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Relativistic description of electron scattering on the deuteron
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Within a quasipotential framework a relativistic analysis is presented of the deuteron current.
Assuming that the singularities from the nucleon propagators are important, a so-called equal time
approximation of the current is constructed. This is applied to both elastic and inelastic electron
scattering. As dynamical model the relativistic one boson exchange model is used. Reasonable
agreement is found with a previous relativistic calculation of the elastic electromagnetic form factors
of the deuteron. For the unpolarized inelastic electron scattering effects of final-state interactions
and relativistic corrections to the structure functions are considered in the impulse approximation.
Two specific kinematic situations are studied as examples.

PACS number(s): 03.65.Pm, 25.30.Bf

I. INTRODUCTION

Electron scattering processes have been crucial in ex-
tracting detailed information about the nuclear interac-
tion. Various exclusive [1—3] and inclusive [4,5] breakup
reactions for the few nucleon systems have recently for
example been performed at moderate momentum trans-
fer, where separations of the longitudinal and transverse
response functions have successfully been achieved. The
deuteron, as the most simple nuclear system, is of spe-
cial interest because exact calculations are in principle
feasible for this case. Such a system may serve as test-
ing ground for theoretical models describing the nuclear
dynamics and the e.m. operators used to study these
reaction processes. In most of these studies it is implic-
itly assumed that the constituents of the system behave
nonrelativistically and that the e.m. interaction can be
treated in an independent way. With increasing momen-
tum and energy transfer effects of relativity are expected
to play an important role and a relativistic description
should be essential in these kinematic regions. Moreover,
in view of gauge invariance a consistent treatment of the
e.m. interaction is called for.

In this paper we discuss a &amework which is well
suited for a relativistic analysis of both the elastic and
inelastic electron scattering off the deuteron. It is based
on the relativistically covariant 6eld theoretical Bethe-
Salpeter equation approach. Gauge invariance is satis-
6ed through the Ward-Takahashi identity. Assuming a
theoretical description in terms of nucleonic and mesonic
degrees of freedom the elastic e.m. properties have al-
ready been studied. Within a one-boson-exchange (OBE)
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model [6] a consistent relativistic treatment of both the
e.m. current and the nucleon-nucleon interaction can
be realized [7], including also meson exchange current
(MEC) contributions from the perp and uep currents
[8]. In the actual calculations a relativistic quasipoten-
tial approximation of the Blankenbecler-Sugar-Logunov-
Tavkhelidze (BSLT) has been used.

The disintegration experiments of the deuteron yields
additional information as compared to the elastic e.m.
scattering process. A larger kinematic region can be
tested and the theoretical models are more complicated
due to final-state interaction (FSI) and other MEC con-
tributions as is the case in elastic scattering. Another
point of interest is that, depending on the type of exper-
iment, the cross section can be separated in more than
two structure functions. The inclusive experiment is de-
scribed by the longitudinal Bl, and transverse Bz struc-
ture functions. For the exclusive experiment studied here
an additional structure function Bz I, is measured, which
is an interference between the longitudinal and transverse
components in the current operator. Because this struc-
ture function depends on other reaction processes as RL,
and R~, new information can be obtained.

In our calculations complete knowledge of the FSI and
the deuteron wave function is required. As mentioned
earlier we use the OBE model of Ref. [6]. Although the
complete model can be studied we use here a quasipoten-
tial approximation to it, where both particles are treated
in a symmetrical way. This BSLT approximation [9,10]
was also used in the model of the elastic form factors.
Here we will use the same approximation for the initial
and final states, but use a diferent approximation for the
nucleon propagators occurring in the e.m. vertex. We as-
sume that only a relative energy dependence is in these
propagators and not in the two-nucleon vertex functions.
As a result the relative energy dependence can explicitly
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be integrated out. Because the BSLT choice is used for
the nucleon states this is an equal time (ET) approxima-
tion to only the current operator. To examine the sen-

sitivity of the predictions on such a ET prescription for
the e.m. current matrix elements we calculate the e.m.
form factors in the elastic case. Comparing to earlier
calculations [8] we find only small differences. The ET
choice has the advantage that it can also be extended in
a systematic way to describe the case of inelastic electron
scattering. In the full Bethe-SaIpeter theory a conserved
deuteron current can be constructed (see Refs. [7,11]),at
least for the case of strong form factors at the meson-
nucleon vertices, which depend only on the momentum
of the meson. The same can be achieved in a systematic
way in the ET approximation; i.e., MEC contributions
can be constructed for the breakup reaction to ensure
current conservation.

The paper is organized as follows. In the next two
sections we summarize the relevant expressions, charac-
terizing the inelastic electron scattering processes, and
describe the dynamical model used in this work. In par-
ticular, we present a new fit in this model to the experi-
mental phase shifts, to discuss the efFect of including the
negative energy states. In Secs. IV and V the relativistic
impulse approximation and the elastic e.m. form factor
calculations are described in the ET approximation. Sec-
tion VI deals with the formalism of the e.m. breakup of
the deuteron in this approximation. In all these calcu-
lations a fully relativistic e.m. current operator with on
shell form factors is used. In Sec. VII two kinematic
situations are studied using this relativistic formalism.
For the conventional nonrelativistic (NR) models differ-
ent forms of e.m. operators have been constructed in the
literature. These models difFer predominantly in the use
of Fi or GE for the e.m. nucleon form factors and the dif-
ferences are obviously of relativistic order. We compare
these predictions with our fully relativistic analysis and
show that in the kinematics studied the predictions can
be very difFerent. Most of the difFerences can be traced
back to the choice of the e.m. operator. Although the
experiments are at moderate momentum transfer, large
relativistic efFects are in particular found in the interfer-
ence structure function RTL„showing the failure of the
NR models discussed here. The next leading order cor-
rection to these operators is given and shown to represent
reasonably well the relativistic predictions, at least in the
kinematics considered. In the kinematic situations dis-
cussed in this section the MEC contributions which are
needed to ensure gauge invariance are of minor impor-
tance. In a next paper we will discuss in detail our MEC
calculations in this relativistic model.

analysis can readily be extended to the case of polarized
scattering.

For definiteness, let us consider the breakup of a
deuteron with total momentum P by an electron into a
free neutron-proton (np) pair, characterized by the four
momenta p„= (p„,E„) and pz

——(pz, Ez), respectively.
In the one-photon exchange approximation, the differen-
tial cross section in the laboratory system, being the rest
frame of the deuteron, i.e., P = (0, MD), can be written
as [12]

e4
xb (k+ P —k' —P') ~g„'J"~, (2.1)

with C„z —— M~/(E„Ez) and where j„' is the elec-
tron and J" = (f ~

Jd
~
i) the deuteron electromag-

netic current matrix element between the initial and final
states of the nuclear system. The total four-momentum
of the np pair is assumed to be given by P', while q
is the four-momentum of the virtual photon satisfying
q„= k„—k„' = (q, w), k&

——(k, e) and k„' = (k', e') being
the four-momenta of the incoming and scattered electron.
Momentum conservation at the photon-deuteron vertex
gives P + q = P'. The normalization of the outgoing np
pair state is such that when the final-state interaction is
neglected it is given by (p„,p„~ f) = u(p„)u(p„), u be-

ing Bjorken-Drell spinors. In Eq. (2.1) ) indicates av-

if
eraging and summing over both the electron and nuclear
polarizations in the initial and final states respectively.
An electron and hadronic current tensor

g„=Qj„' j„', W„=C„p) J„'J„,
if if

(2.2)

can now be introduced such that ) ~j„'J"
~

= g„„W"".
if

The expression for rl„„ is well known [12] and is given in
the ultrarelativistic limit (m, 0) by

(k„k„'+ k„k„' —g„„k k').
2m2

(2.3)

Introducing the relative momentum p' = (pz —p„)/2 of
the np pair and integrating over P' yields for the cross
section

II. DEUTERON STRUCTURE FUNCTIONS

In this section we summarize some useful formulas de-
scribing the electrodisintegration process of the deuteron.
The conventions of Bjorken and Drell [12] are used. We
confine ourselves in this paper to the description of unpo-
larized electron scattering on an unpolarized target and
follow closely the work of Donnelly and Raskin [13]. The

m2 e4 dsk'dsp'
do. = ' — b(M~ + (u —E„—E„)rl„W"kdq4 2~ s

(2 4)

At this point the concept of the structure functions can
be introduced. We may choose a coordinate system,
where g is along the z axis, while the y axis is de-
fined along k x k'. Let us now define in this laboratory
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frame J~ = p~ (J 6 iJ„), and use current conserva-

tion q. J = 0 to eliminate the longitudinal third compo-
nent Js of the current in favor of the charge Js ——w/q Jo.
With the help of Eq. (2.3) the contraction can be written
in the form

gpv V0 (VLRL + vTRT + vTTRTT + VTLRTL) p

(2 5)

with vp = 4EE' cos 28, , 8, being the scattered electron
angle. Moreover, the electron-kinematic factors are given

2 2 21 1~q

2

vTL ——~ ~2 —~2 + tan 28, . The nuclear structureq q 2 1

functions R can be expressed in the matrix elements of
the various current components as [13]

RL = C„,lJ, l',

(IJ+I'+ lJ-l')
RTT = 2C„„Re(J+J ),
RT'L = —2C„~Re [Jo (J+ —J )] .

It should be noted that C„p can be absorbed in the
Bjorken-Drell spinors occurring in the e.m. current ma-
trix elements. The resulting spinors become essentially
those defined by Kubis [14], described in Appendix A.
In the remainder of the paper these spinors will be used.

2
Introducing the Mott cross section oM tt ———

4
—'vo, withq4 e

the fine structure constant given by n = e2/(4m), the
cross section can be written as

Jc.m. g v J (2.8)

where Z„describes the boost between the laboratory
and c.m. frame. An explicit expression for the Lorentz
transformation can be found using the relation P„"'
8„"P„'with

(Ql+g 0 0 —~g
0 1 0 0
0 0 1 0

0 0 Ql+rl)
(2.9)

where we have

v' +
p np

(2.10)

Since q is along the z axis, the transverse compo-
nents of the deuteron current are not affected by the
Lorentz boost. For the charge component we get Jo'
gl + qJo —~iq Js. Together with current conservation

q J = q' J' = 0, we find a direct relation between
the charge components of the current in the two frames,

be defined as E„p: q + M~p Since the final-state

interaction of the final np pair can most readily be deter-
mined in its c.m. system [P" ='(0, M„„)],we prefer
to express Eq. (2.7) in terms of the structure functions
R'™,evaluated in this frame. To make a distinction
between laboratory and c.m. variables we use the con-
vention that all variables in the c.m. frame are labeled
by c.m. The relation can easily be found from

da = oMott (vLRL + vTRT + vTTRTT + vTLRTL)
x b(Mii + u) —E„—E„)ds'dA,'d p' (2..7)

~p Jc.m.

D
(2.11)

This is still a general expression, except that current con-
servation of the hadronic current is assumed.

All the quantities in Eq. (2.7) are determined in the
laboratory frame. Considering the total four momentum
of the np pair P' = (q, E„~) (with q = p„+ p„and
E„„=E„+E„) an invariant mass M„~ of the pair can

I

We now turn to derive the differential cross section de-
scribing the exclusive d(e, e'p)n and inclusive (e, e') reac-
tions. In view of the Bjorken-Drell covariant normaliza-
tion of the free np spinors, the transformation property
of the C„p coefBcient and the invariant volume element
d p™/E„'; =d 'p'/E 'we may rewrite Eq. (2.7) as

& = ~Mott (VI, RI, + vTRT + VTTRT7 + VTLRTL) b(ED '+(u' —2E'I™)ds'dO', d p"

where the structure functions can be expressed in the corresponding observables in the c.m. system

(2.12)

(M„p). . . (M „lRL=
l

"l RL, RT=RT™,RTT=RTT, RTL=
l

"lRTL(MD) ' ' ' (MD)
(2.13)

The exclusive reaction d(e, e'p)n is represented by a five-
fold diH'erential cross section. In view of the invariant
volume element we immediately find from Eq. (2.12)

I

where we have absorbed the Jacobian J into the defini-
tions of the exclusive structure functions R:—JR . For

gglC. m.
the Jacobian we have J = "&&, &p". .E„'™with

d 05
P

d 'dO'do' c M~qt vLRL+ vT RT
Ic.m.

dO'
P dEpl

+Ic.m. dgc. m.
pl

+VTTRTT + VTLRTL (2.14) v'1+i' 0 1+& p' )
(2.15)
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Hence, in principle, the unpolarized exclusive reaction
can be calculated by determining the four structure func-
tions. For the (e, e') process the integration over the mo-
menta of the final np pair has to be performed. This
is actually done in the c.m. kame of the np pair. In-
tegration over the relative momentum p" yields the
inclusive (e, e') cross section (in the laboratory frame)

0Mott ('UL+L + VT+T), (2.16)

where the inclusive structure functions R are defined by

1

R = 2~ R —p" E'™dcos 0"
—1

(2.17)

The momentum p"' is determined by the energy con-
serving b function in Eq. (2.12), i.e. , from E',

2 (E& + u' '). The contributions to the inclusive
cross section from R~T and Rz I„which are proportional
to cos2(t)" and cos(t)™,respectively, vanish due to

I

the P" integration. In Sec. VI we will discuss this
. dependence in more detail.

III. FORCE MODEL

In determining the nuclear structure functions we in
principle need to know the deuteron vertex function and
the half off-shell nucleon-nucleon (NN) t matrix. The
nuclear interaction used by us is based on the one-boson-
exchange (OBE) model. Following Fleischer and Tjon
[6] it is assumed to be described by the exchange of

p, ~, )7, s (or (7), and b mesons. A strong meson-
nucleon form factor of the monopole type E(p2) = &,
is used to regularize the large momentum behavior.
%ithin the relativistic field theory two-particle scattering
can be described by the scattering t matrix P, which sat-
isfies the Bethe-Salpeter equation. The inhomogeneous
Bethe-Salpeter equation for the t matrix has the form

P(p', p; P) = V(p', p) — d kP(p', k; P)Sg(k, P)V(k, p)

= V(p', p) — f d kV(p', k)S2(k, P)k(kp; P), (3.1)

where

S (p, P) = S( )(p, P)S( )(p, P)
= (-'g+ j((+ Mrv) (2g —P+ MN) G(),

(3 2)

with Gp ——[( 2 P+p) M~+i s] [—(2 P p) M~+i—s]—
In Eq. (3.2) S(")(p, P) is the free propagator of the nth
nucleon. The t matrix also determines the deuteron ver-
tex function Ck& (p, P) (where M is the polarization(M)

of the deuteron), corresponding to the residue at the
deuteron bound state pole at P = MD. For P = MD
we have

(t)(p', p; P) = ) '
2

' + regular terms.
C'L™) (p', P)4D (p, P)

M

(3.3)

Alternatively, 4D satisfies the homogeneous equation

OD (p, P) = — d kV(p, k)S2(k, P)4~ (k, P)

(3.4)

Although a field theoretical Bethe-Salpeter analysis is
in principle possible for the case that V is given by the
OBE model, calculations are highly nontrivial because of
its analytic structure and computational complexity. To
simplify this we use a relativistic quasipotential approxi-
mation. In the quasipotential framework the two-particle
propagator is replaced by one where the relative energy
variable is constrained (for a review see [15]). Here we use
the choice which treats the two nucleons in a symmetric

way [9,10]. It is given by

G. ~ i~&(p, )GBs" = i~a(p, ) „(3.5)

where E = 2P() and E~ = gM&~ + p2. In this approxi-

mation the full two-particle propagator S2, contain-
ing the spinor structure (see Appendix A), is given by

SBSLT (1g + y + M )(1)(1g P + M )(2)GBsLT

g)S(1)(p P)s(2)(p P) (3.6)

In this approximation the inhomogeneous Bethe-Salpeter
equation (3.1) simplifies to

k(pp';P) =('(Pp')+, , Jd'kk(P, k;P)

x S,""T(k,P)V(k, P'), (3.7)

where p, p', and k are the four-vectors p, p', and k, sub-

ject to the condition that their fourth component van-

ishes in the two-nucleon c.m. kame. To reconstruct the
oK-shell scattering wave function needed in the study of
FSI eKects a partial wave representation is used for the
full NN amplitude. Following Ref. [6], the helicity basis
is used. The representation is brie8y discussed in Ap-
pendix A. The on-shell amplitude is simply obtained by
taking p = p' with QP2 = ~s = 2E& Equation (3.7.)
can be solved in a partial wave analysis. For details we

refer to [6]. Because the quasipotential approximation
is used, Eq. (3.7) reduces essentially to a coupled set of
one-dimensional integral equations. Besides the physical

(+, +) positive energy states, also (—,—) states and even
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FIG. 1. The phase shifts for the BSLT
equation as a function of the laboratory en-
ergy for the fits given in Table I. The solid
lines are the calculated phase shifts for fit B
with the negative energy intermediate states
included. The dashed and dot-dashed lines
correspond to fits A from Ref. [6] and B, re-
spectively, where only positive energy inter-
mediate states have been kept. The data are
from Ref. [16].
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and odd combinations of the (+, —) energy states occur
[14] .

Starting from the original fit of Ref. [6] (set A) for only
positive energy spinor states, the meson-nucleon coupling
constants g, and gs were adapted to the case that all
the spinor states are included to get a reasonable fit to
the experimental phase shifts of Amdt [16). The result-
ing phase shifts up to J = 2 are shown in Fig. 1 (set
B), where the spectroscopic notation + lq has been
used. For comparison the results of fit A are also plot-
ted. To see what the effects are of the negative energy
spinor states, we have switched these states o8', keep-
ing the same strength for the coupling constants. The
results are shown as the dot-dashed lines. Finally, an at-
tempt was made to vary the meson coupling constants for
the case of only positive energy states to reproduce the
phase shifts as obtained with all spinor states included.
We indeed obtain phase shifts (set C) which are not dis-
tinguishable from set B in Fig. 1. The sets of coupling
parameters are given in Table I.

IV. IMPULSE APPROXIMATION

p/a+ pya+pr
P

p/a+pea) ya+pr
P

p/a p(&) p'/a —pr p/a- pya-pr

(a)

In order to construct a quasipotentiai approximation
for inelastic electron scattering we start with the current
operator as given in the Bethe-Salpeter formalism. The
contributions to the current operator in the impulse ap-
proximation (IA) are given by the Feynman graphs shown
in Fig. 2 and Fig. 3 in the case of inelastic electron scat-
tering. In the contributions (a) and (d) [(b) and (c)] in
Fig. 2 the photon couples directly to the proton (neutron)

TABLE I. The coupling parameters for various fits. Fit
A corresponds to the parameters used in Ref. [6]. In all
fits we have g /4s. = 14.2, g~ /4s. = 0.43, g~ /g~ = 6.8,
g /4s = 11.0, and g„/4s' = 3.09 where the cutofF mass is
A = 1.5M~.

p/a-

p/a+pea)

p'/a-pr
n

p'/a+pr P

p/a p(&) p'/a-pr
n

P
pya+pr

A
B
C

g. /4s.
7.34
7.60
7.30

g~s/4s.

0.33
0.75
0.55

(c)

FIG. 2. The PWIA (a) and (b) and the Born (c) and (d)
contributions to the deuteron current.
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P/2+p( P'/2+ p'

P/2-p(') P'/2 —p'

gq
P)a+),(') ) p)p, p

P/2+p(2) P'/ +p'

P/2- P'/2 —p'

P/2+p( ~ P'/2+p'

) n

the contributions, where the outgoing nucleons interact
after the virtual photon has been absorbed. These are
the so-called final-state interaction (FSI) contributions.
In our calculations we will absorb the Born contribution
in the FSI contributions. As is seen &om the figure the
FSI is expressed in terms of the half-off-shell NN t ma-
trix P. It satisfies the inhomogeneous equation given in

Eq. (3.1). Including the Fermi character of the nucleons,
the free np pair with total momentum P' and relative
momentum pf is given by the antisymmetric combina-
tion of two &ee Dirac spinors with helicities A„:

P'/2-p' P/2- P'/2-p'

'! = u~, (-.'P'+pf)u& ( P pf)~ (4.1)

FIG. 3. Feynman diagrams corresponding to the IA contri-
bution to the deuteron current with FSI included.

which is knocked out without any interaction with the
other nucleon. These contributions are called the plane
wave impulse approximation (PWIA) and the Born term,
respectively. The set of graphs in Fig. 3 corresponds to

I

where A is the antisymmetrizer. As mentioned before we
use the Kubis spinors. Since the outgoing particles are
on shell, we have to satisfy the two conditions

I I
py . P = 0, Pp —El p, +p + El p p~.Py 2

(4 2)

The PWIA and FSI contributions can be combined by
introducing the scattering wave function for the two nu-
cleons,

4„(pf,p';P') = (pf, P'! [4«& (p' —pf) + Q (pf p P )s2(p', P')] (4.3)

where (t„„satisfies Eq. (3.1), subject to the condition thai both outgoing particles are on mass shell. As a result, the
current operator in the IA as represented in Figs. 2 and 3 can be written in the form

2.M ) . d'p'~-. (pf P' P')I'."(~)S'*'(p'*' P)~~(p(*), P),
27l Q i=1

(4.4)

where p~ ~ = p' —
2q and p~ ~ = p' + 2q. Because of

four-momentum conservation we have P' = P + q. For
the pNN vertex for the kth nucleon we take

2 N
(4.S)

C' &(p p;P) = 4„„(p,p', P)S, '(p', P). (4.6)

From studies of the two-nucleon functions 4 „and 4~
[17] a rather smooth behavior is found in the relative en-

ergy pp variable. Therefore we assume that an expansion
of the vertex functions in Eq. (4.4) around their relative
variable pp = 0 point is reasonable in practical calcula-
tions. Keeping only the lowest order contribution and
assuming that the resulting 4's can be taken to be the
BSLT vertex function, we get for the e.m. current oper-
ator

with F„=F + w3 F„. In the actual studies we as-
sume that the e.m. nucleon form factors F„can be de-
scribed by their on-shell form. To obtain a similar form
for the current matrix element as in the elastic case we

may introduce the corresponding scattering vertex func-
tion

2

(
)~4 ) f d p'O„~" (p';P')

'=1

XS (p' P')I'(*)S(*')(p(') P)@ sLT(p(*).P) (4 7)

Since the only pp dependence is in the nucleon propa-
gators we may carry out the pp integration analytically.
In Appendix B the explicit formulas of the propagator
structure are given. The above approximation is essen-
tially an equal time (ET) approximation to the current
operator, i.e., with zero relative time.

I et us consider the covariance aspects of the quasipo-
tential description. Under a given Lorentz transforma-
tion 8 we have

V(k, p) = A(l:)V(l: k, l: p)A '(l:),
S(')(p, P) = A(*)(l:)S(')(l..-'p, l:-'P)A(*) '(l:),
4L)(p, P) = A(2)4D(l 'p, f' 'P),

P„(k,p, P) = A(l )P„„(L k, f' p, l P)A (f-),
(4.8)

with A(l:) = A( ) (l')A( ) (l:), where A(') (l:) is the cor-
responding boost operator in the Dirac space of the
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A (E)I' '
(q)A

' (2) = 8 "I'(' (8 'q), (4.9)

ith nucleon. Because the BSLT deuteron and contin-
uum wave functions transform in a similar way as the
Bethe-Salpeter ones, the transformation property of the
deuteron current for the quasipotential case is the same
as that of the relativistic field theory case. Since

in the elastic case to

2

q. J =
~ ) d kf 1'p9 ~(k, P')

27I Q i=1

x V(k, p'), Fi' S2 (p, P)C D (p, P). (4.12)

we may conclude that the deuteron current given by
Eq. (4.7) indeed transform as a four-vector.

We close this section with some remarks on current
conservation. As noted previously, for elastic electron
deuteron scattering the current operator as defined in the
Bethe-Salpeter formalism is conserved, provided the ker-
nel of the Bethe-Salpeter equation satisfies a local prop-
erty. One of the crucial ingredients in showing this is that
the pNN vertex satisfies the Ward-Takahashi identity

[s" (p'*' P') —s'*' (p P)] (4 1o)

The analysis can readily be extended to the case of in-
elastic electron scattering. Note that in view of Eq. (3.1)
the scattering wave function Eq. (4.3) satisfies the homo-
geneous equation

The main difference with the case of elastic electron scat-
tering is that the final two-nucleon state is different &om
the initial state and that the e.m. nucleon form factors
in the commutator also contain in this case in addition
to the isoscalar also an isovector part. If the final state
is an I = 0 state the form factors are isoscalar and the
commutator vanishes as for elastic scattering. In breakup
reactions however also the I = 1 channel is present in the
final state, yielding a nonvanishing isovector contribu-
tion. Consequently MEC contributions should be added
to Eq. (4.12) to make it divergenceless. These will be
considered in detail within the quasipotential approach
in a forthcoming paper.

V. ELASTIC SCATTERING IN THE ET
APPROXIMATION

@-u(px p'P')s3 '(p' p')

d k4„p(py, k; P') V(k, p'). (4.11)

Substituting the Ward-Takahashi identity in Eq. (4.4)
and using Eqs. (3.4) and (4.11) leads in the same way as

The elastic deuteron current has precisely the same
form as Eq. (4.7) except that 4 —i 4D. It is worth
noting that the deuteron current for elastic scattering
is conserved in the ET approximation at the level of pos-
itive energy states. This can be seen as follows. Keeping
only the positive energy state contributions we get &om
Eq. (4.7)

2
JiA d3k d3pOBsLT (k. Pq) SBsLT (k pt ) ) V(k "k) Q(k) SBsLT(p p) CkBsLT (p. P)

64x5Mg) i=1
(5.1)

since I/iver f dpos3(p, P) is equal to S2BsLT(zp, P) for positive energy states. Because now only the isoscalar parts of
I

the form factors Fl' contribute to the current matrix elements for elastic scattering and these parts commute with
the potential V, we may indeed conclude that Eq. (5.1) is divergenceless.

Since the normalization condition of the deuteron wave function is related to current conservation, we should expect
the correct normalization only for positive energy states. The normalization condition for the BSLT vertex function
is given by

& ~pi
D

(5.2)

This can readily be verified to hold. Using the identity

BP S,(P, P) = '[S()(P,P)7()S,(P, P)+ S()(P,P)~()S,(P, P)]
p 2

(5.3)

we get for the ET current matrix element Eq. (4.7) in the limit q m 0

d'pC'D" (J» p) ~p S3(»p)@I)" (p ) (5.4)

which is indeed identical to Eq. (5.2) provided that only the positive energy states are kept. It should be noted that
current conservation for the more general case can in principle be restored by adding an effective two-body current
to Eq. (5.1) to cancel the four-divergence of the IA current matrix element. Because the violation is at the level of
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the negative energy state contributions, the correction is of relativistic order.
The deuteron current (4.7) as discussed in the previous section is obviously different from the version studied in

[8], where the BSLT two-body propagators were used for both the initial- and final-state propagators. Here we have
kept the propagator structure and the po integration is performed only over the propagators, since we have implicitly
assumed that the po dependence may be neglected in the vertex functions. We now compare the elastic electron
scattering results as obtained with the two approaches. The calculations in the ET approach proceed in exactly the
same way as in [8,18]. Using the helicity framework (see Appendix A) we get for the current matrix element

(P', M'
i 1„ i

P, M) = dk dkk dO„) ) ) P, , (k')S~, i, (k')I'~-I - S „(k)P„"(k), (5.5)
nn' m, rn' p, p'

( S++ 0 0 0
0 S 0 0
0 0 8, S,

I, 0 0 S..' S.'. )
(5.6)

where we use the notation m = (Ai, A2, p), m
(Ai, A2, pj, with A; being the helicity of the ith nucleon
and p the quantum numbers of the rho spin of the two-
nucleon state. The angular quantum numbers are char-
acterized by n = (J,M, L, S).

The current matrix elements are evaluated in the Breit
kame. Both initial and Anal states are boosted to their
c.m. frame. On the p-spin basis ~++),

~

——), ~e), and ~o)
both propagators in Eq. (5.5) can be written in matrix
form

states results in a good agreement between the two ap-
proximations. The results for the electric form factor A
and the magnetic form factor B are shown in Fig. 6 using
the ET approximation. In the calculations of the (pzp
and usp) MEC the BSLT propagator has been used in-
stead of the ET one. They only difFer (see Appendix A)
for negative energy states. Calculations in various kine-
matic situations show that such a replacement does not
affect the MEC results noticeably. The complete ET cal-
culations of A yield essentially the same results as those
with the BSLT approximation, except for some small dif-
ferences at high momentum transfer. For the magnetic
form factor the results deviate only in the dip region.

10

For the single-nucleon propagator we have S++

S (k')]/2, and S, = S, = [S+ (k') —S (k')]/2. The
two-nucleon Green function S2 (k) can also be written
in the form (5.6) with S++ ——S2++(k), S = S2 (k),S„=S = [S2+ (k) + S2 +(k)]/2, and S, = S, =
[S2 (k) —S2 (k)]/2. For the explicit form of these
propagators we refer to Appendix A. We note that the
matrices are no longer diagonal as is the case for the
choice made in [8] where the BSLT propagators are used.

In Fig. 4 are shown the results for the electric form
factors F~ and Fq. The dashed line and the dot-dashed
line give, respectively, the results when all components or
only positive energy states in the deuteron vertex func-
tion are included. We see that only at high momentum
transfer the negative energy components contribute no-
ticeably to the form factors. For comparison also are
shown the results for the BSLT reduction as discussed
in [8]. In both calculations the Hohler et al. [19] pe%
form factors have been used. We see that the dip in the
charge form factor F~ is sensitive to the model used. At
low momentum transfer the models give results in good
agreement with each other. Only at high q the results
differ. In Fig. 5 are displayed the results for the mag-
netic form factor FM. Negative energy components in the
wave function yield large contributions to the form factor
in the dip region. When these components are included,
the position of the dip is shifted to higher momentum
transfer. The two quasipotential reductions give differ-
ent results when only positive energy states are taken
into account. However, inclusion of the negative energy

10
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FIG. 4. The charge form factor F& and the quadrupole
form factor F~ in the relativis'tic impulse approximation using
the ET and the BSLT prescriptions for the deuteron current.
The data are from Ref. [20].
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FIG. 5. The same as Fig. 4, but for the magnetic form
factor I"M.

FIG. 7. The same as Fig. 6, but for the tensor polarization
t2s. The data are from Refs. [20,23,24].

The dip position in the ET approximation is at too low
momentum transfer as compared to the data. Since the
dip region is sensitive to the MEC coupling constants, no
specific conclusions can be drawn &om this. In particu-
lar, adapting the unknown ~op coupling constant one can
readily reproduce the experimental data. Also the tensor

polarizations t2p are similar in both calculations. They

agree with the experimental data (Fig. 7). At q ) 4 fm

the predictions of the ET approximation are somewhat

above the results of the BSLT approximation, which is

due to a lower value of the dip in the charge form factor.

VI. ELECTROMAGNETIC BREAKUP OF THE
DEUTERON
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We now turn to describe the procedure to calculate
the structure functions for inelastic electron scattering.
There are two terms which are calculated separately. One
is the PWIA and the other one is the FSI contribution.
To determine the current matrix element we need to know
the isospin structure. For the free final state we have both
isospin I = 0 or I = 1, whereas the deuteron is an isospin
I = 0 state. Clearly, the isospin has to be chosen for a
given total spin S' of the two-nucleon system in accor-
dance with the final state being totally antisymmetric.
Since the outgoing nucleons are on mass shell we have
the conditions Pp El p+p +El+ p and py P' = 0.
In the following we consider the e.m. current matrix ele-
ment with the final np pair in a total spin (S', Ms) state.

io
A. PWIA contribution

10-8

10-10
I. . . I. . . I. . . I

0 20 40 60 80 100

q2(fm 2)

FIG. 6. The full predictions using the ET and the BSLT
prescriptions for the deuteron current with and without MEC
contributions, but for the electric and magnetic form factors
A and B The data ar.e from Refs. [21] and [22].

The simplest contribution to the deuteron current is
the coupling of the photon to one of the two nucleons in
the deuteron without FSI between the two outgoing nu-
cleons. In Fig. 2 all possible contributions are depicted.
Since the initial state is antisymmetric the contributions
[(a) + (b) and (c) + (d)] are identical. Let us now adopt
the convention, where particle 1 in the final state is as-
sumed to be the proton, carrying momentum 2P'+ py.
To determine the structure functions (2.13) we calculate
the e.m. current matrix elements in the c.m. frame of
the final state. In this frame we have Pp: 2Epf and

pyp = 0. The PWIA contribution can be written as
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(P', pf, S', M~[J„' [P, M) = ) (P', pf, S', M~[1 ~' S *l(p~*l, P)4~ l(p~'l, P),
4'7t i=1

(6.1)

where p~ l = pf —
2q and p~ l = pf + 2q. The state ~P', pf, S', M&) describes the free np pair with total spin S' and

its explicit form is given in Appendix A.
Since the deuteron vertex function is usually calculated in its rest system, it has to be boosted to the c.m. system

of the final np pair. The Lorentz transformation which does this is given in Eq. (2.9). The corresponding one for
spin-

&
particles is given by

A(Z) = ED+MD, , —q

2M~ ED + MD
+» (6.2)

Boosting the initial state to the c.m. frame of the np pair, the deuteron current contribution Eq. (6.1) can be written
in the form

2

(P', pf, S', M&[J [P, M) = ) (P', pf, S', M&[f'~ lsl'l(kl'&, P)eD~ '(k~*&, P),
D i=1

(6.3)

where I „' = I'„' A(l:), A(C) = A~ l(Z)A~ l(Z) and k~'l = Zp~'l

Introducing the deuteron state components P„(pipo) labeled by n = (J, M, L, S}and a combined helicity and
p-spin label m = (Ai, A2, p}, the deuteron current Eq. (6.3) can now be evaluated in the same way as has been done
in the elastic case. For a more detailed discussion we refer to [8]. On the chosen basis the deuteron current is found
to be of the form

2

{p',pf, S', M' [J '"]P,M) = ) ) ) DM, „„(Of)C„'„'„„„„f'„'*',S,'-", (k'*', P)p„(k'*', k,"), (6.4)
7l Q i=1 m' pm n

where m' = (Ai, A2, ++} and the explicit form of the

one-particle propagator S-' is given in Appendix A and

Eq. (5.6). The momentum k~'l is restricted by momen-
turn conservation, since the spectator particle is on shell

we get that ko ——E —E&(1) and ko
———E + E&(2) . »(1) (2)

writing down Eq. (6.4) we have shifted a po matrix to
the vertex, so that the vertex operator is now given by
I'It l = I'&~ lA(g)po~ l and I'It l ——I'„ lA(Z)yo~ l . The extra
»0 factor is due to the use of the closure relation for the
helicity spinors. In Eq. (6.4) the y dependence can ex-
plicitly be evaluated. For the spherical components I'„
(with p = 0, +1) of the e.m. current we find that the
total p dependence is given by exp[i(M + p —M&)p].
With this p dependence of the current operator, RI and
RT do not depend on &p and is the p dependence of Rz g
and RTT given, respectively, by cos p and cos 2p. The
isospin structure contained in I'„can readily be evalu-
ated. Since particle 1 is assumed to be the proton we get
I'„~Fi j'tf 2 and I'„~F /~2. In the actual calcula-
tions it is convenient to treat the proton and neutron con-
tributions to the e.m. current separately. Denoting the

]

I

term where the photon interacts with the proton (neu-

tron) as Z„ t {yst" ) we dod with the help of symmetry

relations for the deuteron vertex functions (see [8))

(6 5)

with all e.m. proton form factors in J„" replaced by the
corresponding ones of the neutron.

The ET approximation for the PWIA contribution can
be obtained immediately from the above expressions, by
simply replacing the initial deuteron bound state by the
BSLT vertex function. The relative energy variable in
the propagator is prescribed by the condition that the
final state describes on-shell particles.

B. Rescattering contribution

When FSI is included in the IA contributions, the
structure is more complicated. Starting from the full
Bethe-Salpeter formalism the current matrix elements
have the form given in Eq. (4.4). We have

2

{P',», S', M, [J„" [P, M) =, ', ) d' '~.,(,, ', P')S.( ', P')I'„"S"( ", ) .' '(p".P)
i=i

(6.6)

Assuming again that particle 1 in the final state is the proton, we only have to take the two graphs (a) and (b) into

account as represented in Fig. 3. Using the same analysis leading to Eq. (6.4) we find
2

(P', Pr, S', Mq(y„'(PM)= ' )') ). ) f P

1 1S&xD, „,(of)c (t . (pf p)s, „„I"„"„„,sl*,'(k", P)4, (k", o"), ( - )
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where the partial wave components P, (pf, p') cor-
respond to the isospin dependent t-matrix elements with
total angular momentum n' = (J', M') between the
energy-helicity spin states m' = (A~, Az, ++) and m" =
(Az, Az, p") . The isospin dependence of I' in Eq. (6.7)
is for an isoscalar transition given by Fs/~2 and for an
isovector transition (—1)'Fv /~2.

Replacing the integration variable p' by —p' in the
integral we readily see that both contributions are
equal. Moreover, collecting all the p dependence we 6nd
e'(M' —Ms)&f e'(M+I' — )+, so that the p'-integration can
be performed with the result

2nd(M+ p —M')e' +" (6.8)

(J'M'L'S'~ J„~P,M)

=- ( 1)J+ + + —+"(J' —M'L'S'i J„iP,—M). (6.9)

Besides this symmetry relation we have the selection rule
M' = M + p for the above matrix element, being a con-
sequence of rotational symmetry.

VII. RELATIVISTIC ANALYSIS OF INELASTIC
ELECTRON SCATTERING

In the preceding sections we have developed a rela-
tivistic framework to describe electrodisintegration of the
deuteron. The full relativistic form of the e.m. oper-
ator is employed and at the same time the relativistic
structure of the nuclear dynamics is incorporated. To
see what kind of predictions our fully relativistic formu-

I

Notice that the same yf dependence exists as for the
PWIA. In both the initial and 6nal states the relative en-

ergy variable is set to zero, corresponding the BSLT pre-
scription. Since the only p~ dependence is in the nucleon
propagators, the po integration can be done analytically.
As a result we are left with a two-dimensional integral
which can be done numerically using standard Gaussian
quadratures. In so doing, one particular point has to be
taken care of. At the point Ep 2M p the particles are
on mass shell and we have a singularity in the positive
energy propagator, which is of the form 1/(Ez —2M„„).
This singularity can simply be dealt with using a stan-
dard subtraction technique.

Having determined the e.m. current matrix elements
in this way the deuteron structure functions can be con-
structed using Eq. (2.6). It should be noted that not all
partial wave matrix elements in Eq. (6.7) need explicitly
to be calculated. Due to parity conservation we have

A. Nonrelativistic limit

In most of the studies of electron-deuteron scattering
it is implicitly assumed that to a good approximation the
deuteron can be described by a bound state wave func-
tion satisfying a Schrodinger equation. In addition some
effective nonrelativistic (NR) form is used for the e.m.
operator. Various versions have been proposed in the lit-
erature based on taking the NR limit of the current op-
erator. The e.m. operator is expanded in q/M, keeping
only the first order term in the expansion and neglecting
recoil elects. Because NR wave functions are used, boost
efFects are in general also neglected. The resulting efFec-

tive e.m. operators have all in common to be the same in
leading order, but to difFer in relativistic order (q/M)2.
Since we have included in our study the full relativistic
structure of the e.m. operator, it is obviously of interest
to see how these relativistic corrections look like. In the
calculations the vertex is de6ned in the c.m. frame of the
6nal state. Because the helicities in this frame and the
c.m.-kame of the initial deuteron state are not equal, we
have to replace the boost operators by Wigner rotations.
A detailed discussion is given in Ref. [8].

In the NR limit all particles are taken to be on shell and
the negative energy state components are neglected; i.e. ,

since the nucleons are assumed to behave nonrelativisti-
cally, we may assume that the nucleons can be described
by the positive energy spinors

u&' (p) = N, -~ Xi,(~)

Ep+M

(&)
u& (p) =N, --.~ X-i,

Ep+M
(7.1)

where N~ = JEST+ M~/2E~ and gp are the Pauli
spinors with helicity A. Therefore the current matrix
element to study in this approximation is given by

J„=u~ (p')
~
Fxp„+ F~o'&-q"

l
~i(p).

It can immediately be reduced to a Pauli form. We get

lation leads to in the case of inelastic electron scattering
we study the structure functions for two kinematic situa-
tions. One is the inclusive experiment carried out by the
Bates-Mit group and the other is the exclusive analysis
by the Nikhef-K group. Since we also want to compare
our predictions to those obtained from nonrelativistic cal-
culations, let us 6rst discuss the e.m. operator used in
the Schrodinger approach.

Jo = Fi —
2 (Fx + 2F2)(q + io. [K x q]) + 0

(

1 ( q4

N)

)
(K+ i[o x q]) (

1 (K + q ) I
(q+i[oxK])(K ' q).

1 ( q4 l+ i[o. x q] (
1 — q )

— (q+ i[o. x K]) + ([K x q] x q —i(cr K) [K x q]) + o
J8M2 &MA)

'

(7.3)
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1
Jp=Fy, &= +IK — GM(qxo).

2MN 2MN
(7.4)

Note that the correction terms in Eq. (7.3) are a rather
complicated function of both q and K. Except for the
region of low q and small recoil corrections there is no a
priori reason to expect them to be small.

Another form which is often used is found by start-
ing from the alternative form of the relativistic current
operator in terms of Sachs form factors,

2

GE = Fi+ 2 F2, GM ——Fi+ F
N

(7.5)

Taking the NR limit in this case yields the e.m. operator
used for example by Leidemann and Arenhovel [27],

1 Z

Jp = Gz, J = GEK — GM(q x o). (76)
2MN 2MN

The only difference between the two approximations is
the use of Fq or GE in the charge and current opera-
tors. From Eq. (7.5) we see that the difference is of order

q /MN2, being of relativistic origin. Considering Eq. (7.3)
we see that the charge operator can be rewritten up to
order q as

with K = p+ p' and where we have kept all second order
terms.

In the usual NR limit only the erst order terms are
kept in the charge and current operator. In so doing, we

get the operator as used by Mathiot [25] and Sommer
[26]

40 20

20— 0-

Fig. 8 are shown the relative contributions from these
corrections to the response functions for an exclusive ex-
periment with missing momentum p = 100 MeV/c and

q in the range of 300—1500 MeV/c. In addition we used

0& ——120 and 0, = 60' and took the kinematics in plane.
In this 6gure we are comparing the different approxima-
tions to the complete relativistic calculation with FSI in-

cluded, but without negative energy state contributions.
The effect of including the negative energy state contribu-
tions is given by the double dot-dashed curve. As a sec-
ond approximation we may drop the boost operators in
the current operator (solid line). This is similar to the NR
approximations except that we keep the complete current
operator Eq. (7.2). If only the PWIA contribution is con-
sidered all response functions show identical dependence
on the boost operators. The contributions from the boost
to RL„RT, and Rgl, become more important at higher

q values and can be as large as 40'%%uo around q = 1500
MeV/c, whereas in the case of RTT inclusion of the FSI
substantially enlarges this dependence and the boost ef-

fects are large even for low momentum transfer. The
negative energy state contributions increase at higher q
and are of the order of 5% around q = 300 MeV/c. Again
a different behavior is found for R~T', an. effect of around
30% is seen for the whole kinematic region. An impor-
tant conclusion is that the negative contributions cancel
to a large extent the boost effects. Similar as for elas-
tic electron deuteron scattering a consistent relativistic

( q' l 1
Jp = G@

~
1 —

2 ~

—
2 (2GM —G@)io (K x q).

8MN ) 8MN

(7.7)

Momentum conservation at the vertex gives K = p+p' =
2p+ g. Hence for small values of the missing momen-
tum, i.e. , p (( q, the second term in Eq. (7.7) can be
neglected. For values of q up to a few hundred MeV it
suggests that the choice of GE is indeed reasonable for the
charge operator. The procedure as followed in Eq. (7.7)
cannot be used for the current operator, because of the
lack of a small parameter. However, we can show that
the isovector part up to order q is given by

0- ~
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(7.8)
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which shows that the choice of GM in Eq. (7.4) and
Eq. (7.6) is reasonable for small q. It should be noted that

M
in some calculations of Ref. [27] the factor C„„=& gEpE
has been added to the cross section, whereas this term is
already included in Eq. (7.3). This correction is clearly
of relativistic order.

Besides the additional terms neglected for a given
choice of the NR e.m. operator, other relativistic effects
like contributions from the boost transformation and the
negative energy state components of the deuteron and
scattering wave function can play an important role. In

FIG. 8. The relative durerence -0oixR (r )
' of the-

response functions R without negative energy state contri-
butions and R calculated in various approximations. When
R is the full result we Snd the solid curve. Evaluating R
by neglecting both the negative energy states and the boost
transformations yields the double dot-dashed line. Dropping
furthermore also the FSI contributions in R yields the long
dashed curve. The eKect of the BSLT propagator choice is

given by the dashed curve. The dotted and dot-dashed curves
correspond to the results of the relative change for the various
NR approximations 7.4 and 7.6 to the current.
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treatment is also important in this case.
Next we may consider the effect of neglecting the FSI

contributions. This yields the long dashed curve in Fig.
8. As expected we see an increase in the FSI contribu-
tion at lower q, since q is directly related to the energy
of the np pair in the final state. Also it is of some inter-
est to see the sensitivity on the choice of the relativistic
two-nucleon propagator on the response functions. The
dashed line depicts the relative difference between the
BSLT and ET approximations, including FSI. Except
for RTT, the difference is less than 5% and increases for
higher values of q, whereas for RTg it decreases with q.
This dependence on the propagator structure only exists
if FSI is included.

Finally, also plotted in Fig. 8 are the predictions with
the e.m. operators, given by Eq. (7.4) and Eq. (7.6) with
the Fq and G@ form factors. The results are respec-
tively given by the dotted and the dot-dashed lines. As
expected we see increasing deviations with increasing q.
For RI, the NR G@ operator yields clearly the closest re-
semblance to the calculation using the complete current
operator. The latter is in accordance with our discus-
sion of Eq. (7.7) that the use of G@ in the charge opera-
tor should be reliable in the quasielastic region. Beause
of isovector dominance in the contribution of Rz both
NR operators give the same results and deviate only a
few percent of the results with the exact current oper-
ator, what is in accordance with Eq. (7.8). Finally we
see &om the figure that the deviations are very large for
the response functions RTI, and RTT even at compara-
tively low momentum transfer. These deviations are es-
sentially due to the interference structure of the response
functions, therefore probing those parts of the current
operators not described well by the NR operators.

Not shown in these figures are the results with the
current operator of Eq. (7.3) where we have kept all sec-
ond order terms. Similar higher order corrections have
also been considered recently [28,29]. For RL, and RT al-
though the results agree reasonably well with the full cal-
culations at moderate momentum transfer they are found
to be substantially different at higher momenta. In gen-
eral at high momentum transfers the deviations are such
that the complete e.m. operator including boost effects
is needed for a reliable analysis of the response functions.
For Rz T and RT L, calculations with this second order op-
erator show it gives comparable results as with the com-
plete operator. Deviations are within a few percent. At
these low missing momenta no large model dependence
of the wave functions is expected. The deuteron wave
function is mainly S wave in this region. %e have tested
the aspect of the nonrelativistic reduction of the propa-
gators. %ith this approximation we find effects smaller
than 0.5%.

To get some insight about sensitivities on FSI and neg-
ative energy states in a larger part of the phase space in
Figs. 9 and 10 contour plots are shown where we have
varied in addition 8&. For the relative contribution of the
FSI, shown in Fig. 9, we find very similar efFects in the
various kinematic regions for RL, and RT. From these
figures we see that both contributions to in particular
the RT z response function can be substantial.
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FIG. 9. The relative contribution of FSI to the four re-
sponse functions as function of q and cos(8).

B. Structure functions of the exclusive reaction
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FIG. 10. The relative contribution of negative energy states
to the four response functions as function of q and cos(8).

As an example we discuss the exclusive experiments
carried out at Nikhef-K [1,2]. In these experiments in
addition to the measured final electron also the outcom-
ing proton is detected. As a result the cross section is
described by the four response functions RL„RT,RTL„
and RTT given in Eq. (2.6). RTI, and RTT have anout of
plane dependence of, respectively, cosP and cos2$. Con-
sequently, RTI, can be separated by carrying out two
measurements at P = 0 and P = vr, such that p q is
constant. The response function Rzl, is interesting be-
cause through its interference structure it is sensitive to
the isovector part of the charge operator and the isoscalar
part of the current operator. By measuring only RL, and
RT no information is obtained about these terms because
of the dominance of the isoscalar charge and isovector
current operators. The experiments were performed with
a missing momentum p in the range of 40—180 MeV/c.
In this kinematic region the FSI is expected to give only
small contributions due to the low missing momentum
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and therefore the high relative momenta of the outcom-
ing nucleon pair. Because of the dominance of the PWIA
contribution the chosen kinematics is very suitable to ex-
amine the underlying structure of the one-body current
operator.

In Fig. 11 the results of the Nikhef experiments to-
gether with our predictions of B defined in Eq. (2.14)
are shown. In all these calculations the OBE model has
been used to construct the continuum and deuteron ver-
tex functions. In these 6gures PWIA corresponds to our
relativistic PWIA calculation and the curve denoted by
REI (—) contains in addition the FSI (both positive and
negative energy states). For both RL, and BT the FSI
is small and increases with increasing missing momen-
tum. Also are plotted the predictions obtained using a
nonrelativistic description with e.m. operators, given by
Eq. (7.4) and Eq. (7.6) with Iii and G@ form factors.
The results show clearly that the current operator with
Fq is too high as compared to the experimental data for
Rl. and the G@ description gives a much better agree-
ment with both the data and the relativistic calculation.
The results for RzI, and RzT are remarkable. Although
we are at relatively low momentum transfer, relativistic
efFects are substantial. We find that our relativistic cal-
culations leads to a good description of the RTI, data,
whereas both NR predictions are clearly too low. In this
case the NR I'i operator is closer to the relativistic pre-
diction. Similar conclusions can be drawn for the out of
plane structure function RT T. It is worth noting that for
this case the FSI effect is considerably larger.

From these results we may conclude that in the kine-
matic region considered the most important relativistic
eKects arise Rom the higher order corrections to the e.m.
operators employed in the usual NR analysis. In general
the NR descriptions are clearly not adequate and they
can represent a poor approximation to the full relativis-
tic operator.

10 '

NR-Gg

C. Inclusive scattering in the guasielastic region

We now turn to describe our calculations for the in-
clusive reactions in the quasielastic region. These exper-
iments were done at Mit-Bates for momentum transfers

q in the range of 300—500 MeV/c [5]. The quasielastic
peak is de6ned by

MD + u) = M~ + q + M~. (7.9)
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In the considered experiments a longitudinal-transverse
separation has been carried out. The four momentum
transfer is such that Eq. (7.9) to a good approximation
reduces to ur = q2/2MIv. For these values of u and q the
electron is essentially probing the nucleons with missing
momentum near zero.

In Figs. 12—14 are shown the various corrections to
the longitudinal and transverse response functions R de-
fined in Eq. (2.16) at momentum transfer q = 300, 400,
and 500 MeV/c. The full relativistic expression of the
electromagnetic vertex is used. Inclusion of the boost op-
erator shows only a very small contribution. Considering
RL, we see that the PWIA describes to a good approxi-
mation the response, except at lower momentum transfer.
The Born contribution can essentially be neglected, be-
cause Fz" is very small. On the other hand the FSI is seen
to be important for Rz over the whole range of consid-
ered momentum transfer. Moreover, since the magnetic
form factor of the nucleon is comparable in magnitude to
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FIG. 11. The response functions R from Eq. (2.14) for the
exclusive Nikhef kinematics. The data are from Ref. [].].
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FIG. 12. Longitudinal and transverse response functions

Rr„r from Eq. (2.16) at q = 300 MeV/c. The data are from
Ref. [6j.
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F2" the Born term also gives a substantial contribution
to RT . For larger ur the delta degree of freedom is seen
to come up. This contribution and the other MEC's will
be discussed in the same relativistic &amework in a next
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FIG. 13. The same as Fig. 12, but at q = 400 MeVjc.

paper.
Including only respectively the Born, the J = 0 and

1 NN scattering amplitude in the two response func-
tions, we see that most of the FSI has been accounted
for. The main FSI contribution to Rl. is from the
J = 1 ( Pr, Sr — Dr, Pr) amplitudes. Especially at
low w this contribution can be significant due to the de-
creasing relative momentum of the outcoming nucleon
pair. Similarly, as for the three-nucleon systems [30],
the response increases at low u, whereas it decreases at
the quasielastic peak due to the FSI contribution. The
PWIA result for RT is clearly below the data. In par-
ticular, the J = 0 (rSp, sPO) FSI contribution is only of
some importance for RT. Due to the FSI contributions
our overall predictions are well in accordance with the
experimental data. Although substantially smaller than
in the trinucleon system, some strength tends to be miss-

ing in the transverse response function at lower energy
transfer. We also considered the negative energy state
contributions. Exactly as we have found for exclusive
scattering, this contribution seems to be vanishing at the
quasielastic peak. Furthermore, it reduces the strength
at low ~, whereas it tends to increase slightly the re-
sponse functions past the quasielastic peak.

The overall agreement with the experimental data is

gratifying. Since at these relatively low momentum
transfers the existing parametrizations of the e.m. nu-

cleon form factors are very similar, less dependence is
found on the choice of these nucleon form factors. Using
for example the Iachello et al. [31] form factors changes
of only at most 1% were found.
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FIG. 14. The same as Fig. 12, but at q = 500 MeV/c.

VIII. SUMMARY AND OUTLOOK

We have presented in this paper a &amework to study
the e.m. deuteron current based on a relativistic quasipo-
tential approach. The nuclear dynamics itself is de-
scribed in terms of a symmetric choice for the relative
energy variable. Assuming that the two-nucleon vertex
functions depend smoothly on this variable, the current
matrix element is determined by explicitly integrating
out the relative energy variable in the e.m. vertex loop.
This equal time approximation has the advantage that
it can be used to describe both elastic and inelastic elec-
tron scattering and that it in principle can be extended
in a systematic way. As a direct application the elastic
e.m. properties of the deuteron are studied using this for-
malism. The difFerences between this approach and the
one used in Ref. [8] for elastic electron deuteron scatter-
ing are the treatment of the initial and 6nal states and
the nucleon-propagator structure of the one-body cur-
rent. We have shown that for elastic scattering these
two approaches give compatible results and difFerences
are found to be minor.

The approach discussed here has clearly the advantage
that besides elastic electron scattering case, it can also
be applied to the deuteron breakup in electro- and pho-
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todisintegration processes. Explicit expressions are writ-
ten down for the deuteron current in the case of inelastic
electron scattering. The helicity formalism is extensively
used to relate the scattering wave functions of the rela-
tivistic one-boson-exchange model to the current matrix
element. Since there are also isovector current contri-
butions in this case, mesonic exchange currents are in
general needed to satisfy gauge invariance. These cur-
rents can also be constructed in this ET approximation
and will be studied in a subsequent paper.

Various diferent forms of one-body operators exist in
the literature to describe the e.m. processes in a nonrel-
ativistic framework. These are derived from relativistic
operators which are on-shell equivalent, but lead to dif-
ferent operators in the NR limit. We have compared
the NR calculations with our relativistic description of
the electrodisintegration of the deuteron. The important
difference is that we also take in our approach the higher
order terms in q/M into account. It should be noted
that we have assumed a specific on shell form of the e.m.
nucleon form factor and not considered its ofF-shell de-
pendence. For this a detailed dynamical model of the
nucleon is needed.

One interesting experiment to study the difFerence be-
tween a relativistic and nonrelativistic analysis is the
exclusive experiment performed at Nikhef-K, in which
the three response functions Rg, R~, and R~L, could
be separated. Due to the small missing momentum in
these experiments the FSI contribution is very small and
the response functions are in a good approximation de-
scribed by the one-body current (PWIA). In our analysis
we have found that both relativistic and nonrelativistic
theories give a good description of Rz. DifFerences show

up for RL„and the NR theory using the G@ form factor
gives a good description, while the Fq current operator
is systematic to high. Interesting results were found for
the interference structure function R~L, . Both NR ap-
proaches failed to describe the data. Including the next
order in q/M to the one-body current operator showed
a much better agreement. Other relativistic eKects have
also been considered. These are due to boost effects and
the presence of negative energy states. In the kinematics
studied these contributions were found to be small. How-
ever, it is expected that these corrections will be substan-
tial at higher momentum and energy transfer as can be
seen in the case of elastic electron scattering. We have
tested this assumption by considering the range of q =
300—1500 MeV/c. Effects of 40% were found. The sec-
ond experiment we discussed in our relativistic approach
is the inclusive experiment done at Bates. In this exper-
iment much larger efFects due to the Born term and FSI
are found. A good agreement with the data is found, al-
though at larger momentum transfer q the longitudinal
response function is slightly overestimated. This may,
however, readily be explained in terms of model depen-
dence on the deuteron structure. For these experiments
the NR description using G@ gives similar results as the
relativistic calculation.
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APPENDIX A: HELICITY BASIS

In this appendix we summarize the helicity basis used
in the partial wave decomposition of the %% amplitude.
For more details we refer to Refs. [6,14,32]. Following
Kubis [14] we use for the positive and negative energy
spinors

(+)
(p) = +p 2&y XA(~ V )

E„+M

—2Ap
(—)(p) ~ E~+M +&(g +) (Al)

where yp(0, p) are the two-component Pauli spinors,
which are given by

f —e-'& sing/2 lx, (g, v) =
I

(A2)

These spinors are normalized as

A. (p) = ) u~'(p)u&'(p). (A4)

We may rewrite the single-nucleon propagator

S(p) = (P —M~+ ie)
p —M2 +i~ (A5)

in terms of these projection operators. Using the relation

P+ Mm ——(Er + po)A+(p) + (po —Er )A (p) (A6)—
we get for the propagator

po —E& + is po + E& + i e
(A7)

We now turn to discuss briefly the partial wave repre-
sentation of the two-nucleon t matrix. When two-particle
states are involved, we take the convention of Jacob and
Wick [33] where particle 1 is described by the spinors

uz (p), while for particle 2 the spinors u~ &~(
—p) are used.

The two-particle states built from these helicity spinors
form a complete basis lpAqA2p) [with p = (pq, p2)] in

where p = 6 and the normalization is given by N„=
g(E„+M~)/2E& Let us co.nsider the projection oper-
ators
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Dirac space. In this representation the t matrix is given

by IJMAiA2) = d~,DM&(~, ~)lp, ~, ~, Ai, A.).
2

(pfA', A' p lP(py, p, P)lpA, A p). (A8) (A9)

Its angular dependence can be exhibited using the total
angular momentum states

In view of rotational invariance of the t matrix, Eq. (A8)
can be written in the form

I

t = ) 4n m m(py, p) = ) DMqi (By)/~i ~(pf ) p)DMp(O)1
n J,M

where we have defined

(A10)

, (p~ p) = (pf&AiA2&I4'(px p P)lpJAiA2p&

with n = (J,M), m' = (A~, A2, p') and m = (Aq, A2, p}. These angular momentum states can be related to states
labeled by the set (JMLS). We have

J,M L', S',L,S
DMi (flf)c'o'i'i'DMi(~. )&~'(JL'S'I4'(ps p P)l JLS) (A11)

A detailed analysis is given in the Refs. [6,14,32]. The
&ee np pair can be described by the two-particle states
lpAqA2) with p = (+, +). These helicity states are con-
nected to the total spin S states lp, S, Ms) through the
relation

lp, S, Ms) = ) DM, &(fir)+g, ' p, plpA&A2) (A12)

APPENDIX B: THE Kp LOOP INTEGRATION
IN THE e.m. CURRENT

while in the initial one-particle propagators
S~~l(k, P' ), expressed in the final-state variable k' are
given by

(5) k,'=( ' —E')+E„', ,—

(6) ko = ((u' ' —E') —Ef;, +is.
In the breakup region E ) M~ a pinching can oc-

cur between the poles ks and ko . This generates theI(2) I(3)

elastic cut defined by Ek ——E'. Moreover, the possibil-
ity exists that the singularities ko~ l and ko may cross.
This occurs when

Ek'— (84)
In the current operator for the IA in the equal time ap-

proximation, initial and final states are taken to be only
dependent on the relative three momentum. To carry
out explicitly the ko integration we assume that we only
have to consider the singularity structure of the nucleon
propagators. The integral we want to study is of the form

In Fig. 15 is shown the kinematic region of q and cu where
this can happen. The solid line is for small u given by
ur —(q~ b) 2/2MN which corresponds to quasielastic scat-
tering. Note that for real photon absorption u = q this
double pole does not occur. The condition (84) corre-
sponds to the situation when the hit particle before and

dk,'S, k', P' r„~') k, S, (81) 600

500

where I'„ is the e.m. operator including the boost opera-
tors. For the inelastic case both sets of variables (k', P')
and (k, P) are in their own c.m. frame, i.e., P' = (0, 2E')
and P = (0, 2E) where 2E' = M z and 2E = MD. The
Lorentz transformation l: of the c.m. kame to the labo-
ratory frame is given by Eq. (2.9).

To perform the ko integration we have to analyze the
position of the singularities in the propagators. The sin-
gularities in the two-particle propagator S2(k, P') are lo-
cated at

400

300

BOO

200

0
0 200 200 300

(1) ko ——E'+ Eg —ic, (2) ko = E'+ Eg —is, —

(&) ko ——E' —Eg +is, (4) ko = E' —Eg +is, —

(82)

co b (Mev)

FIG. 15. In region I there is a crossing between two positive
energy poles of the one-particle propagator were before and
after absorption of the photon the particle is on mass shell.
In region II this crossing does not occur.
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after the absorption of the photon is on the mass shell.
Since these poles are on the same side of the contour,
their crossing does not correspond to a pinching singu-
larity.

By closing the contour in for instance the lower half
plane the integral over ko can be performed. The inte-

gral picks up contributions from the poles at ko, ko

and ko . The singularity at ko is a negative energy
I(5) ~ ~ 1(~) ~

state contribution; the other two are from positive en-
ergy states. In so doing we get

I = 2zriA (k')S (k', P')I „S ' (k ' P)
27—riA+(k')Si i(k'I i, P')I'„Si i(ki ) P)

—2zriSi'i(k'l i P')Sl i(k'i i, P')I'„A+, (k)
k' —q

(B5)

where the four-vectors k'(') and k(') have as fourth com-
ponents ko' and ko', respectively. If we consider only
positive energy intermediate states, Eq. (Bl) reduces to

I = -2~zA+(k')A+(k')f „A+(k)
1 1

E + ko —Ek E —ko —Ek Ek' —q
&(5) (5) (B6)

It should be noted that both contributions develop separately a double pole for k satisfying Eq. (B4). However, the
two terms cancel at this point leading to only a single order pole. Furthermore, notice that only the first term has a
pole of the form (E' —EI, ) which generates the elastic cut.

In elastic scattering we take as integration variable ko and the vertex I'„ is evaluated in the Breit frame. In terms
of the variable kp the singularities (B2,B3) are given by

(1) kp ——E + Ez, —i~,

(2) kp ———~ —E + Ez,+~ —zs,

(3) kp ——E —Ez, + is,

(4) kp ———~ —E —Ez,+~ + is,
(5) kp —— E+ Ez, ——ie,

(6) kp —— E —Ez, +—is. (B7)

It can readily be shown that the kinematics in this case is such that the poles ko and ko cannot cross. Closing the
contour in the lower half plane, the integral becomes

I,( „;,= 2zrzSl i(k'i i, P')I'„SI (k l, P)A (k) —2zrzSi i(k'i i, P') I„A+(k) Sl)(ki i, P)

—2zri A+(k')I'„Si'i(kl i P)Sl i(kl ), P).
k+q
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