemble partition function for a fragmentation process is developed based on simple
recursive techniques. Parallels of the description of this process with other areas are shown which
include Feynman's theory of the A transition in liquid helium, Bose condensation, and Markov
process models. These parallels are used to generalize and further develop a previous exactly solvable
model of nuclear fragmentation. A comparison with other models is also given and one of these
models is generalized to include a tuning parameter which contains the underlying physical quantities
associated with the fragmentation process. A discussion of the behavior of the partition function
and phase transitions is given in terms of Lee-Yang zeros of the partition function. An analysis of
some experimental data is given.

PACS number(s): 25.70.Pq, 05.30.Ch

I. INTRODUCTION

The behavior of the distribution of &agments in an in-
termediate energy nuclear collision has attracted a great
deal of interest [1—20]. A previous set of papers [1—3]
proposed a statistical model for describing this behavior.
Each possible fragmentation outcome is given a particu-
lar probability, and the resulting partition functions and
ensemble averages are known to be exactly solvable. In
this paper we extend that canonical ensemble model to al-
low more &eedom in choosing the weight associated with
a particular nuclear partition. Formulas for the ensem-
ble averages and the partition function derived in earlier
papers are generalized, and a recursive formula for the
evaluation of the coeKcients of the partition function is
developed which is useful in computing low and high tem-
perature behavior of the models. This paper also focuses
on a more detailed discussion of the properties of these
partition functions than the previous papers.

The balance of the paper is concerned with the applica-
tion of these results to models of nuclear &agmentation,
as well as a comparison of these results both to other
models in physics and to other models of &agmentation.
An explicit parallel between this model and Feynman's
approach [21] to the A transition in liquid helium is pro-
posed. The weight given to each possible cluster distribu-
tion in a canonical ensemble model is shown to be similar
to that used by Feynman in the cycle class decomposi-
tion of the symmetric group. Moreover, the Inain pa-
rameter, called the tuning parameter x in Ref. [1], which
contains the physical quantities associated with cluster
formation, is shown to have a correspondence with a vari-
able in Feynman's approach related to the cost function
of moving a helium atom from one location to another.
The variable associated with this cost function is related
to that part of the parameter x which has to do with in-
ternal excitations in a cluster, i.e. , its internal partition
function.

Other models of fragmentation are easily compared to

the canonical ensemble model. Models based on parti-
tioning alone [4,5] are discussed briefly. They are also a
result of assuming a certain weight is associated with each
nuclear &agmentation outcome. However, the choice of
weight is simpler than the models proposed here. These
models are also generalized in this paper to include a
tuning parameter which contains the underlying physi-
cal quantities associated with the f'ragmentation process.
Models based on percolation studies [6,7] also have some
similar features. Markov process models [22] are not only
similar to canonical ensemble models, but rather are the
exact same models, simply derived &om a diferent, phe-
nomenological, point of view. This is fortuitous, as an
analogy with Markov process models can provide the ba-
sis for choosing particular canonical ensemble models for
the study of nuclear &agmentation. A final model of
&agmentation to compare the canonical ensemble model
with is a further generalized iterative canonical ensem-
ble models, of which canonical models are a special case.
Canonical models have many advantages over this pro-
posed generalization, but such generalized models may
be useful in studying exotic &agmentation situations.

A section of this paper is devoted to the discussion of
the thermodynamic functions of canonical ensemble mod-
els. Since the canonical models are derived &om a statis-
tical mechanics assumption, it is appropriate to consider
the computation of the typical thermodynamic functions.
After deriving the appropriate formulas, they are applied
to the case of an ideal Bose gas in d dimensions as an
illustration. The critical point, present for d ) 2, is dis-
covered by plotting the specific heat vs the temperature.
The connection between the Lee-Yang zeros of the parti-
tion function and the critical behavior is also considered,
as the recursion relations allow for the computation of
the zeros for some nontrivial cases. The zeros for d = 2

and d = 4 are computed, and empirically appear to lie

on simple arclike curves. This behavior is compared with
the distribution of zeros of the Ising model.

A set of extended canonical models, suggested by the
analogies to other models, are applied to the experimen-
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tally determined nuclear &agmentation distribution. Af-

ter reviewing the general behavior of a number of mod-
els, which are found to vary widely in their &agmentation
behavior, we focus on a small number of models which
seem to be appropriate for an ensemble description of
the fragmentation of &sAu at 0.99 GeV/nucleon. Sev-
eral models give excellent results, but the statistics of the
experimental data are not sufhcient to distinguish a par-
ticular model &om the others considered. One particular
model, although a poor model of nuclear &agmentation,
has very interesting properties and is analyzed further. In
this model, the &agmentation process favors &agments of
a particular size, with a Gaussian falloE in the distribu-
tion for larger and smaller &agments. For example, for
particular choices of the tuning parameter, the &agment
distribution will be that of a system that has split into
two equally sized pieces.

The paper is organized as follows. Section II devel-

ops the canonical model for &agrnentation and briefly
discusses parallels of this model with the A transition in
liquid helium and Bose condensation. Section III dis-
cusses a variety of other models for the &agmentation of
a nucleus. Alternative partitioning models and percola-
tion models are reviewed briefly. Markov process models
and generalized canonical models are introduced. The
thermodynamic properties of &agmentation models, in-
cluding the calculation of thermodynamic functions and
the determination of phase transitions from the zeros of
the partition function, are considered briefly in Sec. IV.
Section V discusses the behavior of the ensemble aver-
ages for various models and compares these models with
some experimental data. Concluding remarks are made
in Sec. VI.

II. MODELS OF FRAGMENTATION AND
PARTITIONING PHENOMENA

A! ---- 1 px~
A

P„(n, x) = ',
~

—„)
le=1

) P~(n, x) =1 (2)

determines the partition function Q~(x) when Eq. (1) is
substituted into Eq. (2).

Previous papers dealt with two particular models in
detail. When all the zs = z, the z model of Ref. [1], the
partition function takes on a simple form

Q~(z) = z(*+1) " (z+ A —1) = r(*+A)

r(z)

For the case zq ——zy, zs = z, k g 1, the zy model of
Ref. [3],

A

„;(k& I'z (4)

Detailed studies [3] show that the results of the z and zy
models are quite similar for all cluster sizes k & 1.

This paper considers in detail more general forms for
xp. Here, we explicitly show how to evaluate the parti-
tion function by simple recursive procedures. For conve-
nience, we rewrite Eq. (1) by making the following sub-
stitution

where n = (nq, . . . , n~) is the partition vector for the
&agmentation or partitioning of the A objects into np
clusters of size k, and x = (zq, . . . , z~) is the parame-
ter vector with xg characterizing the group or cluster of
size k. The partition vector must satisfy the constraint

g& ~ kng = A and we denote the set of all partition vec-
tors II~. The parameter vector contains the underlying
physical quantities such as the temperature T and the
volume V. The probability condition for Pg(n, x)

In this section, we review an approach to &agmenta-
tion and partitioning phenomena based on the canoni-
cal ensemble of statistical mechanics. In this approach
the &agmentation of a nucleus, or, in general, an ob-
ject, is viewed in a statistical way with a weight given
to each member in the ensemble of all possible distri-
butions. Mean quantities, correlations, and fluctuations
are obtained by averaging various expressions over the
ensemble using this weight. The model considered is not
limited to descriptions of nuclear &agrnentation, and the
rest of this section is devoted to introducing other areas
in physics which have used a similar type of description.
Speci6cally, Feynman s description of the A transition in
liquid helium and Bose condensation are discussed.

kz(A, V, T)

so that the dependence on the physical quantities is con-
tained within a single parameter x and the thermody-
namic dependence and cluster size dependence are sepa-
rable. Then the weight is given by

A! —- 1 (z i""
&( *»)=q ('.

p) t I

p

This is not an unreasonable constraint on the parameters,
and is easily satisned by many models. For example, a
previous paper [1] developed the result

A. Exactly solvable canonical models

Exactly solvable canonical models, which can be used
for the study of &agrnentation and partitioning phenom-
ena, were developed in a previous set of papers [1—3].
Each partition or &agmentation is given the weight

vp(T) k~T
/3I =k

kgT Tp

ep T+ Tp

where T is the equilibrium temperature, V is the &eeze-
out volume, and vp(T) = hs/(2wm~k~T)s~2 is the quan-
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turn volume, with mz the mass of a nucleon. The a is
the coefficient in a simplified equation for the binding en-
ergy of a cluster of size k, E& = a„(k —1). The so is the
level density parameter related to the spacing of excited
levels and To is a cutoK temperature for internal excita-
tions. In a Fermi gas model, eo and the Fermi energy are
related by sp = 4sy'/vr2, and since s~ = p&2/2m~ can be
obtained from 4(4vrg, V/3hs) = A, we find that

Thus the coefficients ZA can also be obtained recur-
sively. For m near A, this expression can be used to ob-
tain exact results for the coefficients. Assuming py —1,
which can always be done by redefining x, Pg such that
z/pi, is unchanged (i.e., x -+ z/pq, pr, -+ pi, /pq), we find

Z(A) 1
A

kgT
E'p

7r q 2/s 2m~kgT (V)
A)

(
)»A S(z, /3)-

pI ZA(z, p)

The evaluation of the partition function ZA(z;P) =
QA(x; p)/A! and the various ensemble averages can be
derived from the generating function for ZA(x; p). Using
this function, it was shown in Ref. [3] that the ensemble
averaged cluster distribution (ns) is given by

Z(A —1)
A

Z(A —2)
A

Z(A —3)
A

Z(A 4)
A

(14)

1

(A —2)!p2
'

1 1

(A —3)!ps 2(A —4)!p22
'

1 1 1

(A —4)!p4 (A —5)!p2ps 6(A —6)!ps '

1 1 ( 1 1

(A —5)!Ps (A —6)! (2Ps P2P4)
1 1

2(A —7)'P P 24(A —8)!P,'

where Z~(z;I9) = 0 for k ( 0. More generally, it was
shown that

~
"-

( ]

"- (*~"" ZA pI„.(z /-3)
( )

,
". &pr) ZA(*; P)k=a & Ic=l

where the falling factorial [z]1, is defined by [z]r, = (z-
k + 1)[z]s q with [z]o ——1.

The constraint P& z k(ns) = A then leads to a simple
recurrence relation for ZA(z, P):

x A
k

ZA(z, P) = —) ZA s(z, P)
k=1

with Zo(z, p) = 1. Then Zq(z, p) = z/pq, and so on.
We can now calculate any ensemble average of nI, using
Eqs. (9) and (10), once the partition function is obtained
&om Eq. (11). We therefore turn our attention to a de-
tailed study of the partition function.

From the last equation we see that ZA(z, P) is a poly-
nomial in z of order A. To encourage this point of view,
we will drop the dependence on P from the notation for
ZA, making the dependence tacit. Then, the partition
function can be written as

In general ZA depends on P2, . . . , P~+q for m ( A/2.
The recurrence relation given by Eq. (11) is simply

solved for the case Pr, = k (as previously noted) which
gives

ZA(»ps =k) =
A, ).I~A lz"

where SA are Stirling numbers of the first kind. This
model was analyzed extensively in Refs. [1—3].

Another case which reduces to a simple polynomial is

Py = 1 which gives

(16)

with I,A~(z) a Laguerre polynomial. The PI, = 1 model is
considered in detail in [12] as a model for fragmentation
and in [22] as an example of a Markov process model for
clusterization of one dimensional objects.

A final example whose coefficients are common math-
ematical functions is Pg = k!,

A

ZA(z;ps = k!) = A() SA
k=a

(*) = )
m=1

(12)

A —m, +a
Z( ) 1 y. k Z(

A A
J' ~ p A —/c

k=a

where the coefficients ZA can be determined from the
recurrence relationship as follows. The first coefficient,
ZA, is determined by the last term in the recurrence

relation, (x/A)AZo(x)/pA = x/pA. So ZA ——1/pA.(1)

Prom this coefficient we can determine all the others by
substituting Eq. (12) into Eq. (11), arriving at

with 8A Stirling numbers of the second kind. This
choice for the case x = 1 was considered in detail in
Ref. [10]. It will also be analyzed more generally in
Sec. VA.

For any choice of P~, the recursion relation given in

Eq. (11) holds. However, for some PI, there are simpler
recursion relations. For example, if QA(x) is given by an
orthogonal polynomial (e.g. Pg = 1 ), then QA+z(x) =
(aA + bAx) QA(x) —cAQA q(x), as given in Abramowitz
and Stegun [23]. Table I lists some of these models. Note
that the last choice for PI, in Table I can be related to
the Catalan numbers, CI, =

&+& ( &"). Specifically, Pr, =
22(k —1)/~

All the cases considered so far are special cases of some
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Pa
k
k!
1

22(&—&)I (&(&—&))
g a —z j

Recursion relation

QA+1 —(z + A)QA
QA+1 = (& + & g~ )QA
Qz+z ——(z+ 2A)Q& —A(A —1)QA 1

QA+1 z (2A 1)QA + & QA —1

TABLE I. Recursion relations for various Pq. large k = A cluster in a &agmentation process has its
analog in the Bose condensation into the ground state in
momentum space.

One other example of a recurrence relation in statisti-
cal mechanics is the interacting Boltzmann gas. For this
example, Feynman [21] showed that when the three body
and higher order terms are neglected, the spatial part of
the recurrence relation is given by

general forms. The cases Ps = 1, k, 2 (" )/Cs q can be
realized &om

( ~ A

Z~xi( VT) = V(1 ——
) Zx(V, T)

E V
(22)

k([c]s—1

[o]k —1
[Q

L—1

where the rising factorial [z]" is defined by [z]":—(z +
k —1) z]" ~ with [z]P = 1. For example, the choice Pg =
2 ( /t s qisgivenbya= s, c=d. ThecasePs=k!
is a special case of

where Zp(V, T) = 1, a = f (1 —e &")/"s
) 4sr dr,

and V(r) is the two-body potential.
We now briefiy discuss some applications to other phys-

ical systems and illustrate the parallel with fragmenta-
tion phenomenon.

k~ [c]s
—1

[ ]s—1 (19)
B. Parallel with Feynman's approach to the A

transition in liquid helium

One case which does not reduce to a commonly known
polynomial and is of general interest is Ps = k for 7 ) 1.
In the large A limit, the coefficients are given by ZA

z& /pA where z& are only weakly dependent on A for(na) (~)

small m. Table II gives the large A limit for the first few

coefficients. Notice that limA~ z& ——((r).
We further illustrate the recursive approach with some

examples. Consider the ideal Boltzmann gas, ZA(z) =
z /A! = (z/A)ZA q(z). This is equivalent to the z
model with the choice of parameters

z V

Ps vp(T)
(20)

Since z/P& = 0 for k g 1, this model only has "frag-
ments" of size 1, i.e., there is no clusterization.

Another example is given by the Mayer cluster expan-
sion for an ideal Bose gas in d dimensions. In this case
the partition function is given by the z model with the
choice

V

vp(T)
'

P k1+8/2

In this section we give some of the results of Feynman's
approach [21] for the A transition which are relevant for
the analogy to be discussed. Further details of the results
quoted can be found in [21] and the references therein.

The starting point is the partition function obtained
by a path integral, given by Eq. (11.52) in Ref. [21]

—F/Icy' T 1 (2n m. 'k~T )
)

x ) J d R, d Rxp(R„. . . , Rx)

x exp — ) (R; —P(R;) ) (23)
t m'k~T 2

t
252

where N is the total number of helium atoms, m' is the
effective mass, R; the coordinate of the ith helium atom,
p(Rq, . . . , R~) is the potential contribution, and P is
the permutation operator. A given permutation among
the particles is illustrated in Fig. 1, and can be visual-
ized as the atoms being connected by a set of edges, the
edges forming polygons (cycles) of various sizes (cycle

This choice with z given by Eq. (7) could also be used as
a model for &agmentation, suggesting a parallel between
&agmentation and Bose condensation. In Bose systems,
however, the "clusterization" occurs in momentum space,
not in real space. For example, the formation of the

0 0

+op
TABLE II. Values of zA in the large A limit.

3/2
2

5/2
3

(~)
zA

1.000
1.000
1.000
1.000

(&)
ZA

2.612
1.645
1.342
1.202

(3)
ZA

3.412
1.353
0.899
0.723

(4)
ZA

2.971
0.742
0.402
0.289

(5)
zA

1.941
0.305
0.135
0.0870

FIG. 1. Permutations among particles. Left-hand side of
graph shows a group of particles and a permutation operator
as it vrould act on the particles. Right-hand side gives cluster
interpretation of the same permutation.
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lengths). After some algebra and approximations, the
partition function is reduced to

A. Models based on partitioning alone

e
—F/Icy' T ). .— 1 (Nba'--. ik'

nCNN k=1

m'd2k gTx exp —
' *

&~
anq)2h2 (24)

Sobotka and Moretto [4] and Aichelin and Hufner [5]
discussed a model of fragmentation based on partition-
ing alone with no microstate counting factor or tuning
parameter. In particular, their assumption is that ev-

ery partition is equally likely and that alone determines
the &agmentation. The number of partitions of A is P~
which can be obtained &om the generating function

where hi, = (c/k ~ + 1/N)/", with t the number of near-
est neighbors per lattice site for a particular choice of spa-
tial discretization. This result is arrived at by a random
walk argument. Specifically, starting at a given atom,
there are l" random walks in k steps, and the fraction
of these that are close (end up at the origin) is inversely
proportional to the volume in which the random walk
is likely to end. This volume is in turn proportional to
k ~ . The random walk result is then corrected for the
very large polygons that encompass a large &action of the
sites. This determines the form for hg, as given above.

Comparing the results of this section with those of
Sec. II A, we see a strong parallel between the model of
&agmentation and the model for the A transition. First,
the exponent of Eq. (24) is identical to that internal ex-
citation function of Eqs. (7), and (8), up to a numer-
ical constant, if we neglect the cutoff temperature fac-
tor (To ~ oo) and make substitutions for the density

(A/V -+ d s) and the quantum volume [vs(T) ~ d ].
Secondly h& is analogous to the parameter Ps in Eq. (6).
In fact, the modification Feynman makes to hp can be
well motivated in the case of nuclear &agmentation, and
we will consider the case 1/Ps ——a/k + (1 —a)/k in
Sec. VB. Third, the partition function has a formal
structure identical to the xy model.

From the above remarks we note two important issues
in the choice of weight given to each partition, fragmen-
tation or grouping. One issue is the choice of Pi, and the
second is the relation of x to the physical quantities.

) Pgz
A=0

(25)

This is asymptotically given by the Hardy-Ramanujan

result P~ —e ~ ~ /(4Av 3). In this approach the dis-
tribution of clusters of size k is given by

(ng) = 1 ) PA nrc— (26)

which for large A is asymptotic to

1
(nl, ) =

exp((z&) ~~2k) —1
(27)

The above simple model of fragmentation can be gen-
eralized to include a tuning parameter x which contains
the underlying physical quantities such as volume, tem-
perature, binding, and excitation energy associated with
a &agmentation process. In this generalization of the
models given in Refs. [4,5], the weight given to any par-
tition is simply x which gives the partition function

Q~(x) = ) P~ x
m=1

(28)

where P& is the number of partitions of A with fixed

multiplicity m = P& &
n~ and is given by the recur-

rence relation P& ——P& &
+ P& . Once Qg(z) is

obtained, various ensemble averages can be found. For
example,

III. COMPARISON WITH OTHER MODELS OF
FRAGMENTATION

In this section, we discuss a number of other models
of nuclear &agmentation. Models based on partitioning
alone [4,5] are similar to the model outlined in Sec. II A
but with a simpler choice for the partition weight. Per-
colation models [6,7] are derived from far diferent as-
sumptions. Markov process models are identical to the
x model, but derived &om a phenomenological point of
view. They are useful for considering what forms of Pl,
would be appropriate for modeling &agmentation phe-
nomenon. Lastly, a generalized canonical model is intro-
duced. Although it does not allow for easy computation
of the various ensemble averages, it may be useful in in-
vestigating the behavior of exotic partition functions.

For large A and xA )& 1, (ns) now approaches

1
(na) =

—exp 6& k —1
(30)

B. Percolation models

The x model has one variable that describes the de-
gree of fragmentation. As x ranges from 0 to oo, the
temperature changes over the same range. Another one

At x = 1, the above formula reduces to the result of
Eq. (27), as expected.
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(~~) = k. f((p -& )k )

where p, is the critical probability above which an infinite
cluster exists, f is a scaling function, and 7, 0 are critical
exponents. For the choice Pg ——k, x = 1+ e, with e «
1, the z xnodel has a cluster distribution approximately
given by (see Ref. [3])

—).I)/A

k
(32)

for k « A. This is equivalent to a percolation model
with x analogous to p, x, = 1, and f(x) = e /+. This
implies the exponents are given by 0 = 1, r = 1. Other
choices for Pg would give a different 0', 7.

parameter approach to cluster distributions is based on
percolation. The application of percolation to nuclear
fragmentation was developed by several groups [6,7]. The
percolation models are of two types: bond and site. The
bond type assigns a certain probability p of having a bond
between lattice sites, while the site type assigns a certain
probability of having a site occupied. Sixnilarly, the z
of Eq. (7) has terms which deal with volume or density
effects, and binding effects. Also included in z are ther-
mal effects through vs(T) and internal excitation energy
considerations which are not present in the percolation
models.

In percolation studies, the number of clusters of size k
is given by

the configuration vector.

T~~n = (. . . , n; —2, . , n2,. +1, . . .),
. , nI, + 1, . . . , n~+g, —1, . . .),
. , n2; —1, . . .) . (33)

Suppose these processes occur at some rate, denoted
by q(n, n') for n transforms to n' Fo.r example,

q(n, T~ "n) = Az~n~(ng —bz~),

q(n) &~In) = p~I ~~+I ~ (34)

P~(n)q(n, T~"n) = P~(T~"n)q(T~"n, n) .

If there exist positive numbers cq, . . . , c~ such that

This is a very reasonable choice, as the probability is pro-
portional to the number of fragments available for such
moves. If there are none, then the transition probabil-
ity is zero, as needed. We expect that this process when
applied repeatedly to a configuration will lead to an equi-
librium configuration, at which point the rate at which
transitions occur to a new state, weighed to refiect the
equilibrium distribution of the original state, is equal to
the rate at which transitions occur back to the original
state, weighed to refiect the equilibrium distribution of
the new state. In other words, if P~(n) is the equilibrium
distribution, it must satisfy the detailed balance condi-
tion:

C. Markev process models C&CIcA&Ie = C&+gP&g (36)

An alternative point of view for modeling nuclear &ag-
mentation comes from Markov processes, which allows

the underlying physical phenomena to be refiected in
the equilibrium distributions. The idea is to consider
a method by which a cluster configuration can change
into another configuration, and then to derive what the
equilibrium distribution is for such a xnethod applied to
the set of states. Rather than assuming what the proba-
bility for each state is, it is derived &om the distribution
achieved by applying the Markov process repeatedly.

For example, we can consider that the underlying phys-
ical processes are the joining of two &agments to form a
new larger fragment and the splitting of a larger fragment
into two smaller fragments. Fragments joining and break-

ing into xnore than two groups are possible, but we will

ignore that for now, ass»ming that those processes are of
lesser importance and will not materially affect the over-

all equilibrium distribution. We denote these processes
by a transition operator T which acts as follows on xl,

then it can be shown that the equilibrium distribution is
given by

nI,1 -=- CI
(37)

&,a = ~f, f~,
v, ~ = Pf, +I (38)

where fg is any nonnegative function of k. It can be
shown that the solution to this model (in the language
of the x model) is

So if for some choice of A~g, p~g, we get cg = x/Pg, then
the models considered in Sec. II A are reproduced. Once
we know ci, we can use Eqs. (10) and (11) to solve for
the various ensemble averages. In fact, the recursion re-
lationship stated above is another way of expressing the
recursion relationship relating partition functions devel-

oped in Sec. II A. Of course we still have not produced
a set of A~i„p~g which satisfy Eq. (36). A very general
solution (though not unique) is given by the choice

TABLE III. Markov process models.
x= /o. ,

/ja = fa. (39)
A~g,

a(jk) P(j+ k)
p (j+k) )

p/n
p/o.
p/o)

1
I T

k!

Table III lists soxne typical examples.
An application of this technique is given by Kelly [22]

(Chap. 8). There, Kelly models the polymerization of
organic molecules by a Markov process. He assuxned
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that the molecules combine to form polymers by forming
bonds between molecules, up to a maximum of f bonds
on a single molecule. If existing bonds between molecules
break at a rate r and new bonds form at a rate propor-
tional to the number of sites available for new bonds,
then one can show that the equilibrium polymer distri-
bution is given. by applying the x model with x = ~ and
Pi, = k![(f—2)k+ 2]!/[(f —1)k]!. In this case A is the
number of molecules and nI, is the number of polymers
containing k molecules.

As an application to the problem of nuclear fragmen-
tation, suppose we think of the &agmentation process as
having all the nucleons constrained to move in a small
volume of space for a period of time long enough for
the &agments to achieve an equilibrium. The probabil-
ity of joining two &agments should be determined mostly
by the density of the nucleons in this volume, and the
cross section of each fragment. We expect larger nu-
clei to accrete smaller nuclei due simply to their larger
cross section. Therefore A~~ should increase monotoni-
cally in j and k. All the nuclei created can break up into
smaller nuclei. We expect larger nuclei to be more un-
stable than smaller nuclei. This is not strictly correct, as
larger nuclei are energetically favorable in their ground
state configurations. However, in the aftermath of a high
energy collision, the added excitation energy and angu-
lar momentum should make larger structures unstable.
Therefore @~A, should increase monotonically in j and k
as well. This suggests that the above example might be
a reasonable model of nuclear &agmentation, provided
f& increases monotonically. A simple choice would be
fi, = Pi, = k which we will investigate in Sec. VA.

) W~(n) = W~ 'IS~ 'Iz
~C~~

(42)

where II& is the set of all partitions of A with multiplic-

ity m, and S& is the Stirling number of the first kind.
This implies that the weight is given by

Q(m)
W~(n) =

( )
M2(n)x

Now if we could write down the generating function for
Q~(z) we could compute (nA,, ) as was done in Sec. IIA.
However, in general there is no generating function for
Q~(z). We can caiculate the expected multiplicity (m)
using Eq. (52). The (nA, ) results are not entirely inacces-
sible. They can be obtained by a Monte Carlo simulation
of the weight. Note first that the partition function can
be expressed as a sum over the permutation group:

different weights. In the second weight, configurations
with the same number of fragments have the same weight.

Suppose that we are given a partition function Q~(x) =
i Q& z where Q& ) 0 and we want to deter-

mine a weight scheme that generates this partition func-
tion. For the canonical model with Pi, = k, the weight
is given by W~(n) = M2(n)x, where m = Pl, n&,
M2(n) = A!/Q&nq!k"". An obvious generalization of
this weight would be the choice W~(n) = W& M2(n)z
i.e. , W~(n) is equal to the standard canonical model
weight, up to a factor that depends only on the total
number of &agments. For this weight,

D. Generalized canonical models

As a final example of a model of fragmentation, we
discard the notion that the model must be derived &om
any particular choice of weight. Indeed, the usual pro-
cess of choosing a weight and then deriving its partition
function can be reversed. A partition function can be
chosen, and a weight scheme that generates such a par-
tition function can be computed. It is important to note
that the choice of a partition function is not suKcient
for fixing such a weight scheme. Many difFerent choices
for a weight lead to the same partition function and only
additional assumptions can fix the weight scheme. For
example, the models given by the weight

Q(m)
Q~(z) = ) M2(n)

( )
z.~n.

n[m(&)
~(p) y —s(p)

[ ()]
pcs& I w I its&

(44)

(ax+ b~t
Qx+i( ) = QA + d)A+1

(cx+ d)
(45)

where S(p) = ln IS& I

—ln Q&
" —m(p) ln z. We can

simulate this action over the set of permutations using
the Metropolis algorithm.

One example of a generalized canonical model is given
by the partition functions generated by

A'.x .—- 1
A

P~(n, x) =
Q~(z) " nA, !k"

k=x

and by the weight

(40)
with Qi(x) = x. Models of this type satisfy a simple
recurrence relation, but that recurrence relation is quite
different than the canonical recurrence relation given in
Eq. (11). Another model, even more exotic, is given by

A/gm S(m)
P~(n z)= '

(
A

(41)
I'~*(-+ 1) ~

Q2~(x) = Q~
( *+~ )

(x+ q)'" (46)

where m = g& nl, both give the same partition function
Qg(z) = x(x + 1) . . (x + A —1). In the first weight,
configurations with the same number of &agments have

where Qi(x) = x. Models such as these are interesting
in studies of the roots of partition functions [24,25], since
the computation of large numbers of zeros for such parti-
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tion functions is easily accomplished. The distribution of
roots in the complex plane can have a fractal character
when the requirement that the coeKcients be positive is
relaxed. The case q = —1, shown in Fig. 2, reveals one
such complex distribution of roots. In that case, the roots
lie on the boundary of a series of copies of the Mandel-
brot set. A discussion of zeros of the partition function
for canonical models will be made in Sec. IVB.

IV. THERMODYNAMIC PROPERTIES OF
FRAGMENTATION MODELS

In this section we consider the various thermodynamic
functioas that can be computed from the partition func-
tions obtained from the weight given in Eq. (6). As aa
example, the specific heat for a finite Bose gas is corn-
puted. Finally, a discussion of phase transitions leads
us to consider the location of the roots of the partition
function on the complex plane for several models.

T Vt=-
Tg

'
Vg

(4S)

(t Bxb
p = PVq/kgb ——(m)

~

——
~(z Bvp

t't' Bx1
+=V/k~T, = (m)

~

——~,gx Bt)
1 tBx (tBxi t Bxi

cv = Cv/kg = (m) 2 ———
~

—— +-
i xBt qxBt) x Bt2i

(49)

(5O)

+ ((m') —(m)')
ft Bx&'
qxBt j

where Tz and Vj are arbitrary reference points, but con-
venient values for nuclear fragmentation are k~Tq = a„,
Vq = sar&A, where a„ is defined in Sec. IIA and ro is
the classical radius of a nucleon.

We can express the various thermodynamic functions
in terms of (m), (m2), x, aad its d.erivatives. The calcu-
lations are simple, aad here we quote the results for the
dimensionless pressure, energy, and specific heat:

A. Thermodynamic functions where the ensemble averages of m = P& ng are given by

In Sec. II A we introduced a model with the thermody-
namic variables confined to a single parameter x. Mak-
ing this assumption allows us now to simply calculate
the thermodynamic functions of such partition functions.
Since

( )
x BQ~

Q~(x) Bx
x2 B2Q

( ( )) q ( ) B (52)

e-~&" v'»&"~T' —gi )nba~„'='i"' E ") (47)

is the partition function for a thermodynamic system
with x = x(A, V, T), it is straightforward to calculate the
thermodynamic functions from the free energy. First, let
us introduce dimensionless variables for T and V

~ =-( )+ —(( )-( ) )
d 2

2 4
(53)

As an example, we can apply the above expressions to
obtain the specific heat of a finite Bose gas. A Bose gas
in d dimensions can be modeled by the x model, as noted
in Sec. IIA. Combining Eqs. (21), and (51) we arrive at
a simple formula for the-specific heat:
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FIG. 3. Specific heat of a finite Bose gas
for d = 3, A = 100, 200, 400, 800. k~T~ ——8
MeV in this figure.
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assuming z oc T"~ . For d & 2, there is a phase transi-
tion (Bose-Einstein condensation) in the infinite particle
limit, which can be seen as a cusp in the specific heat at
the critical point, x, = A/((d/2). For finite gases, the
partition function is smooth, so there is no cusp. How-
ever, the specific heat does reach a maximum near the
critical point, suggesting the cusp will onset in the large
particle limit. This behavior is illustrated in Fig. 3.

In the following subsection, we will consider another
way of obtaining the phase transitions of a partition func-
tion. Using the results obtained in earlier sections, we
attempt to calculate the zeros of the partition function
for various A.

Z
2vf„,
1 —v

J 2J
kgT, =

tanh (—1+ ~2) ln(1+ ~2)
(55)

where f„, = cos(2zr/m)+cos(2vrs/n), v = tanh(J/k~T).
In this case the zeros of the partition function are located
on two circles in the complex v plane, namely v = +1 +
~2e's. The physically meaningful domain of the v plane
is the part of the real line v 6 (0, 1) (assuming J ) 0).
The zeros of the partition function approach this domain
at one point, v = —1+ y 2. This implies there should be
a phase transition when

B. Zeros of the partition function and phase
transitions

The canonical partition function Z~ (x) is a polynomial
of order A in x with positive coefBcients. For example, for
Pp = k, Zz(x) = x(++1) ~ (x+A —1)/A!. By a theorem
of Gauss, a polynomial of order A has A roots or zeros in
the complex plane. For positive coefBcients, no real roots
are on the positive real axis, which is also the physical
meaningful axis. The above example has its roots at the
x = 0 and the negative integers x = —1, —2, . . . ,

—A+ 1.
Complex roots correspond to an extension of the real

temperature into the complex plane. Lee and Yang, in
their discussion of phase transitions, showed that such
transitions manifest themselves as zeros of the partition
function approach the real positive axis as the thermody-
namic limit A —+ oo is approached. Taking the logarithm
of the partition function to obtain the free energy can
then lead to a singularity.

To illustrate the above remarks, we consider the ex-
ample of the 2D Ising model on an m x n lattice. Kauff-
man [26] showed that the partition function for this model
is given by

which is the commonly known value for the critical tem-
perature.

Now consider the zeros of the z model partition func-
tion in the complex x plane. The physically meaningful
domain of z, the part with positive temperature, is the
positive real axis. So for a phase transition to mani-
fest itself in the infinite particle limit, the zeros of the
partition function must approach the positive real axis.
The Pi, = k model therefore has no phase transition, for
in the infinite particle limit, the roots of the partition
function are zero and the negative integers, which never
approach the real temperature domain. Another exarn-
ple we consider is Pi, = k for the cases w = 2, 3. This
corresponds to an ideal Bose gas in two and four dimen-
sions by Eq. (21). So we expect that the zeros should
approach the physically meaningful domain for large A
for the case 7. = 3, but not for the case v. = 2. Figure 4
illustrates the zeros for the models Pg = kz and Pq = k
for A = 25, 50, 75, 100. These graphs suggest that for
both models, the roots lie on simple curves. Whether
these curves close on the positive real axis is not clear
from these small A results. The roots near the negative
real axis scale with A, which suggests that the crossing
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point on the positive real axis should scale with A as
well. This agrees with the known behavior of the critical
point, which is given by z, /A = 1/((d/2). The fact that
the curve will not close for d = 2 is not evident from the
graph, however.

z which are easy to obtain. For small z, all models will

produce (ms) with most of the area under (mA). This is
because for small z, the partition function is given almost
entirely by the term proportional to z. This implies that
one fragment is the most likely outcome. For k g A, (ng)
and (mi, ) are proportional to z since

V. GENERAL BEHAVIOR OF MODELS AND
COMPARISON WITH EXPERIMENTAL DATA

»A .(*) PA
YLQ = ~ z

pk ZA PiepA 's— (56)

In this section we consider the general behavior of (ns)
for various Pg and how well these models proposed actu-
ally fit some experixnental data obtained &om heavy ion
collider experiments [27]. These data were obtained from
emulsion experiments for &&Au at 0.99 GeV/nucleon.
415 events were recorded and identified by the charges
of the fragments, i.e. each event is represented by n =
(nq, . . . , nrs), where n, represents the number of frag-
ments with charge z in a given event. Ensemble averages
were obtained by averaging over all events.

Since the experimental method only measured the elec-
tric charge of &agments leaving the collision, there is
some question about how applicable are models devel-
oped considering only nucleons with no separation into
protons and neutrons. Since the nuclear force treats pro-
tons and neutrons nearly identically, and the models pro-
posed derived from a combinatorial viewpoint, the mod-
els should be identical whether one includes the neutrons
or not. In fact, it can be shown that for the simple P~ = k
model, that the results are the same whether one consid-
ers Z nucleons coming out, or whether one considers A
nucleons coming out, but only the Z protons can be fol-
lowed, such that one must sum over the possible neutron
configurations to obtain the expectation values.

A. General behavior of the models

Because all the models must satisfy P& kns = A, there
are restrictions on the form of the distribution. If we
graph (ml, ) = k(ns) vs k, then the area under the curve
must be equal to A. For different choices of z and Ps,
the area will be distributed differently. In this subsection
we discuss typical distributions for these xnodels.

All x models have simple behaviors at large and small

z ZA g(z) z' "
p~ ZA pA: (A —k)!

(57)

The model Ps = k was discussed in an earlier set of
papers. For small z, most of the area is near k = A, as
expected. For z & 1, (m&) is monotonically increasing.
At z = 1, (mg) = 1 for all k. For z ) 1, (mg) is mono-
tonically decreasing. At large x, most of the area is near
k = 1, as expected. This is shown in Fig. 5(a).

For models with pl, = 1, for z « 1 most of the area
is below k = A. As z increases, some area is distributed
along the rest of the graph, mostly around k = A/2. As z
keeps increasing, the area continues to be redistributed,
until most of it is distributed about a point k & A/2.
At large x it takes on the usual distribution. This is
illustrated in Fig. 5(b).

For the model pg = k, with 0 & 7. & 1, the behavior
is very similar to ps = 1. For small z, (ms) increases
monotonically, with xnost of the area near k = A. As x
increases, the right-hand side is diminished till the graph
attains two turning points, a local xninimum near k = A,
and a local maximum at a point k & A/2. The local
minimum soon disappears, and the local xnaximum mi-
grates left till it reaches k = 1 at large x. This behavior
is illustrated in Fig. 5(c).

The models P~ = k, 7' ) 1 are all very similar. For
small z, (mq) starts monotonically decreasing, reaches
a minimum, then near k = A rises rapidly. As x is in-

For large z, all models will produce (ms) with most of
the area under (mq). This is because for large z, the
partition function is given almost entirely by the term
proportional to x+. So A &agments is the most likely
outcome. For k g 1, (ns) and (ms) are proportional to
z since
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creased, the small k behavior is unchanged, but eventu-
ally the large k part turns downward. Thus for a small
range of x, the graphs have two turning points. As z
continues to increase, the local maximum eventually dis-
appears and the typical large x behavior onsets. This
behavior is shown in Fig. 5(d).

The model Pi, = k!, for z « 1, (mI, ) is mostly under

k = A, as expected. From Eq. (56), we see (nI, ) z(&)
for k g A, so the remainder of the area is binoinially
distributed about k = A/2. As z increases, the amount
of area under k = A diminishes, the balance appearing
around k = A/2 in a binomial or Gaussian distribution.
Once most of the area has disappeared &om k = A, the
Gaussian distribution at the center moves to the left as z
is increased. For very large x, most of the area is under
k = 1, as expected.

A simplified description of the Pg = k! model can
be obtained by making the following approximations.

For a given z, the partition function is strongly peaked
about a particular number of kagments m = mo, such

that QA(z) = 8&
' z '. To estimate mo, we use the

approximation for the Stirling numbers of the second

kind, 8& -- m /m!, and maximize QA(z). This gives

a nonlinear equation for mo, namely mo ——zp

mo(A, z), where we have used Stirling's approximation
for m!. We can then approximate (ns) —(&)m& "fA(z)
where ms = mo(A —k, z) and fA(z) is a normalizing
constant. We now make the assumption that m~
mo(A —(k), z)—:m. The value of fA(z) can now be ob-
tained by imposing the constraint P& k(ns) = A, which

gives

where p = 1/(m+ 1). This distribution is binomial, with
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FIG. 6. The behavior of (mI, ) vs k for
A = 50, Pg, = k!, at various z, with a compar-
ison to the approximate model considered in
the text. The lines correspond to the approx-
imate model, the points to the exact model.
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(k) = pA. Using this result we arrive at an equation for

m)

A/(~+a)

Figure 6 compares the exact behavior with this approx-
imation. Froxn the figure we see that (nx, ) is reasonably
well described by this approximation.

k

k
k
k

~+(1—~)k1 —~
k

~+(1 ~)k1 —~
k

a+(1—a)k
k

~+(1—a)k1-~

0.296
1.895

0.93745
1.96263
2.61313
3.0803

a
n/a
n/a

0

0.0587
0.0747
0.0732

1

n/a
1.817
1.5

cr2

78.58
63.10
65.61
62.34
61.55

62.20

TABLE IV. Fits of experimental data to various models.

B. Experimental comparisons
VI. CONCLUSIONS AND SUMMARY

Nuclear &agmentation has a characteristic distribution
which is met generically by only a few of the above mod-
els. For the experiment we will analyze, (mx, ) drops, then
rises. This suggests models with pk = k with v ) 1

might be satisfactory if one x is used. Models with two
or more z's are considered in Ref. [3]. The large k be-
havior is somewhat indeterminate. It could be rising or
falling; there are not enough events to determine the be-
havior accurately.

Fits were made to ln(nk), dropping from the experi-
mental distribution any (nk) that were zero due to in-

sufficient statistics. A previous paper [3] showed that for
z = 0.3, the Pk = k model gives a fairly good fit. A
better fit is obtained by using two or more z's. Here, we

consider the models which parallel models in other areas
of physics. Specifically, P~ = k is considered in analogy
with the Bose gas in d = 2(r —1) dimensions as well as
in analogy with various Markov process models. Also,
1/pi, = a/k + (1 —a)/k, with various 7 is considered
in analogy with Feynman's model for the A transition in
liquid helium [21]. The results are shown in Table IV,
and in Fig. 7. For some choice of 7, z, and a, each of
these models produced reasonable fits of the data, and
appear to be better than the simple Px, = k xnodel.

This paper presents a detailed investigation of a set of
exactly solvable canonical ensemble models of &agmen-
tation processes and discusses some of its parallels with
other areas. Specifically, parallels between the descrip-
tion of the &agmentation process and other areas are de-
veloped which include Feynman's approach to the A tran-
sition in liquid helium, Bose condensation, and Markov
process models.

The partition functions derived &om various weights
given to each member of the canonical ensemble, are
shown to be polynomials in a parameter z. Simple recur-
rence procedures are developed for obtaining the parti-
tion function and the coefficients in the associated poly-
nomials. The variable z, called a tuning parameter, con-
tains the underlying physical quantities associated with
the description of the the different processes considered.
For example, in nuclear &agmentation, x involves the
thermodynamic variables V (volume) and T (tempera-
ture) through the quantum volume vo(T) as well as bind-

ing energy and excitation energy coefficients.
Besides the tuning parameter z, the weight given to

each member of the ensemble contains a quantity Pk
which gives the cluster size dependence of this weight.
Various choices for PI, are considered, and a wide range
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of difFerent types of behavior can be found for diferent
choices for Pl, . A previous model of fragmentation [1—3]
used Pk = k, a choice leading to very simple results. The
more general form, PI, = k, is investigated here. Also
considered here is the choice Pk = k!. The expected
distribution of fragments for this choice is a number of
fragments all of nearly equal size.

The canonical models presented in this paper can all
be derived &om Markov processes. Markov process mod-
els can give a picture of the underlying physical processes
that lead to cluster formation and break up. The rela-
tionship of this approach to that based on the canonical
ensemble is discussed.

A consideration of the thermodynamics of &agmenta-
tion systems led to an investigation of the behavior of
the partition function when x is a complex number. In
particular, the zeros of the partition function are studied

in the complex plane and the connection with the Lee-
Yang theorems and phase transitions are investigated for
various choices of Pl, . More complex iterative models of
the partition function are proposed whose distribution of
zeros can be fractal sets.

Finally, some experimental data are investigated. Var-
ious choices for the quantity Pk are considered in our
analysis. The statistics of the data are not sufhcient to
distinguish the various possible Pk s considered, however
the results of these more general models appear to be
better than the earlier model Pk = k.
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