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Extraction of neutron densities from elastic
proton scattering by zos'207'20sPb at 650 Mev
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The method for extraction of neutron and matter densities from data on cross sections and spin
observables for elastic p-nucleus scattering is presented. The effective nuclear potential was treated
to the 6rst order with respect to the t-matrix and density distributions. To eliminate uncertainties
associated with the t matrix, the latter has been determined directly from p- Ca scattering data,
where the proton and neutron densities are known sufBciently well. The medium modi6cations in
the t matrix have been included by means of density dependent terms added to the free t matrix.
The neutron densities to be found were expressed as a Hartree-Fock (HF) distribution plus a small
correction expanded in a Fourier-Bessel series with inclusion of only low-frequency components
determined by the data. High-frequency components are presented by the HF term. Expressions
for the physical observables were linearized in terms of the expansion coefficients, the latter being
determined through an iterative procedure from the y criterium. The method enables one to
obtain statistical Quctuations in those Fourier components as they are generated by experimental
error bars. The normalization and model uncertainties have been also estimated. The extracted
densities of ' ' Pb and their differences were compared with the HF results calculated by us
with the Skyrme interaction. On the whole, pretty good agreement has been achieved.

PACS number(s): 21.10.Gv, 25.40.Cm, 21.30.+y, 27.80.+w

I. INTRODUCTION

Substantial progress has been made in recent years
in studies of nuclear structure with electron and pro-
ton scattering at intermediate energies. In particu-
lar, elastic electron scattering (especially in combina-
tion with muonic x-ray data) provides precise informa-
tion on charge distributions p,h(r) in the nuclear ground
state [1,2]. It has become possible, due to experimental
achievements allowing measurements to very high mo-
mentum transfer (q 3.5 fm ) [3], and to theoretical
developments [4—7], to obtain model independent charge
distributions with statistical error bands generated by
experimental error bars. In some cases [3] overall un-
certainties were reported to be as small as 1—2'%%uc in the
nuclear interior. In elastic electron scattering the domi-
nant contribution comes from the nuclear static Coulomb
potential generated by p,1,(r). The remarkable simplicity
of this interaction is a key factor allowing such accurate
determination of p,1,(r).

In the case of elastic proton scattering the nuclear
structure is presented mainly by the single-particle den-
sity distributions of both protons p~(r) and neutrons
p„(r). The overall contribution of two-body density
terms coming from dispersion and correlation corrections
has been shown to be small, due to a signi6cant compen-
sation between them [8,9].

The dominant contribution of single-particle terms
makes the elastic proton-nucleus (pA) scattering very at-
tractive for the purposes of determination of p„(r), the
proton density p„(r) being taken from other sources, e.g. ,

elastic electron scat tering.

In nuclei with equal numbers of protons Z and neu-
trons N, the neutron and proton densities are close to
each other. However, in the case N g Z, the densities

p„(r) and p~(r) may difFer very substantially (besides
the trivial change of the normalization). This follows
very clearly ft.om results of modern self-consistent micro-
scopic approaches such as Hartree-Fock (HF) [10,11] or
the quasiparticle Lagrange method (QLM) [12,13]. As
compared to what one has for the proton densities, the
experimental information on p„(r) is generally scarce and
they are poorly known in nuclei with N g Z. To a con-
siderable extent this is a consequence of a poor knowledge
of the N¹cattering amplitudes in medium or equiva-
lently t matrices and the strong absorption mechanism.
These uncertainties are a major obstacle hindering at-
tempts to obtain information on p„(r) comparable in
quality to that known for the charge densities. Due to the
strong absorption of protons, the nuclear interior is not
well probed as in the case of electron scattering. At 650
MeV, the imaginary part of the optical potential ImV p&

in the inner region of Pb is about 46 MeV. This causes
substantial suppression of the incident proton wave, hin-
dering a deep penetration inward. However, due to a
remarkable constancy of the isoscalar matter density in
the nuclear interior, the distortion factors are weakly po-
sition dependent, and can be taken outside. These overall
multiplicative factors reduce the cross section consider-
ably, but they, in themselves, do not complicate the pic-
ture. This circumstance is similar to what occurs in the
quasi&ee reactions such as (p, 2p) and (e, e'p). There,
an exact determination of the momentum distributions
of the bound nucleons is possible only in the plane-wave
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limit. Nevertheless, the former can also be obtained with
good accuracy in a more realistic situation with the ab-
sorption factors included. This is because the main effect
produced by the distortion is an overall reduction of the
cross sections with only little change in the plane-wave
momentum distributions [14]. In this respect, the de-
scription resembles the weak coupling limit.

It is evident that obtaining quantitative and detailed
information on the spatial distribution of neutrons in the
nuclear ground state is a problem of major importance.
In this paper we address this problem by analyzing new
data on cross sections and analyzing power for elastic
proton scattering by ' "' Pb at 650 MeV measured
in LAMPF experiment E855 [15]. The lead region is of
particular interest both theoretically and experimentally
for many reasons. These are the heaviest stable nuclei
and are very sensitive to the saturation of nuclear forces.
Most theoretical approaches are best valid for spherical
doubly closed nuclei. Many electron and proton scat-
tering data at different energies have been obtained in
this region which thus provides a good basis for criti-
cal analysis. Furthermore, the examination of data for
neighboring isotopes enables one to study relative effects
in densities arising &om addition of one or two particles
(or holes). Such relative measurements can be done with
higher accuracy than absolute measurements for a single
nucleus.

In order to avoid uncertainties associated with incom-
plete knowledge of the in-medium t matrices, we decided
to determine them directly from experiment [16]. Thus,
we used a two-step procedure to untangle the knot of
unknown t matrices and neutron densities. First, we an-
alyzed data for elastic proton scattering at 650 MeV on

Ca [17], where the neutron density was taken quite re-
liably as the sum of unfolded experimental charge den-
sity and a small correction term calculated theoretically.
We determined the isoscalar component of the effective
amplitude from a best fit search procedure. The ampli-
tude we used differs &om the &ee t matrix of Praney and
Love [18] by the presence of additional density dependent
terms with some adjustable parameters (two in each com-
ponent of the amplitude). The form of the p dependence
we chose was motivated to a certain extent by the ideas of
Brown and co-workers [19,20] on the universal renormal-
ization of meson masses in the nuclear medium. Given
the NN-scattering amplitudes determined &om the anal-
ysis of 4 Ca, the next step was to obtain the neutron den-
sisties from data (cross sections and analyzing powers) on
elastic proton scattering by the lead isotopes.

To extract the neutron densities we extended the ap-
proach of Friar and Negele [21] proposed originally for
the determination of charge densities &om the analysis
of elastic electron scattering and muonic transition ener-
gies to the case of elastic proton scattering. This method,
in slightly modified fashion, has been examined in Ref.
[22] in the context of Glauber multiple scattering theory.
Another approach based on Sick's method [6] was used
in Ref. [23].

We searched the neutron densities in the form p (r) =
p (r)+bp (r), where po(r) and bp (r) are the main and
correction terms, respectively. The bp„(r) term was ex-

panded in a Fourier-Bessel (FB) series. The number of
coefficients was mostly specified by the maximum mo-
memtnm transfer q which was 2.91 fm in our case.
For po(r) we used the Hartree-Fock (HF) densities cal-
culated here with the Skyrme interaction SkM' [10] and
pairing included. Since the bp„(r) term was treated as
a small correction, we expanded the cross section and
spin observables in a series with regard to b'p„(r) and
kept linear terms. Thus, the condition for the minimum
of the y2 value resulted in a system of linear equations
for the expansion coefficients and could be solved easily.
The whole procedure was repeated by redefining po(r)
as p„= po(r) + bp„(r) to determine a new bp„at the
next iteration, and so on until a required accuracy was
achieved. Statistical errors of the data were projected
into the final results in the form of statistical error bands
for the densities and their relative differences. Those er-
ror envelopes show how the corrections bp„(r) (which,
by definition, contain only low Fourier component de-
termined by the data) fluctuate due to the experimental
statistical errors. High-&equency terms, introduced with
the HF model, do not contribute to the statistical error
bands. The results for the neutron and matter densities
and their differences were also compared with predictions
of the HF theory mentioned above.

II. BASIC APPROXIMATIONS FOR THE
OPTICAL POTENTIAL AND t MATRIX

According to current general thinking, a very appeal-
ing approach to describe nuclear phenomena and scatter-
ing processes in particular would be one based on an effec-
tive Lagrangian derived from /CD with effective nucle-
onic and mesonic degrees of &eedom. However, the the-
ory at such a level has not yet been developed. Therefore
less rigorous approaches including some phenomenologi-
cal quantities have been examined. Some years ago theo-
retical descriptions of elastic (pA) scattering based on the
relativistic impulse appproximation (RIA) for the Dirac
equation [24] and another one [25] ded.uced from covari-
ant meson exchange theory (IA2) were proposed. Predic-
tions of these relativistic models were mostly successful
for polarization data below 500 MeV, the IA2 theory do-
ing somewhat better below 400 MeV but worse than RIA
at 500 MeV. For differential cross sections these relativis-
tic approaches did not always provide an improvement in
comparison with nonrelativistic (NR) multiple scattering
theories, in many cases doing even worse. Furthermore,
there was not observed any systematic improvement with
the increase of incident proton energy up to 1 GeV even
for the case of polarization data as one might expect
[17,26].

In recent years considerable progress has been znade in
the NR multiple scattering theory to include off-shell,
full-folding, and medium modiflcation effects [27—29].
These corrections to the single-scattering term of the op-
tical potential improve the NR description of the exper-
iment. On the other hand, for our purpose of studying
the neutron densities, cross section data are to a certain
degree more important than data for spin observables.
Keeping in mind those reasons, we chose the NR de-
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scription of the elastic (pA) scattering based upon the
Schrodinger equation using relativistic kinematics.

As was mentioned briefly in the Introduction, the nu-
clear optical potential at energies near 1 GeV can be
approximated with good accuracy by its first-order term
of the structure (tp), where t and p are the two-body t
matrix and one-body density, respectively. The second-
order term being proportional to the pair correlation
function is generally small, due to a significant compen-
sation between contributions &om correlations of short
and long ranges [8,9]. Using the &ee two-body t matrix
in the leading first-order term is called the impulse ap-
proximation (IA). Thus, a basic requirement for the IA
is the vanishing influence of the medium in intermediate
states.

Numerous calculations have shown that the IA pro-
vides a good description of the elastic (pA) cross sections
near 1 GeV [26,30,31]. However, it fails at lower energies.
Corrections to the IA due to off-shell, full-folding, and in-
medium effects on the &ee t matrix should be included.
Evaluations of the t matrix modified by the nuclear envi-
ronment were performed by using the Brueckner t ma-
trix [29,32) calculated for energies near 300 MeV or by
the Watson ) matrix [33] which includes binding effects
only for target nucleons [28]. Although results of the
three mentioned approaches are in a qualitative agree-
ment predicting a repulsive contribution for the real cen-
tral t matrix, they differ substantially on a quantitative
level. This would result in big variations for scattering
quantities such as cross sections and spin observables.
Obviously, some more work is required in this direction
as well as in studies of the second-order correlation terms
at energies of a few hundred MeV. Taking into account
the reasons outlined above, we adopted an approach in
which all those corrections to the IA are included phe-
nomenologically in an effective t matrix. Its isoscalar
part was determined &om the p- Ca scattering data for
cross section [17], and spin observables [34), the neutron
density being taken as

p-(r) = p.(r) + [p.""(r)—p,""(r)]

Here, the point proton density p„(r) was obtained by un-

folding the experimental charge density of Ref. [35] with
the neutron contribution included [36], and the correc-
tion term was calculated by us in the HF approximation
with the Skyrme interaction SkM'.

Thus, the folded optical potential V (r) which was used
in the Schrodinger equation contained the Coulomb Vz,
central Vc, and spin-orbit VLs terms of the following
structure:

where p(r) = p (r) + p~(r) A kinematic factor )I [18] re-
lates the t matrix in the nucleon-nucleus kame to that in
the nucleon-nucleon frame t(q). The latter was presented
in the form

t(q) = t~(q) +)t~s(q)(~. ~) (6)

where n is the normal to the scattering plane. The aux-
iliary quantity 7r,s(q) [16] is related to tz, s(q) by the re-
lationship

Q
2

tr.s(q) = —kq 1 — — ~i.s(q),2k
(7)

in which k is the incident proton momentum in the (pA)
center-of-mass system, and q is the momentum transfer.

Our choice of the form of the effective t matrix was mo-
tivated to an extent by Brown's idea on the universality
of meson and nucleon mass renormalization in the nu-

clear mediuin. It was argued in Refs. [19,20] that meson
masses should scale inside nuclei in the same proportion
as the nucleon mass does. The principal in-medium scal-
ing ansatz conjectured in Ref. [19] is

m'm a m mN
)m mp m mN

(8)

where m, m~, and m, are the masses of 0., p, and ~
mesons and mN is the nucleon mass, the asterisk denot-
ing the in-medium density dependent quantities.

In nuclear structure theories such as the HF method
with a nonlocal NN e8'ective interaction [37,38], one has

mpf

m~(r)
=1+ "("),

po
(9)

where a typical value of A is 0.2+0.1, and po is the nuclear
matter density. The first results indicating the necessity
of meson mass scaling for proton scattering cross sections
have been presented in Refs. [39—41].

Now, if we adopt the Yukawa form for the effective
t matrix and treat corresponding meson mass (range)
parameters as the ones subjected to the scaling law, we

can expand the interaction in a series with respect to
A. More specifically, assuming a Yukawa form similar
to that proposed by Franey and Love [18] for the &ee t
matrix we can obtain a somewhat complicated structure
for the p-dependent terms. Taking into account that the
change of meson masses is not the only cause of medium
modifications (e.g. , restrictions due to the Pauli principle
can be significant) and intending to simplify somewhat
the expansion expressions, we have chosen the following
parametrization for the isoscalar effective t matrix:

2
—2

pRe[tc(q, p)] = aiRe[Q (q)] + o2 —1+
~

—
~

po

(10)
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2
—2

Im[tc(q, p)] = «Im[tc(q)] + u4 —1 +
I

—
I

p p (q'i
po (p2)

2
—3

«[rLs(q, p)] = «Re[rLs(q)] + «—1+
I

—
I

p

po E ps)

(12)

Imps(q p)] ~ ™[r~s(q)].

Here t&, tLs are the central and spin-orbit &ee t matrices
of Franey and Love [18], o,, (i = 1 —6) are the adjustable
parameters, and pp = 0.1589 fm is the nuclear matter
density.

The parameters p1, p2, and p3 were not varied during
the g2 search procedure. The sensitivity to their values
is not strong, especially for p2 and p3. The p1 parameter
determines mostly the ratio of real to imaginary parts of
the t matrix at q & 1 fm thus influencing differential
cross sections at their minima. Their values were chosen
to be p1 ——1.2 fm

& p2 20 fm, p3 ——6.0 fm
According to Ref. [28], the p dependence of 1m[re, s(q, p)]
is very weak at 650 MeV for momentum transfers within
the range 0 & q & 3 fm . Therefore, we have neglected
it.

Expressions (10)—(13) for t(q, p) are somewhat differ-
ent from those proposed in Ref. [16]. The difference is
in the form of Im[tc(q, p)] and in the values of powers
of the denominators in Eqs. (10)—(13). Because of the
expansion with respect to A of the Yukawa potential, the
values of the powers are greater by 1 as compared to those
used in Ref. [16]. The Im[tc(q, p)] of Ref. [16] contained
a special damping factor introduced explicitly to imple-
ment the expected behavior caused by Pauli blocking. In
Eqs. (10)—(13) the forms of the real and imaginary parts
of rc(q, p) are identical. This parametrization is compat-
ible with the anticipated depletion of the imaginary part
as has been found in our best fit solution.

III. METHOD OF DETERMINATION OF THE
NEUTRON DENSITIES

FROM ELASTIC (BA) SCATTERING DATA

It is evident that there is no way to extract the spa-
tial distribution of neutron densities in a complete and
truly exact form even in the case of zero statistical and
systematic experimental errors. This is clearly seen in
the first-order Born approximation, where the scattering
amplitude is proportional to the Fourier transform of the
density. As long as measurements are restricted by a
maximum momentum transfer q, it is not possible to
invert exactly the expression for the axnplitude. One can
never exclude high Fourier components with the wave-
length A & 2'/q . In other words, since the data are
not sensitive to these &equencies, it is always possible
to add a rapidly oscillating function (with A & 2z/q )

M

) &
) C jo(q r)

en=1
0

0 & r & Ro (14)
r&Rp,

where jo(q r) is the spherical Bessel function of zero or-
der, and q = mz /Ro. It makes sense to choose Ro close
to the point where statistical uncertainties in bp„(r) cor-
responding to experimental statistical errors in the scat-
tering data are comparable to the entire density p (r).
In practice this happens at a distance close to 2r, where

is the neutron root mean square radius. Hence, for
the lead isotopes under consideration Rp 11 fm. The
dependence on Rp in our final results is weak enough
for Ro being within the range 11—13 fm. Now, recall-
ing that each expansion coefficient is essentially specified

to any physically reasonable density p(r) without a sub-
stantial deterioration of y2. This implies that p(r) at
any r is not well determined by the real data. In this
situation, one must formulate model constraints on the
density based on physical considerations.

One of them is that the resulting density Buctuations
should not have a wavelength less than A;„= z/k~
2.36 fm (k~ is the Fermi momentum) [21]. One also
knows that densities should decay exponentially in the
surface in accordance with the damping law of single-
particle wave functions. In the LAMPF experiment
E855, the maximum momentum transfer was q = 2.91
fm ~, which corresponds to A = 2z'/qm~ = 2.16 fm thus
providing the possibility of measuring the expected den-
sity Buctuations.

Our strategy is to use the theoretical HF neutron densi-
ties po (r) as a starting approximation and to correct only
those features of po (r) which are actually determined by
the data, i.e., the low Fourier components. Then we cal-
culate statistical uncertainties in those corrections which
are produced by experimental statistical errors. In a
manner similar to Refs. [21,22] we separate the neutron
density p„(r) into two terms p„(r) = po(r) + bp„(r),
where po (r) is normalized to the neutron number N and
bp„(r) is a small correction. The latter is expanded in
the Fourier series in the region 0 & r & Ro and is chosen
to have zero normalization. The expansion radius Rp will
be specified later on.

For the inversion problem we are discussing, it is very
beneficial to have a statistical independence between the
expansion coefficients, which we denote here as C . This
implies that each coefficient is specified by the data at the
corresponding value of q. The analysis of elastic proton
scattering at 1 GeV made in Ref. [22] has shown that this
condition is satisfied well enough when the phase shifts
entering the Glauber amplitude were expanded with re-
spect to the cylindrical Bessel functions. One can expect
that under similar circumstances the expansion of bp„(r)
in a spherical Fourier-Bessel (FB) series would give close
results. In the case of electron scattering it was explic-
itly demonstrated in Ref. [21] that even in heavy nuclei
the scattering data essentially specify the Fourier-Bessel
transform of p,g(r).

Therefore, we expanded bp„(r) as
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by a datum at certain q, the total number of coefficients
M is determined &om the condition qM = q „, i.e.,
M = Roq /vr 10 for q = 2.91 fm i attained in
the LAMPF experiment E855.

It is clear that an infinitesimal variation bp„produces
corresponding small changes in the potentials bV~, bVgs,
the phase shifts baal ~~1/2, cross sections bo, and in the
spin observables hA„, bQ. It is not difficult to infer per-
turbation expressions for these quantities which we used.
in our calculations. First, we recall that with the spin-
orbit interaction included the Schrodinger equation sep-
arates into a pair of decoupled equations for the radial
wave functions u&+(r) corresponding to two possible ori-
entations of spin, the term (cr ~ l) being equal to l for

j = I + 1/2 and (E+—1) for j = I —1/2

do = 2Re (A'hA+ B'bB),

hB = —) e *"( brI+ —e *"( bri, e ' 'P'(cos(8)),
l=1

0

hV)+ = hV(:+ lhVr, s, (21)

hA = —) (l + 1)e '"( by+ + le '"'
hq& e ' (P((cos(8)),' l=0-

d'u+ 2p+ —E —Vz —V~ —L�VL-
SQp F2

h2l(l + 1)
ul+ ——0,

2pp hV,
—= hv~ —(&+ 1)hVLs,

2p
dr2 h2

8 —Vz —Vc + (l+ 1)Vi,s—ti'l (l + 1)
2pT

6vc(r) = —f q dqjo(qr)q P~(qp(r)),

=0. + ).p'&&c/&p hp-(q),

These equations are solved (for l = 0 only the first one
is used) to give the phase shifts g&+ and two scattering
amplitudes A(8), B(8), where

2 1 d
hV&s(r) = ——— q dip(qr)rI wPs(q, p(r))7rr dr

A(8) = fc(8)+ . ) (1+1)e '"( +le '~( —(2l+ 1)
2ik l=o

+ ) p'a&Ls/ap |)p-(q)

xe ' 'Pi(cos(8)),

B(8) = . ) e '"( —e '"( e ' 'P,'(cos(8)),
2ik l=1

(16)
Expressions for SA„and hQ in terms of h'A and hB can
be obtained in a similar way although they are somewhat
lengthy.

Equations (21) provide a linear constraint between
variations of the observable quantities and hp„or equiv-
alently (C }.This linear dependence can be written in
the form

d~
=

I
A I'+

I
B I'

2Im(AB')

I
A I'+

I
B I' ' (19)

and where fc(8) and oi are the Couloinb amplitude and
phase shifts, respectively. In terms of A(8) and B(8)
the differential cross section do/dO, the analyzing power

A„(8), and the spin rotation parameter Q(8) are given

by

M

o(q )=op +) C S
m=1

(22)

where o0 is the cross section generated by the density

po(r), and the quantities S = (9o(q )/BC can be
evaluated from equations analogous to Eqs. (21) with a
substitution of hp (q) by (27['Rp/q q )[jp((q —q )r)—
j()((q + q )r)]. Similar expressions can be also written
for the spin observables A.„and Q.

To determine the (C } coefficients we used the g
criterium [42], that is, we found them from the minimum

condition for the quantity

(
2Re(AB')

I
A I'+

I
B I' (20)

Np

X' = ) (o:"'-o-)'/~.'

For an infinitesimal change bp one can obtain where a "~ is the experimental value of o and e is the
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standard deviation at the point q . Data for cross sec-
tions and spin observables were combined into a total y2
sum with N„data points.

A direct consequence of the linear dependence noted
above is that the minimum condition for the g value
results in the system of linear equations for (C

M).b;»&» = d',
k=l

(24)

where

d'=

Np

) S;S»/e
a=1
Np

(o'" —~o )S,/e
a=1

(25)

(26)

Restrictions arising &om the requirement of zero normal-
ization for bp„(r) can be included into the system (24)
by using the Lagrange multipliers technique [21]. This
does not change the structure of the system. The latter
can be exactly solved by inverting the matrix b;p. Thus

&* = ).b,»'d». (27)

By definition, the correlation error in the density is given
by

D-(r ")= ([p-(r) —(p-(~))] [p-(r') —(p-(r'))]) (28)

The statistical error band for extracted neutron density
b,p„(r) is defined as

&S (r) = ([~ (r) —(~-(r))]')'".
It can be expressed in terms of the covariance matrix for
the C coefBcients

b' t-" = ([c —(c )][c —(e )]& .

For statistically uncorrelated data points the latter is
known to be equal to b&&, where the matrix bp~ is de-
fined in Eq. (25). Thus, one has

&~-( ) = ([b~-( ) —(b~-( ))]')"'
= ).jo(q»r) j (qoi )~r'&i»

= ).jo(q»r)io(er)b»i' (31)

To provide a better zero-order term p„(r) an iterative
procedure was carried out. At each ith iteration the main
term was redefined as p = p + bp and a newo(~+l) o(~) (i)

correction bp„'+ was determined &om the y minimum
condition. The entire process was continued until the
desired accuracy of convergence was achieved.

For p (r), we used the neutron density obtained for
a given nucleus with the HF theory with the Skyrme
interaction SkM' [10) including pairing. That interaction
has proved to be very successful in describing various

nuclear properties including the ground-state densities.
Making use of the FB expansion of the HF densities as
p„(r) did not result in any significant difFerences when
ten FB coefBcients were included and Rp = 11 fm. We
will discuss model error associated with the role of higher
harmonics neglected in the FB series in the next chapter.

Other input quantities used in the calculations were
proton densities. We obtained them by unfolding the
charge densities determined from electron scattering [43]
and muonic x rays (see also Ref. [44]). Corrections for
the neutron charge distribution and the spin-orbit con-
tribution were included [36]. The latter was calculated
using proton and neutron spin-orbit densities obtained
&om the HF method.

IV. RESULTS AND DISCUSSION

A. The effective t matrix

First, we present and discuss computational results for
the efFective isoscalar t matrix, which was introduced in
Sec. II as if the first-order optical potential of the form

(tp) was the exact approximation. This t matrix is den-
sity dependent due to the infiuence of the medium (role
of the Pauli principle, binding and correlation efFects in
intermediate states, meson mass change). Its central and
spin-orbit parts were parametrized as in Eqs. (10)—(13),
where the free t matrices t~&(q) and vLos(q) were taken
from Ref. [18] for the energy 650 MeV.

Six adjustable parameters a; (i = 1 —6) were deter-
mined from the best fit procedure providing a minimum
value of y . The latter included data for p- Ca elastic
scattering cross sections [17], analyzing power, and spin
rotation parameter [34] at 650 MeV. The 4oCa nucleus
has been chosen for that purpose because the condition
Z = N in combination with suKciently small contribu-
tion kom the Coulomb potential provides a closeness of
the neutron and proton density distributions.

The point proton density p„(r) of 4oCa, which was an
input quantity in this calculation, was obtained by un-
folding the corresponding charge density [35] including
the neutron charge contribution [36].

The external parameters pl, p2, and p3 were not varied
during the y search. The sensitivity of final g values to
the magnitudes of p2 and p3 was found to be fairly weak.
The values of these two parameters p,2 ——2.0 fm and
p3 —6 0 fm were chosen to be equal to the values of pl
and ps of Ref. [16], respectively. The sensitivity to p, i is
more significant. Results of the fit procedure show that
this parameter basically infIuences behavior of the ratio
p = Re[ted(q, p)]/Im[tc(q, p)] at q & 1 fm . With pi
getting lower, Re[tc(q, p)] increases, i.e., becomes more
repulsive. This enhancement at low momenta transfer is
accompanied by some increase in Im[t~ (q, p)] (i.e., dimin-
ishing in absolute value) meaning less absorption. Hence,
the quantity p being negative grows in its absolute value.
This parameter is known to be responsible for filling in
the minima of the differential cross sections at intermedi-
ate energies. Large negative values of p at small q results
in greater filling. Since the free t matrix gives a poor
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description, predicting too low values in minima, a con-
spicuous modification of t&(q), especially its real part,
becomes necessary. The value of pi was chosen to be
pi ——1.2 fm, thus providing a better (as compared to
pi ——p2) description of the elastic cross section for 4aCa
especially in the first minimum.

In order to make the description closer to experimen-
tal conditions, we included corrections for finite angular
resolution due to binning of the data and for projectile
multiple Coulomb scattering on different nuclei in the
target. Because of the rapid oscillations of the p-nucleus
cross sections with angle, it is better to parametrize the
logarithm of the cross sections, rather than the cross sec-
tions themselves. The convenient form is

ln = ~n(8' —8) + P(8' —8)
a (8')
cr(8)

(32)

where

~a = cr'/a,
2P = cr"/a. —n,

o' and 0" being the first and the second derivatives of
a with respect to 8'. The expression for a(8') should be
averaged over all the directions within the spectrometer
bin angle (2b8). After averaging [21] one has

a,„(8)= a(8) 1+ (a+2P)
(~8)'

b84
(P'+ aP+ n /12)10 (34)

This expression must be corrected for the multiple scat-
tering in the target with the efFective thickness to/cos(8)
(ts ——0.15 g/cm2 in our case). The smearing procedure
gives

a. (8, t) = cr „(8)—exp
~

5 (8')ni
t, 4'i ' (35)

where (2 = 1 —(8)P. For (8), we used the expression
from [45]:

(8') = 0.157 Z(Z+ 1) tX-'(kv)-'

xl (1n.13x10 Z i A tv ),
where k is the proton momentum in MeV/c and v is the
proton velocity in the units of c, i.e., the light velocity.

In the case of Ca those corrections have turned out to
be fairly small. This is basically because the differential
cross sections in the experiment EXP 760 [17] were mea-
sured with very small bin size 0.2 . On the other hand,
the comparatively high proton energy 650 meV and a
smooth general structure of the angular distribution for

Ca were also the reason why the angular averaging,
which determines the corrections, did not produce any
significant change. However, similar corrections in the
case of Pb are somewhat bigger reaching the value of
a few percent.

TABLE I. Parameters of the eKective isoscalar t matrix.

1.065
(MeV fm )

229.8 0.821

a4
(MeV fm )

—32.39

aq

0.942
(MeV fm )

3.638

Absolute normalization of the Ca cross section of
Ref. [17], used in the analysis, has been checked to be
consistent with that of the elastic differential cross sec-
tion for Ca at 613 MeV measured at Saclay [46]. To do
this, a small correction to the t matrix due to the energy
difference was taken into account. This has been done by
scaling down Im[tc (q, p)] at 650 MeV in the proportion
keats/ks5(j where ks$3 and kssa are the incident proton
momenta for the corresponding energies. According to
the optical theorem, this ratio basically describes the ra-
tio of imaginary parts of the t matrices at low q. The
values of the (a;) parameters providing the best fit to
the 4eCa data [34] are collected in Table I.

The central and spin-orbit t matrices in the momen-
tum representation calculated with this set of parame-
ters in the NX center-of-mass system are displayed in
Fig. 1 by the solid lines. The former were evaluated
at 650 MeV for the density p = po, where po

——0.159
fm is the nuclear matter density. The &ee t matrices
of Ref. [18] at the same energy are shown by the dot-
ted lines. Prom this comparison, one can conclude that
significant modifications are required, the largest one is
for Re[ted(q)] at low q. This is a direct consequence of
a poor description of the elastic scattering at 650 MeV
obtained with the 6.ee t matrix, especially in the min-
ima of the angular distribution. This is clearly seen in
Fig. 2, where the results for the cross section da/dA,
analyzing power A.„, and the spin rotation parameter Q
are presented. The data were taken from Refs. [17,46].
The results calculated with the effective and free inter-
actions are depicted by the lines of the same type as in
Fig. 1. The percent deviation between the theory and
experiment d = 200(a'"P' —a ")/(cr'"~'+ a'") %, shown
in Fig. 3, displays in more detail the quality of the to-
tal best fit solution in the description of the differential
cross section. Here, the agreement is mostly at the level
of 10—15% or better in the whole angular range including
positions of the minima.

Returning to Fig. 1, one can. point out that the overall
repulsive contribution arising in Re[tc(q, p)] due to the
medium inBuence has been also obtained in the calcula-
tions [29,32] for the G matrix at energies up to 300 MeV
and the ~ matrix in the Watson formalism for higher
energies [28]. This behavior is also in a qualitative agree-
ment with what has been obtained for the phenomeno-
logical interaction of Ref. [16]. However, in our case, the
enhancement of Re[tc(q, p)] at low q resulting from the
requirement of the best fit description of the elastic scat-
tering data is much larger.

As to Im[tc (q, p)], one can point out that the medium
in8uence results in decreasing of its absolute value, the
total quantity being negative. This means that the imag-
inary part of the optical potential which is determined by
Im[tc (q, p)] in the first-order approximation becomes less



49 EXTRACTION OF NEUTRON DENSITIES FROM ELASTIC. . . 2125

300.0 I I I I ~
I

1

Re t'(q)
5QQ y

I
~

I
e

Re t'(q)

150.0

O

0.0
Cl

I
I

I
I

I
I

I

0.0

E

N —100.0

lY —150.0

I
I

I
I

I
I

I

—150.0

100.0

—50.0

0
-200.0

O

-350.0E

I I s I ~ I

1.0 2.0 3.0
q (fm ')

~
I

I
I

~
I

I

Im t'(q)
~

I
I

I
~

I
I

—200.0 s I i I & I s

1.0 2.0 3.0

q (fm ')

500—
4—

30.0

E
10.0

I
'

I
'

I

7pp Im t (q)

FIG. 1. Real and imaginary parts of the
central t&(q) and spin-orbit tr, s(q) isoscalar
t matrices for NN scattering at 650 MeV.
The solid lines show best St solution includ-
ing medium modiScations [Eqs. (10)—(13),
pe = 0.159 fm ], the dotted lines are the
free t matrices of Ref. [18].
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absorptive. That also implies decreasing of cross sections
for inelastic channels. Such kind of behavior is compati-
ble with the Pauli principle in the sense that the number
of levels, accessible for rescattering in intermediate states,
decreases implying a less negative imaginary part.

It is worth noting that p-dependent terms containing
the coeKcients as, a4, and as in Eqs. (10)—(13) are not
the only ones which represent the medium in8uence. Ac-
cording to this parametrization at the zero density limit,

the normalization factors aq, a3, and as bear part of that
inBuence too. Strictly speaking, they must be also p de-
pendent. Therefore, the total contribution of both terms
in each of the equations (10)—(13) determines the entire
in-medium correction to the corresponding component of
the &ee t matrix. In this respect, the negative sign of a4
coefBcient displayed in Table I does not imply any dis-
agreement with the Pauli principle, as it could seem &om
the 6rst sight.

I I

10 p+ Ca, 650 MeV
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E
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0.0
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FIG. 2. The cross section for elastic
p- Ca scattering (data from Ref. [17]), an-
alyzing power A„, and spin rotation parame-
ter Q (data f'rom Ref. [34]) at 650 MeV. The
curves shown by the solid and dotted lines
were calculated with the t matrices depicted
in Fig. 1 by the lines of the same type.
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FIG. 3. Percent deviation between the experimental cross
section for elastic p- Ca scattering at 650 MeV [17] and the
cross section providing the best Gt solution with the effective
density dependent t matrix.
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In order to examine more thoroughly our spin-orbit
interaction, it is better to turn to the spin observables:
the analyzing power A„and the spin rotation parameter
Q. As can be seen from Fig. 2, the medium corrections
improve the description very substantially providing a
good agreement with the experiment for A„. Obviously,
the data for Q at 650 MeV are not precise enough to
make a critical judgment. This result for A„confirms
the conclusion made in Ref. [28] that within the nonrela-
tivistic approach, it is really possible to achieve the qual-
ity of description of the spin observables comparable to
that obtained in the best classic example —the analyzing
power of 4 Ca at 500 MeV described within a relativistic
model [47].

B. The neutron ckensities

We turn to a discussion of the results obtained for the
neutron density distributions using the effective t matrix
determined as was described above. First, we will demon-
strate to what extent one can recover a neutron density
from the so-called pseudodata using the inversion method
outlined in Sec. III. These data are not a result of mea-
surement, but are created by the density itself within the
same theoretical framework which is used for analyzing
real data. More specifically, we generated the pseudodata
by assigning empirical error bars to the calculated cross
section values and then randomizing them by means of a
random number generator.

When inverting the pseudodata, different shapes of
p„(r) were assumed including the HF densities and Fermi
distributions with difFerent values of shape parameters
corresponding to the rms radii within 0.2 fm of the orig-
inal neutron radius. Two examples of the pseudodata
analysis for Pb are shown in Figs. 4 and 5, where the
extracted neutron densities are compared with the origi-
nal ones. In the first case the pseudodata were generated
by the HF density and inverted with po(r) having the
Fermi shape. In the second case, the Fermi function was
the source and a Fermi-distribution with shifted shape
parameters was used as p (r). The expansion radius Ro

was chosen to be ll fm, the cutoff radius was 15 fm,
and 10 expansion coefficients were included in the cal-
culations, the same values being used in the analysis of
real data. One can see that in both cases the extracted
and original neutron densities are close enough to each
other and are contained within the statistical error band
shown in the plots by the hatched area.

Now, we turn to the examination of real data. The
method for extraction of the neutron densities outlined
in Sec. III was applied to the analysis of the elastic (pA)

0.14

neutron densities of Pb
208

pseudodata, Fermi function input

0.10

E

0.06

0.02

—0.02 I I I I I I

2.0 4.0 6.0 8.0 10.0
r (fm)

FIG. 5. Same as in Fig. 4 but for the Fermi function.

r (fm)

FIG. 4. Comparison of the best fit to pseudodata (the
solid line) with the Hartree-Fock neutron density (the dashed
line) which generated the pseudodata. The statistical error
band for the best fit solution is shown by the shaded area.
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scattering cross sections and analyzing powers measured
for 2 s'2e ' e Pb. As an initial approximation po(r), we
used the HF neutron densities which have been calculated
by us &om the HF method with the Skyrme interaction
SkM', and the pairing included in the BCS approxima-
tion with the neutron pairing parameter G„=20/A. The
proton pairing does not play any role for the closed shell
Z=82. The odd isotope Pb was treated in the filling
approximation, which had been demonstrated to be good
for heavy nuclei [48]. The sensitivity of the final results
to the choice of po (r) was fairly weak, provided the rms
radius corresponding to po(r) was kept fixed. Making
use of the Fermi distribution with the same rms radius
as pe(r) gave usually statistically equivalent results as
compared to those obtained with the HF input.

Ten FB coefficients were included in the expansion of
the correction term bp„(r). The last (10th) term car-
ries the momentum qio

——10m/Re ——2.86 fm, which
corresponds to the wavelength Ago

——2.20 fm. The maxi-
mum momentum transfer attained in the experiment un-
der consideration being 2.91 fm . Separate calculations
with M = 11 terms included and Rp 12—13 fm, thus
keeping the condition qqq & q fulfilled, gave essen-
tially the same results. Nevertheless, the y2 solutions for
M = 10 were more stable.

Another thing worth noting is that in addition to the
isoscalar component found &om the analysis of Ca, we
have tried to determine the isovector part of the effec-
tive t matrix, assuming the same form of parametriza-
tion with six new parameters. The isovector force was
searched simultaneously with the neutron density param-
eters &om an analysis of Pb scattering data, keeping
the isoscalar interaction fixed as it had been determined
&om Ca. In this double fit procedure a switch was
done after every three iterations from a force parame-
ter search to a density parameter search and vice versa.
We found that the best fit solution had a very shallow
y2 minimum with respect to the isovector force param-
eters. The sensitivity to them was rather w ak even in

Pb, thus providing a reason for omitting the i.sovector
p-dependent terms.

In Fig. 6, results for the neutron p„(r) and rnatter
p (r) = p„(r) + p~(r) (p—:p) densities of 2osPb, de-
picted with the statistical error bands, are compared to
the HF predictions. The point proton density with its ex-
perimental uncertainty is also shown in the graph. The
former was obtained by unfolding the charge density dis-
tribution of Ref. [43] with inclusion of the neutron charge
distribution and efFective spin-orbit charge density [36].
Both proton and neutron current densities calculated
from the same HF approach were used to produce the
spin-orbit charge distribution. Because of a considerable
compensation between the terms containing proton and
neutron magnetic moments, the overall spin-orbit contri-
bution has turned out to be small, much smaller than
that created by the neutron intrinsic charge distribution.

It is a common belief that mean field calculations fail
to describe the charge densities of the lead isotopes in the
central region of the nucleus, predicting too large values
at r = 0 [1]. That discrepancy has been the subject of
intensive theoretical studies. The inclusion of long-range

densities of Pb
208

and statistical error envelopes

0.14

I

0.10 p.( r

0.02

-0.02 I I I I I I t I

2.0 4.0 6.0 8.0 10.0
r (tm)

FIG. 6. Extracted neutron and matter densities for Pb
lying in the middle of the corresponding statistical error bands
(the hatched areas). The HF proton, neutron, and matter
densities are depicted by the dashed lines. The proton density
obtained by unfolding the charge density of Ref. [43] is also
shown with its statistical error envelope. The dotted line at
the bottom is for the statistical error band obtained with the
SOG method of Ref. [23].

correlations in the random-phase approximation [49] and
short-range correlations as in Refs. [50,51] results in de-
creasing the occupation numbers for the proton 3sq/2
and 2d3g2 orbitals and thereby slightly improves the de-
scription. The contribution &om the so-called dynamical
pairing correlations [52] does not produce a drastic efFect
as well. However, the analysis [52] and this calculation
show that a good description of p,h(r) for 2osPb can be
achieved within the ordinary HF theory with the inter-
action SkM [10] without explicit modifications of the oc-
cupation probabilities. A good description has also been
obtained with the QLM approach [13]. The infiuence of
the range of the interaction on pd, (r) was investigated in
Ref. [54].

It is worth emphasizing here that the scattering quanti-
ties we consider are basically determined by the isoscalar
variables (i.e., the sum of proton and neutron contribu-
tions). Therefore, our final conclusions about the neutron
density distributions may be sensitive to the quality of
the proton densities used in the analysis. In this respect,
it was important to provide the best currently available
charge densities and unfold them accurately with the fine
features included. Our conclusions on the matter densi-
ties are much less dependent on the input charge densi-
ties.

The statistical error in p (r) shown in Fig. 6 was cal-
culated according to Eq. (31). It encloses all density
distributions (within the limits of our model representa-
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tion of the densities) which would be produced by the
data normally distributed around each measured data
point with a standard deviation. However, not every
curve within the band describes a possible (normalized)
physical solution. In order to judge whether a particu-
lar distribution is compatible with the data, the spatial
correlations defined in Eq. (28) must be taken into ac-
count. The correlation function D(r, r') determines the
most probable deviation of the density p(r) from the best
fit solution at the point r, if p(r') is fixed.

The quantity Ap„(r) associated with p„(r) includes
also statistical errors in p,h(r ) as measured in the com-
bined analysis [43] of electron scattering and muonic x-
ray data. In the inner region, these errors are approx-
imately twice as small as those we have determined for
the matter density from the (pA) data.

Figure 7 shows the cross section and analyzing power
A„ for the elastic (p-zosPb) scattering. Besides the fitting
curves depicted by the solid lines, the results obtained
using the HF proton and neutron densities, and the ef-
fective t matrix are shown by the dashed lines. As can
be seen, the quality of description is very good, perhaps
even better than one could expect. Note that there were
no adjustable parameters in this latter case, the effec-
tive t matrix having been fixed &om the analysis of the
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FIG. 8. Percent deviation between the experimental cross
section for elastic p- Pb scattering at 650 MeV [15] and the
cross section calculated using the HF densities and efFective t
matrix determined from the analysis of Ca data.

Ca data. In order to discern fine features, we present in
Fig. 8 the percent deviation (defined earlier in Sec. III A)
between the cross sections calculated with HF densities
and measured values with error bars beiag included. The
comparison of the theoretical predictions with the exper-
iment both for the proton density of Pb in Fig. 6 and
the elastic cross section in Figs. 7 and 8 provides a criti-
cal test for the effective t matrix determined and proves
the consistency of the approach itself.

The percent deviation for the results obtained with the
fitting procedure is shown in Fig. 9. One can see that the
data are described at the level of 10%%uo or better within
the entire angular range.

The results for ' Pb are qualitatively similar to
those obtained for o Pb. They are presented in Figs. 10—
13. The values of rins radii for the charge r,h [43], proton
r„, neutron r„, and matter r distributions are collected
in Table II. The index HF corresponds to the HF result,
and r„"" is the radius for the unfolded charge (i.e., point
proton) density, the statistical errors for r„and r are
indicated in parentheses.

One can conclude &om Table II that the quantity
Ar~p: r~ rp for Pb is equal to 0.20 + 0.04 fm. This
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I 1 I
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FIG. 7. Cross section and analyzing power for elastic
p+ Pb scattering at 650 MeV (the data are from Ref. [15]).
The solid lines are for results obtained from Gtting the neutron
density parameters with the effective t matrix determined
from the analysis of Ca data. Use of this amplitude and
the HF densities gives results depicted by the dashed lines.
The dotted lines are for the case of using the HF densities
and the free t matrix of Ref. [18].
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FIG. 9. Same as in Fig. 8 but for the best fit neutron
density.
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FIG. 10. Same as in Fig. 6 but for Pb. FIG. 12. Same as in Fig. 6 but for Pb.

value is in a reasonable agreement with the result of Ref.
[55] Ar„„=0.14 6 0.04 fm obtained from the analysis of
elastic p- Pb scattering at 0.8 GeV. The HF result for
this quantity is 0.17 fm. The diHerences between neutron
rms radii for 208pb 20~pb 208pb 206pb and 20~pb 206pb

are 0.017, 0.029, and 0.012 (in fm), respectively, with the

average statistical uncertainty less than 0.060 fm.
Another obvious source of uncertainty in the extracted

densities is associated with the truncation of the FB se-
ries in Eq. (14). The overall contribution of higher har-
monics which are not specified by the existing data is a
model dependent error. By definition, we have
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FIG. 11. Same as in Fig. 7 but for "Pb. FIG. 13. Same as in Fig. 7 but for Pb.
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TABLE II. The rms charge, proton, neutron, and matter radii (in fm) with the statistical errors
for r„and r

Nucleus rch
un

rp
HF HF

n
HF rm

206pb
207pb
208pb

5.490(2)
5.497(2)
5.503(2)

5.445
5.452
5.458

5.439
5.444
5.449

5.596
5.606
5.617

5.534
5.542
5.551

5.626(45)
5.638(41)
5.655(42)

5.555(27)
5.565(25)
5.579(25)

M

b p„(r) = p„(r) —) C jo(q r)
m=1

(37)

Perhaps, the easiest way to estimate this error is to eval-
uate the difference between the theoretical HF density
pH" (r) and its M-term FB series, assuming that the HF
result is a realistic approximation to the exact density.
The latter has been demonstrated in the description of
the p- Pb elastic cross section obtained with the HF
result (Fig. 7) and in the comparison for the proton den-
sities in Fig. 6.

The model error estimated for M = 10 and Bp = 11
fm is shown in Fig. 14 together with the statistical error
band. Only a smooth curve enclosing maxima of ApM (r)
is important. One can see that with ten coeKcients in-
cluded, the model error is less than the statistical enve-
lope b p„(r) in the region r & 6 fm and much less than
p„(r) for r & 11 fm. Generally, the difference between
the entire density and its FB expansion decreases as the
number of expansion coefBcients M increases. However,
for too large M the magnitude of b,p„(r) can increase
significantly if high harmonics unspecified by the data
are introduced.

One can illustrate this point by showing how the sta-
tistical uncertainty b,p„(r) at the origin depends on M,

the number of terms included in the FB expansion. Con-
sequently, for M = 9, 10, 11, and 12 the values Ap„(0)
were 5.6, 5.7, 6.8, and 13.2 in units of 10 fm, re-
spectively. One can see that a large increase in b,p„(0)
begins for M = 11, and the search procedure breaks
down for M & 12. As was said above, the condition
for determination of the highest number of the FB terms
M = Roq „/vr yields M = 10 for q „=2.91 fm ~ and
Ro = 11 fm. The choice M = 10 looks optimal, because
this keeps the statistical envelope narrow enough without
introducing poorly determined coeKcients. On the other
hand, this does not lead to large model uncertainties (see
Fig. 14). This character of the dependence of the sta-
tistical and model errors on M is very similar to what
was obtained in Ref. [7] in the case of elastic electron
scattering on Pb.

For the purpose of comparison, we also employed the
method of Ref. [23] to generate the statistical error en-

velope for p (r) in 2 Pb. The neutron density was
searched in the form

p-(r) = b[p'. (r) + ~bp-(r)] (38)

where bp„(r) is the initial approximation and bp„(r) is

expanded in a sum of Gaussians (SOG):

W

bp-(") = ('~"'~') ') &*(I+2c*'/~') '(exp[-(r —c')'/~']+ exp[-(r+ c')'/~']) (39)

The positions c; and strengths Q, are chosen at random
within the intervals 0 & c; & Ro, 0 & Q; & 1 with Ro ——

11 fm and R' = 12. The width parameter p restricts
the high Fourier components that can appear in p„(r)
Usually, the value of p is assumed to be of the order of a
lobe s width in the single-particle wave functions, that is
typically 1.2—1.4 fm. The strength S of each perturbation
bp„(r) is increased until the condition

(40)

is satisfied at some data point. The coeKcient 6 is reeval-
uated for each perturbation to ensure the correct normal-
ization of p . With a suKciently large number of random
perturbations (we made 50), the error envelope b,p (r)
can be obtained.

To have a good starting approximation for bpo (r), we

used the result of the FB analysis for Pb described

previously. With p = 1.39 fm as in Ref. [23], the envelope
b, p„(r) turned out to be very similar to that determined
using the FB expansion, the difference being only about
10% at the origin. This quantity, obtained with the SOG
method, is shown by the dotted line at the bottom of Fig.
6. The former is narrower than the one obtained in Ref.
[23]. Although, the quality of the fit provided by bpo (r)
is important, we think that the difference is most likely
due to higher statistical accuracy in the elastic channel
in the experiment E855 [15]. On the average, it is 0.7%
for the cross section data, while for the data analyzed
in Ref. [23] it is typically 1—2%. When we doubled the
values of the error bars in Eq. (40) and repeated the
whole procedure with other parameter unchanged, the
resulting statistical band turned out to be about twice
as large, that is much closer to what was obtained in
Ref. [23]. The dependence of b,p„(r) on the width p
was found to be significant. The former becomes larger
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with p decreasing. In the instance of p = 1.0 fm, we
obtained b,p„(r) which was about twice as wide as that
for p = 1.39 fm.

Sometimes the SOG expansion is applied not to b p„(r),
but to p„(r) itself [6]. In this case, b,p„(r) comprises not
only statistical errors of the data, but also uncertainties
associated with model assumptions about higher Fourier
components of the density which are not sensed by the
data. Those components are mostly controlled by the
parameter p in Eq. (39). One can note that in the FB
expansion method used here Ap„(r) refiects only statis-
tical fiuctuations of the C coefficients included in the
expansion. The high momentum components, which are
not specified by the data, are excluded from the FB se-
ries. Being introduced in po through the HF model, they
do not contribute to b,p„(r)

C. The matter and neutron density differences

Here we present the results for the differences between
the matter Dp (r) and neutron Dp (r) density distribu-
tions of the neighboring isotopes ' ' Pb. Generally,
such relative quantities are less sensitive to systematic
errors and can be measured with greater accuracy than
absolute measurements for a single nucleus. This allows
one to study relative shifts produced by the addition of
one or two particles in more detail. In particular, the
density difFerences Dp (r) and Dp„(r) for the isotopic
pairs 2esPb-20sPb, 2esPb-2erPb (shown in Figs. 15—18)
are especially sensitive to the successive addition of the
3pqy2 valent neutrons in creating the closed shell struc-
ture with N=126 if the shell model picture is ass~I~ed.

The results for the quantities r Dp „(r) are also dis-
played. The factor r2, entering the normalization inte-

FIG. 15. The difference between matter densities of
Pb and Pb with its statistical uncertainty shown by the

hatched area. The HF prediction is drawn by the dashed line.
The same quantities multiplied by the factor r are displayed
at the bottom.

gral, was introduced to amplify the surface contribution
and make it visibly more distinct. However, this factor
can also enhance some deficiencies such as oscillations in
the surface area. This peculiar structure does not have
much physical significance. It is less pronounced in the
matter distributions. To a large extent, the oscillations
have come from the charge densities, where they appar-
ently resulted from model assnmptions on the form factor
behavior at high q. The highest FB component included
in the analysis [43] had the half wavelength 0.7 fm, too
small to be directly specified by the data. The unfolding
procedure used to obtain pz(r) from the charge densities
has enhanced the oscillations further.

The statistical error envelopes for the density diKer-
ences, shown in Figs. 15—18 by the hatched areas, were
calculated by accounting for the statistical errors in each
nucleus of a pair. In the case of neutron densities, the sta-
tistical errors in the charge densities were also included
as they were determined in Ref. [43].

It is instructive to see to what extent normalization
uncertainties of the measured cross sections can inBuence
results for the extracted densities. In the experiment un-
der consideration the absolute normalization errors were
&7'. Therefore, we introduced the overall multiplication
factors 0.93 and 1.07 for all the cross section data points
(for Pb) and inverted the data to see the effect. This
dependence turned out to be significant for the densities.
The matter rms radii changed their values within +0.09
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fm, i.e., 2%. Another type of calculations were also
done by varying the absolute normalization to minimize

y . The value 1.037 found &om the search procedure lies
within the normalization uncertainty range.

Although the density distributions and their radii for
individual nuclei depend strongly on the normalization,
the density differences between two isotopes are weakly
sensitive to its precise value if identical normalization
shifts are made for both nuclei. For a 5% shift this is
illustrated in Fig. 19, where the neutron density differ-
ence between Pb and o Pb is seen to be very small
kom that shown in Fig. 18. The sensitivity of the density
differences to the relative normalization uncertainty be-
tween the three sets of data, which was 2 %, has been
found to be much more signi6cant. This is illustrated in
Fig. 19 for the case of a 2% shift between normalizations
of Pb and Pb. It inBuences mostly the amplitude
of the oscillations. Shown in Fig. 19 the sensitivity to the
uncertainties in the measured scattering angle 0.05 is
seen to be of minor importance for the density differences.

The results for Dp „(r) are compared to the predic-
tions of the HF theory with the interaction SkM' and
pairing included. The single-particle contribution &om
the 3pqg2 neutron orbital normalized to two is also shown
(Fig. 16). One can see a significant deviation Rom the

-10.0

I a I ~ I I I ~ I a I

2.0 4.0 6.0 8.0 10.0
-15.0

r (fm)

I I I
I

~ I ~ I ~ I I

208P 207pb
neutrons

I

40.0—
C)

C4

~a~~
Q.

I I I ~ I ~ I I I ~ I

2.0 4.0 6.0 8.0 10.0
—40.0

r (fm)

FIG. 18. The difference between neutron densities of
Pb and Pb with its statistical uncertainty shown by the

hatched area. The HF prediction is drawn by the dashed line.
The same quantities multiplied by the factor r are displayed
at the bottom.

FIG. 16. The difference between neutron densities of
Pb and Pb with its statistical uncertainty shown by the

hatched area. The HF prediction with the parameter for neu-
tron pairing G„= 20/A is drawn by the dashed line. The
dotted curve is for G„= 0. The broken solid line describes
the contribution from the 3pqgq neutrons in Pb normalized
to 2. The same quantities multiplied by the factor r are
displayed at the bottom.
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late the cross sections and spin observables, we used the
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Pb and Pb calculated using a 5'%%uo shift in the absolute

normalization values for both nuclei. This difference is en-
closed by the statistical uncertainties displayed by the hatch
area. It must be compared to that shown in Fig. 18. T
dashed line is for the case of 2/0 difference in the normal-
ization between two isotopes. The dotted curve is the result
obtained with the angle shift 0.05' in the differential cross
sections and analyzing powers for both nuclei.

single-particle picture. It can be attributed to a polariza-
tion effect produced by the 3pqy2 neutrons due to their
substantial presence in the inner region of the nucleus
[53]. The HF result includes a part of the core polariza-
tion, owing to the self-consistency of the mean nuclear
field.

The behavior of Dp „(r) in the surface is mostly de-
termined by bulk properties of the mean 6eld and is not
very sensitive to details of the NN force. Whereas in
the inner region, the density differences depend strongly
on fine properties of the NN interaction and, in the case
of Pb, on the strength of neutron pairing correlations.
This sensitivity is demonstrated in Fig. 16 for two values
of the pairing constant G„= 20/A and G„= 0. From
Figs. 15—18 one can conclude that, on the whole, the
present version of the HF theory describes the differences
Dp „(r) reasonably well. There are some discrepancies
in the description of minor features.

Closing this section, we can note that our computer
code for the y2 fit procedure has been written in such
a way as to make a search of the parameters for the t
matrix and densities on the same basis. It also allows a
switch from one type of a search to another. Normally,
the convergence was very good providing the 10 rela-
tive accuracy in the y2 values in 5—6 iterations. To calcu-

V. SUMMARY

We have presented the approach in which two major
issues are addressed. The first one concerns the medium
modi6cations in the interaction of incident protons with
target nucleons at intermediate energies. The second one
is directed to obtaining the information on the matter
and neutron ground state densities by inverting data for
the elastic p-nucleus scattering with statistical and model
errors in the 6nal results being estimated. Certainly, our
results are model dependent. Truly model-independent
determination of the density distributions is impossible.
Clearly, the statistical error bands should not be under-
stood as embracing all conceivable densities providing fits
of a similar quality. They only show how the corrections
to the HF densities, including low Fourier components
determined by the data, Quctuate due to experimental
error bars. The high-frequency components, being intro-
duced through the HF model, do not contribute to our
statistical error bands.

Using the fact of a considerable compensation between
terms quadratic in the scattering amplitude, we treated
the effective nuclear potential to the first order in the t
matrix and single-particle densities. Medium corrections
to the impulse approximation were included in this first-
order structure by introducing density dependent terms.
The choice of parametrization for the p dependence was
motivated to a large extent by the hypothesis [20] on the
universal renorxnalization of meson and nucleon masses in
the nuclear medium. Using this idea, mass parameters of
the &ee t matrix were treated as p-dependent quantities
to generate the gross structure of the density dependent
terms. The parameters for the isoscalar central and spin-
orbit components have been determined by 6tting the
cross section and spin observable data for p- Ca elastic
scattering at 650 MeV, the single-particle densities being
known very well in this case.

The resulting density modi6cations show an enhance-
ment of the repulsive contribution for the real central
part of the isoscalar t matrix, especially at small q, and
make the imaginary part less absorptive, the latter being
in accordance with the Pauli principle.

The effective t matrix we have obtained can be also
used for the description of inelastic scattering and other
reactions at energies close to 650 MeV. The procedure
could be straightforwardly extended to other energies
within the range 100—1000 MeV where good scattering
data exit.

To determine the neutron and matter densities in
Pb, we have extended the method of Ref. [21]

originally proposed for the extraction of charge densities.
A searched neutron density was presented in the form

p (r) = pRF(r) + hp (r), where the main term pHF(r)
was calculated with the HF theory and the correction
bp„(r) was expanded in the FB series. Measured quan-
tities were linearized with respect to bp /p F, and the
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expansion coefficients were determined from a system of
linear equations obtained &om the y minimum condi-
tion. The inversion procedure gives the so-called error
matrix allowing one to calculate the density correlation
matrix and statistical error band for the densities. The
typical statistical uncertainties in the matter densities
were about 5.6 x 10 fm at r = 0, vanishing rapidly
away from the center. The errors in p„(r) are approx-
imately 17% larger (at the center) due to incorporated
statistical uncertainties in the charge densities.

Another source of errors in the densities is the unknown
behavior of measured quantities at q beyond q „, or
equivalently an unknown contribution of higher harmon-
ics not included in the FB series. We have estimated. this
unavoidable uncertainty with the help of theoretical den-
sities and found that with 10 coefficients included and
the expansion radius 11 fm (corresponding to A;„=2.2
fm) this model error is generally less than the statisti-
cal uncertainty for r & 6 fm, being much less than the
density itself for r & 11 fm.

We also examined the sensitivity of the results to abso-
lute normalization of the cross sections by changing the
normalization factor within the experimental uncertainty
range k7 %%uo. This dependence has been found to be sig-
ni6cant for the densities. However, it was not that im-
portant for the density differences between two isotopes
if identical changes of the normalization were done for
both of them. Calculations with the normalization fac-

tor being free to minimize y resulted in a value (1.037)
which is enclosed in the uncertainty range. We have also
estimated the sensitivity of the density differences to the
relative normalization uncertainties 2 % and errors in
the scattering angle 0.05'.

In the HF theory we used the Skyrme-type interaction
SkM' and the constant of neutron pairing was chosen
to be 20/A. On the whole, the results for the density
distributions, their differences in isotopic pairs, and rms
radii are described by this version of the HF theory fairly
well.
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