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Octupole-induced dipole moments of very deformed nuclei
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In order to estimate octupole-induced El strength in very deformed nuclei we calculate their
intrinsic dipole moments within the shell correction method. We use the formula for the macroscopic
part of the dipole moment derived by Dorso, Myers, and Swiatecki, however, without approximation
limiting its validity to small deformations. We obtain rather large dipole moments in superdeformed

Hg and Pb nuclei, in agreement with recent Hartree-Fock calculations. This points to the possibility
that in these nuclei interband E1 transitions may be detectable in spite of enormous competition of
superdeformed intraband E2 transitions. We give also estimates for dipole moments of even more
deformed systems.

PACS number(s): 21.10.Ky, 21.10.Re, 21.60.Ev, 27.80.+w

I. INTRODUCTION

As is well known, the collective E1 transitions observed
in some nuclei may result Rom dipole moments induced
by the octupole or a more general reBection-asymmetric
deformation. It has been suggested that octupole corre-
lations are important in superdeformed (SD) nuclei, see,
e.g. , [1—7]. Such correlations, when sufBciently strong,
could lead to a presence of low or moderately excited SD
bands of parity opposite to that of the SD "ground state"
(g.s.) band. This, in turn, opens a possibility that sub-
stantially enhanced E1 transitions between two opposite
parity SD bands can be detected with new multidetector
systems. The purpose of the present paper is to give an
estimate of the octupole-induced E1 strength at superde-
formed, and even at more deformed nuclear shapes.

In even-even nuclei, octupole correlations lead to a
presence of a negative parity intrinsic excitation

I
7r )—

built of the local g.s. of positive parity,
I
or+). With the

increasing correlation strength,
I

m —) changes its char-
acter from this of the octupole phonon built on the re-
Hection symmetric shape to that of the negative parity
combination of deformed intrinsic states,

I +) and
I

—),
corresponding to energy minima at +Ps and —Ps.

Assuming axial symmetry of the local g.s. and follow-

ing closely the rigid rotor model of [8] we have a formula
for the E1 strength between two rotational bands built
on
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where D~~ ~, is a spherical component of the nuclear

dipole moment operator, D = e(& P„r~ —
& g r ).

For simpbcity, the signature-dependent term for K; =
Kf = 1/2 and the additional factor 2 for Kf = 1,K; = 0
have been omitted. We will be interested in axial oc-
tupole correlations in even-even nuclei and therefore spe-

Dmacr + Dshell
0 — 0 0 ~ (2)

The shell-correction term is calculated as Do"'

= (Dp) —(Dp), where (Dp) is the expectation value of
the operator e(& P z„—& P z„) on the g.s. wave
function constructed using a phenomenological single-
particle potential and including pairing correlations at
the BCS level, and (Dp) is the same quantity smoothed
according to the Strutinsky prescription. This smooth-
ing reduces to the replacement of the BCS occupation
numbers n, = 2v; in (z) = P,. 2v2(i

I

z
I i) by

smoothed occupation numbers n; [ll]. One has also to

cialize to K; = Kf ——0. We notice that one obtains
&om Eq. (1) the familiar formula for El transitions
within the alternating parity K = 0 band using
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resulting in (z —
I

Dp
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Dp
—) = Dp. Thus, in an idealized case of noninteracting
states

I 6) and degenerate states
I

z'6), El transitions
within the alternating parity rotational band are deter-
mined by the intrinsic dipole moment Do.

In realistic cases, when the barrier between two degen-
erate intrinsic minima

I 6) is not very high or there is
no reHection asymmetric minimum at all (I n' —) is an oc-
tupole excitation) the magnitude of El rates between
bands built on

I 7rk) is determined by the transition

dipole moment, Dp ——(7r—
I

Dp
I

vr+), depending on
two intrinsic states. One can expect that it is equal to
Do of some octupole deformed state with deformation

P3 smaller than the mean deformation Ps of the state

I
vr —), the latter being always nonzero. Therefore, know-

ing Dp(Ps) and having some idea about deformation Ps
one can estimate El rates also in the vibrational limit.

To evaluate dipole moments one can use a microscopic
approach, like the Hartree-Fock method [9,10,7], or a
more phenomenological shell-correction approach, intro-
duced in Ref. [11]. In the latter, the dipole moment is
decomposed into a macroscopic part, Do ", smoothly
varying with N and Z, and a Huctuating shell-correction
erm Dshell.
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take into account the reduction of the effective charge
due to the particle-vibration coupling with the El giant
resonance, e' = e(1 + y), where the polarizability co-
efFicient y has been estimated to fall within the range
—0.72 & g & —0.59 [11,8,12].

Concerning macroscopic contribution, a formula for
the dipole moment is necessary. Such a formula has been
derived by Dorso, Myers, and Swiatecki [13] from the
droplet model [14]. Since it was meant to apply primar-
ily to weakly or moderately deformed nuclei, it has been
worked out in a form valid up to the second order in de-
formation parameters describing distortions of a sphere.
The comparison between dipole moments calculated with
the aid of this formula within the shell correction scheme
and the experimental data in light Ra-Th and heavy Xe-
Ba regions is contained in Ref. [15].

It is rather obvious that calculating dipole moments of
very deformed nuclei one has to reject the confinement
to the lowest order in deformations in the formula [13].
The calculation of D'" " at the SD local minimum is
analogous to that at normal deformation. There is a
number of corrections which come from rotation and, in
principle, should be considered. We will neglect some,
like a modification of D "caused by rotation, assuming
it is small, and comment on others, like a change of the
polarizability coefBcient y or a dependence of D'"'" on
the rotational &equency, in Sec. IV.

The plan of the paper is as follows: In the next section,
we recall the formula for the macroscopic dipole moment
[13], then, in Sec. III, discuss modifications introduced
by the exact calculation with respect to the second-order
approximation used up to now. In Sec. IV we present
results for SD nuclei and in Sec. V, for more deformed
systems. In Sec. VI we give conclusions and some tech-
nical aspects of our calculations are mentioned in the
Appendix.

II. MACROSCOPIC DIPOLE MOMENTS

The macroscopic dipole moment induced by a reflec-
tion asymmetric deformation consists of two parts [13]
arising from the charge redistribution and neutron skin
eKects, respectively:

coefticient, the nuclear matter compressibility, the eKec-
tive neutron skin stiffness, and the density symmetry co-
efFicient, respectively. The other DM parameters are the
nuclear radius, Rp ——rpA ~, where rp = 1.16 fm, and the
equilibrium value of the average relative neutron excess,
b = [I+(9e /80roQ)ZA 2~ ]/[1+(91/4Q)A ~ ], related
to the average value of the neutron-skin thickness t via
the expression t = (2/3)(I —8')Ro. Nuclear shape enters
the formulas (4) and (5) through its integral properties:
the Bs constant, being the ratio of the nuclear surface
area to that of the sphere of the same volume, and the
volume and surface integrals of the Coulomb potential
v (in units of Ze/Rs), and of the scaled radius vector
( = r/Ro. These integrals are taken over the nuclear
surface and the volume enclosed by it and are defined as
follows: (f)v = v J'v f and (f)s =

& js f
The part of the dipole moment coming from the neu-

tron skin may be also expressed as [13]

&s~in = (~Z/A)(&/I )(r~ —r~), (6)

R(0, P) = Rsc(P) 1+) Pp„Yp„(8,P)
)

(7)

The radius vector in Eqs. (4) and (5) is attached to the
origin of coordinates in which the nuclear surface is de-
fined.

where r~ and rq are the centers of mass of the whole nu-
cleus and the neutron-skin layer, respectively, and 6 is
the neutron-skin layer volume. It turns out that this
expression, and more precisely, its Grst component in
Eq. (5), has a sign opposite to that of the D„~, thus
reducing the total macroscopic dipole moment. This
has been found necessary to reproduce experimental data
within the shell-correction method simultaneously in Ra-
Th and Xe-Ba regions [15]. One can mention that the
formulas (4) and (5), and the presence of the negative
contribution in particular, have been questioned in [16],
and recently in [17]. Since we think that the main points
of this criticism are not well founded (see [18]), we rely
in what follows on the formulas (4) and (5).

In the present paper we parametrize the nuclear sur-
face by means of spherical harmonics and deformation
parameters Pq„..

D = Dred + Dskin. (3)

AZe2 ~ 1 61I~n,.a =
q

+ ~J ((~)v X)v —(~&)~) (4)

&stan = 2NZ
A

(I —b) Ro((&)~ —(&)s)

9 ZA'/'e'
+— &s((~)s(&)s —(~&)s)32 Q

(5)

In these formulas, J, K, Q, and I are the following
droplet model parameters: the volume symmetry-energy

For a nucleus with Z protons and N neutrons, A = N +
Z, I =- (N —Z)/A, one obtains from the droplet model
the following expressions for both components [13]:

III. RELATION BETWEEN THE EXACT AND
THE SECOND-ORDER FORMULA

Up to now, macroscopic dipole moments have been
calculated using the second-order formula of [13]. To
assess the correctness of the latter we have first recalcu-
lated dipole moments in Ra-Th and Xe-Ba regions using
the full expression of Eqs. (4) and (5). Deformations of
g.s. octupole minima and the whole microscopic part
of our calculations is in fact identical with [15] since we
are using the same deformed Woods-Saxon single par-
ticle model. Consequently, we have the same pairing
strengths, averaging procedure, and the polarizability co-
e%cient, y = —0.66. Numerical details of calculations of
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D "are given in the Appendix. The DM parameters
are J=32.5 MeV, It. =240 MeV, @=50 MeV, and L=100
MeV, as in [15].

Since D ", containing the whole difFerence between
our results and those of [15],varies smoothly with Z and

N, and in each of the two regions equilibrium deforma-
tions are similar, the overall change in D can be easily
summarized giving its average increase. In the heavy Ba
region, where D "are small, they increase roughly by
0.02 e fm, hence the use of the exact formula has rather
insignificant efFect. In Ra and Th nuclei, D "increases
by 0.08—0.11 e fm, which improves agreement with exper-
imental data for N = 132—134 but ruins the agreement
with experimentally observed cancellation of D in Ra.

In order to show modifications resulting &om the ex-
act formula in more detail we compare in Fig. 1 D "of
weakly deformed Ra nucleus calculated using the ex-
act integration (continuous lines) and the second-order
formula of [13] (dashed lines). Deformation has been im-

posed in two ways, in both cases keeping the relative
ratios of Ppo fixed. Therefore, only one of deformation
parameter, e.g. , P2 as in our Fig. 1, has to be specified.
The relative ratios we have chosen correspond to (1) the
ground state as found in [19],and (2) all Pgo

——0 except
for A = 2, 3, which are taken again &om [19] [curves la-
beled (3)]. The end point in P2 is its equilibrium value.
The exact evaluation of integrals leads in both cases to
larger dipole moments. When only low multipolarities
occur (two lower curves), the difference between the ex-
act and the second-order formula is small, as expected.
When higher multipolarities are present (up to Ps), the
second-order result is close to the exact one (two upper
curves) only for very small deformations and then di-

verges rather quickly, being nearly two times smaller at
the equilibrium deformation of Ra. Since the higher
multipolarity deformations (at least A = 4, 5) are impor-
tant in ground states of "octupole" nuclei &om actinides
and heavy Ba regions, it follows that the second-order
formula for the macroscopic dipole moment works in fact

much worse than expected from the magnitudes of typi-
cal equilibrium deformations.

How relevant is this finding for theoretical estimates
of E1 collectivity performed so far? As inspection of
Eqs. (4) and (5) shows one can compensate to the large
extent for the difference between the exact and the
second-order formula changing droplet model parame-
ters. Two least determined of them are L and Q. In
[15], they have been assumed equal to 100 and 50 MeV,
respectively, and their change by 50% is quite consistent
with the present level of uncertainty. We have checked
that the decrease of L from 100 to 50 MeV, with other
constants kept as before, allows for a very similar agree-
ment with experimental data using the exact formula as
the one achieved in [15] with the use of the second-order
formula.

Since the DM parameters were in fact fitted in [15] to
obtain satisfactory agreement with data, the relevance of
our more exact calculation is that a priori it determines
more correctly the droplet model constants. Unfortu-
nately, as discussed above, it is difficult to say which L
value is really better. We therefore proceed to evaluate
dipole moments for super- and m.ore deformed states with
L=100 MeV, and comment on modifications arising &om
the use of L=50 MeV, where necessary.

The differences between the exact and the second-order
formula at large deformations are illustrated in Figs. 2
and 3. In Fig. 2, we show the macroscopic dipole moment
vs octupole deformation, D "(Ps) for SD is2Hg. De-
formations P2 and P4 have been kept constant, P2

——0.47,
P4 ——0.06, typical of the Hg-Pb region, see e.g. , [20]. As
in Fig. 1, the presence of odd multipolarity deformation
with A ) 3, Ps ——2Ps, substantially increases the exact
value of D " (full line) as compared to the purely oc-
tupole shape [full line labeled (3)]. For the latter, D
is very similar to the second-order result [dashed line
with the label (3)], and to the second-order result with

P5 —
2 P3 (dashed line) . Thus, the second-order formula
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FIG. 1. Macroscopic dipole moments of Ra calculated
by means of the exact (full lines) and the second-order for-
mula (dashed lines) vs deformation: lower curves include only
Pg P3 upper curves involve the whole (Pqo) set, as in realistic
calculations.

FIG. 2. Macroscopic dipole moments vs octupole deforma-
tion, D '(P3), at the SD minimum in Hg. Lines labeled
(3) correspond to pure octupole distortions; those without
label have been obtained using relation Ps = 2Pq. Continu-
ous lines correspond to the exact formula, dashed ones to the
second-order approximation.
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FIG. 3. Macroscopic dipole moments of '
Hg vs

quadrupole deformation, D "(P2), at fixed P3=0.10 (3),
and P3=0.10, Ps=0.05 (without label). The linear relation
P4 ——~P2 has been imposed. Continuous and dashed lines as
in Fig. 2.

IV. DIPGLE MGMENTS GF SUPERDEFGRMED
NUCLEI

Octupole correlations at SD shape in Gd-Dy and Hg-
Pb regions studied so far in various theoretical models
[1—7] do not seem to be strong enough to produce deep
energy (Routhian) minima. Therefore one anticipates
rather a vibration scenario, perhaps, reaching an inter-
mediate situation of a very shallow re8ection asymmetric
minimum at higher spins. In such a case, an estimate of
the E1 strength between the SD excited octupole band
and the SD g.s. band must be based on (1) intrinsic
dipole moments D(Ps) in a range of Ps typical of vibra-
tions and on (2) some knowledge of the effective octupole
deformation Ps of the' octupole band.

We have calculated D(Ps) for a number of Gd, Dy,
Hg, and Pb nuclei at Ps ——0.05, 0.10, 0.15—values typ-

is quite insensitive to Ps, in contrast to the exact formula.
Quite similar observations follow from the Fig. 3 where

D " of the same i zHg is displayed vs P2 at fixed

Ps ——0.10, with or without [curves labeled (3)] Ps ——0.05.
The hexadecapole deformation varies according to P4 ——

&P2 so that the deformation path goes through the calcu-
lated SD minimum. Again, the second-order formula is
quite insensitive to Ps (dashed curves) in contrast to the
exact one (full curves). With the pure octupole distortion
the agreement between the exact and the second-order
formulas is closer than for the Ps ——0.05 shape. One addi-
tional remarkable feature in Fig. 3 is the saturation and
subsequent fall of D "(P2) (at fixed Ps(s)) for large P2
predicted by the exact formula as opposed to the linear
increase given by the second-order formula. It turns out
that this effect comes from the reduction of the charge
redistribution term for very elongated shapes. This effect
is, of course, of consequence for predictions at very large
quadrupole deformations.

ical of octupole vibrations on SD shapes in the Hg-Pb
region [7]. Quadrupole and hexadecapole deformations
have been fixed at typical values resulting from cranking
calculations [22,20]: P2 ——0.61,P4

——0.11 in Gd and Dy
nuclei, and P2

——0.47, P4
——0.06 in the Hg-Pb region.

We have also studied the dipole moment sensitivity to
small changes of deformation, in particular, led by the
results described in the previous section, to the effect of
including the next odd multipolarity deformation Ps.

Since in both regions SD minima are experimentally
known at high spins one should, in principle, account
for the dependence of D " and D'"'" on the rota-
tional frequency u. As indicated in the Introduction
we have neglected the former. Concerning the latter,
one can remark that in [11,15] it was confined to the
term (D) whereas the smeared quantity was always cal-

culated at spin zero. Relatively small sensitivity of (D)
to u in Ra-Th nuclei at normal deformation has been
already found in [ll] where it has been remarked that
the main effect of rotation on dipole moments comes
through shape changes. Results of cranking calculations
[22,21] show that in even-even nuclei from both Gd-Dy
and Hg-Pb regions SD bands correspond to fairly fixed
shapes and configurations in the experimentally inter-
esting spin range. As we have checked, the expectation
value (D) is modestly sensitive to u in the Gd-Dy re-
gion, e.g. , in Dy, it changes from —0.99 e fm at ~=0
to —1.2 e fm at ~=0.6 MeV (I = 60h), and quite insen-
sitive in the Hg-Pb region. Based on this, we consider
D "(ur = 0) +D'"' '(ur = 0) as a reasonable estimate of
D(w) and neglect, as it was done in [11,15], the rotation

P

effect on (D), postponing tedious (and involving rough
approximations) calculation of this quantity.

The polarizability coefficient y for high spin SD states
is assumed equal to that at spin zero and normal defor-
mation. It is known that properties of the giant dipole
resonance (GDR) are mainly determined by deformation,
the effect of rotation being smaller. The simplest esti-

2 2

mate for y, y(ur) (1+ " ~P", ") [8], reduces to
0

y = (
'

) at the transition frequency a = 0. Thus, y
is indeed much less deformation dependent than the en-

ergy distance between major shells ~o and the GDR en-

ergy ~GDR, which are very much reduced for the K = 0
mode built on the SD shape as compared to the spherical
case.

In the Gd-Dy region, the shell correction contribu-
tions D'" are negative and tend to cancel the macro-
scopic part. In Dy, at Ps ——0.10, D'"" = —0.55 e

fm, D "=0.29 e fm, and the resulting D = —0.26 e
fm. in QQ, D' = —046 e fm, D "=027 e fm,
and D = —0.19 e fm. The use of the DM parameter
value L=50 MeV instead of L=100 MeV reduces D
by roughly 20% and one obtains e.g. , D = —0.30 e fm

for Dy. Unfortunately, the uncertainty in higher odd-
multipolarity deformations is more serious. Assuming

Ps ——0.05 in addition to Ps ——0.10 in Dy leads to a seri-
ous reduction in magnitude of D'" to —0.34 e fm, and
increase in D " to 0.39 e fm resulting in D=+0.05 e
fm. This sensitivity of D to Ps is typical of SD nuclei
in the Gd-Dy region and obtained dipole moments range
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T(E1)1~1 i E~(E1) 8 (2I —1)(I—1) ~D(') )
T(E2)I~1 2E~s(—E2) 5 (I —1)2 —K2 (Qp)

(8)

where transition energies are expressed in MeV, the tran-
sition dipole moment Do in e fm and electric quadrupole
moment in 1000 fm . Taking experimental values of
E~(E2) =0.6 MeV at I =36 and Qo ——18 b, and assum-
ing Do~ ——0.7 e fm and K = 0 we obtain T(E1)/T(E2) =
8.11Es(El). Therefore, for E~(E1) =0.5 MeV we obtain
T(E1)/T(E2) ratio equal to unity, i.e., the competition
between interband E1 and intraband E2 transitions. In
[7], the predicted excitation of a negative parity state at
spin zero was 1.5—2.0 MeV. However, other calculations
suggested that this excitation energy would decrease with
spin. In such a case, E1 transitions could be indeed de-

TABLE I. For nuclei indicated in the 6rst column the cal-
culated intrinsic dipole moments at SD shape are given in e
fm as a function of octupole deformation Pq.

Nucleus
190H
192H
194H

192pb
194pb
196pb

pg =0.05

0.43
0.41
0.39
0.47
0.45
0.43

pg =O.io
0.83
0.79
0.73
0.90
0.85
0.80

p, =o.is
1.16
1.08
0.99
1.23
1.14
1.03

&om sizable negative to small positive. This prevents us
&om making predictions for Gd-Dy region except that
we do not expect very large dipole moments there.

Fortunately, the situation is different in the Hg-Pb re-
gion where both D'" and D " have positive signs.
Moreover, the macroscopic contributions are on average
larger than in the Gd-Dy region, e.g. , D " =0.36 e
fm at Ps ——0.10. Dipole moments calculated assuming
pure octupole deformation at SD minima are given in Ta-
ble I. It is remarkable that these results are very similar
to those obtained within the self-consistent Hartree-Fock
calculations [7]. If we accept the mean deformation of the
octupole phonon state

~

x—), Ps =0.12, and the relation
between corresponding intrinsic dipole moment Do(Ps)
and the transition dipole moment (vr —

~
Do ] m+) &om

[7], we can read &om Table I the transition dipole mo-
ments as little less than D(Ps ——0.10). It is important
that the results of Table I are less sensitive to the as-
sumed deformation Ps than those for the Gd-Dy region,
e.g. , adding Ps ——0.05 to Ps ——0.10 reduces D for is2Hg &om
0.79 to 0.54 e fm. Small changes in even-multipolarity de-
formations P2, P4, Ps in the range predicted in [20] cause
much smaller changes in D, less than 10'%%uo. Finally, a
change of the DM parameter L &om 100 to 50 MeV re-
duces D "by —20% which means 10'%%uo reduction of the
total D. Therefore, one can hope that our calculations
provide a reasonable estimate of dipole moments D(Ps)
in SD Hg and Pb nuclei.

The expected E1 strength between opposite parity SD
bands may be expressed in a practical way using the stan-
dard formula:

tectable in experimentally observed spin range. We no-

tice that for large I, the explicit I dependence in Eq. (8)
becomes very weak [though T(E1)/T(E2) is still strongly
I dependent], while large K values favor El transitions.

V. DIPOLE MOMENTS AT VERY LARGE
DE FORMATIONS

There have been a number of calculations predict-
ing very deformed energy minima corresponding to
quadrupole deformation P2 =1.0, i.e., the ellipsoid axis
ratio 3:1,recently named hyperdeformed (HD). The third
minima around Th is the best experimentally doc-
umented case. The analysis of neutron-induced fission
cross sections for 2soTh(n, f) and Th(n, f) [23,24] led
to conclusion that their fine details can be understood
assuming the presence of two rotational bands with the
same K and opposite parities. Rotational parameter

derived &om the data, && 2.0 keV, suggests a HD
shape, and the positive-negative parity splitting of 10
keV suggests static octupole deformation. Together it is
evidence for the presence of a third well in the fission
barrier of these nuclei, corresponding to an octupole de-
formed, very elongated shape. Recent calculations [25]
predict for this excited minimum in Th the set of de-
formations: P2 ——0.86, Ps ——0.34, P4 ——0.18, and Ps ——0.056.
Since we deal here with the static reflection-asymmetric
minimum, we expect the alternating parity rotational
band with the E1 transitions determined by the intrinsic
dipole moment corresponding exactly to the local equi-
librium shape. Our calculations give Do ——2.19 e fm, be-
ing predominantly the macroscopic effect: D "=2.38
e fm. Thus, assuming parity degeneracy and the elec-
tric quadrupole moment of 50 b we obtain &om Eq. (8)
for I=4 the T(E1)/T(E2) ratio around 200. This would
mean a complete dominance of E1 transitions. We note
that the calculated value of D is not very much sensitive
to deformation Ps in this case, e.g. , we obtain 1.84 e fm
when we assume Ps ——0 in the third minimum.

The second example is the HD minimum in Gd
predicted at very high spin, I = (60 —80)h, by Aberg
[26]. Its deformations are @=0.93, es ——0.12, e4 ——0.13, and
e5 ———0.056, so it has also a static octupole deforma-
tion. Since a full minimization has not been attempted
in [26], and a relation between shape parameters e, char-
acteristic of the Nilsson potential, and P, used in our
Woods-Saxon model, is not a simple one [27], we have
calculated dipole moments of Gd for a number of de-
formations: P2 ——0.9, 1.0, 1.1, P4 ——0.2, 0.3, and octupole
deformations Ps ——0.1, 0.2, 0.3. It turns out that due to
equal signs of D " and D'"' we obtain quite sizable
dipole moments D=l—2 e fm, for P2 ——0.9, 1.0. The in-
clusion of Ps ——Ps/2 still increases D. However, a firm
prediction of D is impossible since at P2 ——1.1 dipole mo-
ments can be very drastically reduced for P4 ——0.3, where
due to the change in sign of the proton contribution the
total dipole moment vanishes. One has to mention that
modifications of D'" by rotation are non-negligible in
the present case; we have found an increase of D'" with
rotational frequency, which can be as large as 0.7 e fm at
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Re=0.65 MeV, corresponding to spin I = 80k. Similar
dipole moments are obtained for the HD configuration in
152D

To have a rough idea about T(E1)/T(E2) ratio for
the hypothetical HD alternating parity band in Gd
we assume the intrinsic dipole moment Do of 1 e fm,
the electric quadrupole moment of 35 b [26], the E~(E2)
of 1.0 MeV (corresponding to I —60h) and E~(E1) =
2E~(E2). We obtain from these T(E1)/T(E2)=0.042.
Thus, the E1 transitions are hardly expected to compete
with E2's in this case. Note that the striking difference in

T(E1)/T(E2) ratios predicted for HD alternating parity
bands in Gd and Th comes mainly from the great
difference in E2 transition energies.

minimum in Th and the HD minimum in Gd, pre-
dicted at spin I = (60 —80)h. However, experimentally
detectable consequences of a large dipole moment, in par-
ticular the large T(E1)/T(E2) ratio, are foreseen only for
heavy nuclei with HD rotational bands at low spin, due
to much smaller E2 transition energies.
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APPENDIX: NUMERICAL PROCEDURES

VI. CONCLUSIONS

In this work we aimed at predicting intrinsic or tran-
sition dipole moments of reHection-asymmetric SD and
more deformed nuclear states. Both in the vibrational
limit and in the static deformation limit these quanti-
ties determine El strength between the excited octupole
band and the local g.s. band. We have adopted the
shell correction method of [11]which, however, required
a refinement of the macroscopic contribution for large
nuclear deformations.

At first, we discussed the formula for the macroscopic
dipole moment freed from the approximation used so far,
which was valid only up to the second order in distortions
of a sphere. Our calculation shows that even for weakly
deformed nuclei from the Ra-Th region the second-order
approximation is not numerically correct in the presence
of higher multipole deformations.

Assuming small oct;upole distortions, we have calcu-
lated intrinsic dipole moments of SD states in the Gd-Dy
and Hg-Pb regions. We have found a partial cancellation
of macroscopic and shell correction terms in the Gd-Dy
region which leads to very small or at most moderate
dipole moments. Large sensitivity to the deformation
Ps prevents us from giving more firm conclusions in this
case. In contrast, equal signs of both contributions in the
Hg-Pb region result in sizable dipole moments. Their val-
ues found in the present work agree very well with the
self-consistent Hartree-Fock results obtained in [7].

We have also obtained large dipole moments for the-
oretically predicted very deformed states like the third

In the actual calculation, the double volume integrals
are converted by means of the divergence theorem to
the double surface integrals, which reduce further to the
three-dimensional integrals for axially symmetric shapes.
In particular, the volume integrals involving Coulomb po-
tential v may be transformed into one of the following:

(vdV = —— dSdS'n n'(
~

r —r'
~

V S S'1,([n (r —r')] [n' (r —r')]dsds

(A1)

where ( may be 1 or z. Surface integrals of v are trans-
formed using

The three-dimensional (four-dimensional, without ax-
ial symmetry) integrals are calculated numerically by
means of threefold (fourfold) Gauss-Legendre procedures,
so the question of accuracy appears immediately. To get
a confidence in our numerical method we have used it
in one nontrivial case which can be calculated (nearly)
analytically. This is the case of a half sphere of a ra-
dius r2 connected to the spherical section of a radius
rq ) r2, obtained by removing the spherical cup deter-
mined by a polar angle o. , so that the matching condition,
r2 ——rq coso. , is fulfilled. For this one-parameter fam-

ily of axially symmetric shapes all integrals determining
macroscopic dipole moment can be worked out in a form
of a finite expression or a quickly convergent series. As we

have checked for few values of u, the results of numerical
integration agree to the satisfactory accuracy with those
of the analytic calculation.
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