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Three-body bound systems are investigated in the limit of very weak binding by use of hyper-
spherical harmonics. The short-range two-body potentials are assumed to be unable to bind the
binary subsystems. Then the mean square radius always converges for vanishing binding except
for the most spherical wave function, where all angular momenta involved are zero, which diverges

logarithmically.

Universal scaling properties are suggested. Any additional long-range repulsive

potential, like, for example, the Coulomb potential, leads to finite radial moments even for vanish-
ing binding. Spatially extended charged halos are only possible for very low charges. The spatial
extension of three-body systems is in the asymptotic region more confined than for corresponding
two-body systems, where the divergences are stronger and more abundant. Numerical examples and
transitions to the asymptotic region are shown for square well and Gaussian two-body potentials.

The results are applied to several drip-line nuclei.

PACS number(s): 21.45.+v, 21.60.Gx

I. INTRODUCTION

Halo nuclei [1], i.e. nuclear systems with an unusually
large spatial extension, are by now well established on
the neutron drip line [2,3]. The principle behind the halo
formation is simple and directly related to the weak bind-
ing of the last one or two neutrons. A general survey of
static properties and occurrences of two-body halos re-
cently gave additional insight into these simple systems
[4]. A recent comparison between one- and two-neutron
halo systems also led to surprising conclusions [5]. Many
other interesting and more complicated structures may
also be anticipated [6-8]

Of particular interest are three-body bound systems
where furthermore all two-particle subsystems are un-
bound, the so-called Borromean nuclei [9]. They are pre-
sumably quite common along the neutron drip line. The
three-body structure with an inert core and two (inert)
halo particles is, at least to a large extent, realized in
several light nuclei [9]. We shall make the overall as-
sumption that the core and halo degrees of freedom are
completely decoupled. Such studies thus become rather
meaningless, when they are extended to accuracies where
the core degrees of freedom begin to contribute.

The purpose of the present paper is to investigate the
asymptotic behavior of weakly bound three-body systems
in general, to establish common features and in analogy
to Ref. [4] also characterize the large distance properties.
We shall make the incorrect assumption that the con-
stituent particles are spinless which implies that there
then is also no spin-orbit interaction. These simplifica-
tions are not basic limitations and improvements are ob-
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viously possible. However, this may serve to illustrate
our aim, which is to extract essential and general proper-
ties for the three-body system. Our model systems are at
best only approximations of real systems in nature and
also for this reason one should not push the accuracy
level too far. On the other hand, clean mathematical ref-
erence models are often very useful and we shall try to
extract the gross properties of physical relevance.

This paper is intended to be the first in a series of pa-
pers discussing various aspects of three-body halos. After
the Introduction we give first in Sec. II a theoretical dis-
cussion of the behavior of Borromean nuclei in the asymp-
totic weak-binding limit. A few necessary mathematical
definitions and details are collected in the Appendix. In
Sec. III we illustrate the behavior by numerical examples
where square wells and Gaussian potentials are used. In
Sec. IV we give criteria for the appearance of halo nu-
clei and list a number of nuclear halo candidates. Finally
Sec. V gives the conclusions.

II. THEORY

We shall consider a three-body system consisting of an
inert core and two halo particles. They are assumed to be
spinless and to interact via weak two-body central poten-
tials, which have no bound binary subsystem, but where
the total three-body system can exist in a bound state.
The spin-orbit interactions are in other words not in-
cluded explicitly, but their diagonal parts are accounted
for by adjustments of the strengths of the central po-
tentials. We shall focus on states lying just below the
three-body threshold. We note for completeness that the
Efimov effect [6], a pathology in three-body systems that
also involves loosely bound states, occurs close to a two-
body threshold, i.e., in a region where the present treat-
ment becomes invalid.

Several methods have already been used to describe
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halo nuclei. Among them are the variational approach
[10], the cluster-orbital shell model [11], the two-particle
Green'’s function method [12], the variational shell model
[13], the coordinate space Faddeev approach, and the hy-
perspherical harmonics method [9]. We shall here employ
the latter that allows a rather transparent formulation of
the problem.

A. The hyperspherical expansion

The total wave function ¥ of a three-body system (ex-
cluding the center-of-mass degrees of freedom) may be
expanded in terms of the hyperspherical h [6-8]armonics
Y as [14-16]

V(0.0 = = Y f(0) Y (). 1)
K

where p is a generalized radial coordinate (the sum of
squares of Jacobi coordinates) and the remaining five de-
grees of freedom have been transformed into angular vari-
ables in © (the direction of the two Jacobi coordinates
and the inverse tangent of the ratio of their lengths).
The coordinate systems are shown in Fig. 1. This expan-
sion is complete and is analogous to that of a two-body
wave function in terms of spherical harmonics, the spher-
ical quantum numbers [, m being replaced by a set K
of corresponding so-called hyperspherical quantum num-
bers. The functions Y are eigenfunctions of an angular
operator K2(Q) with eigenvalues K (K + 4) where the
quantum number K (usually called hypermoment) is a
non-negative integer, even or odd depending on the par-
ity of the system. The value of K defines the effective
centrifugal barrier.

The Hamiltonian of the system, where the center-of-
mass kinetic energy is subtracted, is given by

3
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where m;, r;, and p; are mass, coordinate, and momen-
tum of the ith particle, V;; are the two-body potentials,
P and M are the total momentum and the total mass,
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FIG. 1. The Jacobi coordinates used to describe the
three-body system, see also the Appendix. Note that for a
heavy core (particle 1) x2 and y2 become the relative coordi-
nates of the light particles (2 and 3) against the core.

and r;; =r; — ;.

From the Schrédinger equation one obtains [16] the fol-
lowing set of coupled differential equations for the radial
functions fx:
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where F is the energy and m is the nucleon mass chosen
as a normalizing constant when defining the Jacobi vari-
ables (see the Appendix). The effective potentials W are
given in terms of the two-body potentials V;; by

Z Vii(ri;) ,  (4)
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where dQ) = cos? asin® adad),dS), is the angular vol-
ume element for the directions of the two Jacobi coor-
dinates and for o, which is in the interval [0,7/2]. In
the lowest-order approximation where off-diagonal terms
are neglected, the right-hand side of Eq. (3) is put equal
to zero and the resulting equation is very similar to that
of a two-body system. The centrifugal barrier, however,
does not vanish even for the lowest value of K = 0. This
fact is directly related to the larger dimension of the ki-
netic energy operator [5]. The effective potential in the
resulting one-dimensional radial Equation (3) is simply
the matrix element of the two-body potentials between
the hyperspherical harmonics, see Eq. (4).

We assume in this paper that there are no bound
states in any of the two-body subsystems. In this
case the asymptotic form [17] of the wave function is
p~%/? exp(—py/—2mE/h?) and the expansion of the wave
function in terms of hyperspherical harmonics converges
rather fast. The physical reason for the rapid conver-
gence of the hyperharmonical expansion of the wave
function is that the height of the centrifugal barrier
(K + 3/2)(K + 5/2)/p? increases rapidly with K. This
substantially reduces the contributions from the higher
K values in the total wave function.

The Pauli principle requires that the solutions are or-
thogonal to the occupied core states. The easiest way to
achieve this approximately is to exclude the lowest lying
states occupied by core nucleons and consider the first
unoccupied state. An alternative way is to introduce
a repulsive neutron-core potential in the corresponding
states. With the above asymptotics the lowest non-Pauli
forbidden K value in the expansion usually gives a good
approximation to the total wave function of the three-
body system; see, e.g., [18,19]. In any case we shall
maintain the expansion in Eq. (1) and investigate the
properties of the radial functions for all K. It turns out
that in the asymptotic low binding limit, the largest con-
tributions to the radial moments come from the terms
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of lowest K, again demonstrating the convenience of this
method of expansion.

B. Matrix elements of a short-range potential

The decisive quantity in the equations of motion,
Eq. (3), is the effective potential W arising from the var-
ious two-body potentials. We look first at the contribu-
tion to W from a short-range two-body central potential
V(r). In the present context we shall define short range
as a potential that decreases faster than any power of
the radial variable. This is a more restrictive definition
than used in Ref. [4]. The matrix element is computed
by a change of variables to p and Q2. The distance r be-
tween the two particles becomes r = (p/a) cos a, where
a is the square root of the reduced mass in units of the
nucleon mass corresponding to the two-body system in-
volved. The contribution to W from a two-body potential
V is then given by

/dQY,C(Q)Y;cr(Q)V (2pcosa> . (5)

In the large-distance limit of p > ry, where r¢ is the
radius beyond which the potential can be neglected, the
integrand in Eq. (5) vanishes unless 7/2 — € < a < 7/2,
where € = arcsin(aro/p) = aro/p is a small quantity. The
Jacobi polynomials in the hyperharmonics are then ap-
proximately constant and the angles dQ2, and d2, are
then easily integrated out. Apart from the potential
strength parameters and other normalization constants,
one obtains therefore the large-distance behavior of the
effective potentials as [20]
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Only diagonal terms in the angular momentum quantum
numbers appear, whereas the long-distance behavior of
the potentials is independent of the radial quantum num-
bers K and K’. Thus, a short-range two-body poten-
tial gives an effective p-dependent potential that has the
long-distance asymptotic form p~™, where n > 3. This
is faster than the always present centrifugal barrier and
therefore unimportant for large distances.

C. Weak-binding limit for short-range potentials

The radial potentials arising from the short-range two-
body potentials are all decreasing faster at large distances
than the generalized centrifugal barrier term. Since the
radial wave functions, fx, all decrease exponentially with
p, provided no binary subsystem is bound [17], we can
conclude that the equations of motion, Eq. (3), decouple
in the asymptotic large-distance limit. The radial wave
functions in this region, where the matrix elements of the

short-range potentials are negligible, are solutions to the
following simple equation:

—d—pzflc+

e (K+3/2)(K+5/2) 0\ 2p ¢ (7)

where k2 = —2mFE /k%. This equation is valid for p > pr,
where pr, is the radius beyond which the potentials W
in Eq. (3) can be neglected compared to the centrifugal
barrier term. The corresponding solution is a modified
Bessel function with asymptotic forms e and 2= X—3/2,
respectively, for large and small values of z = kp. The po-
tential at smaller distances is not specified at the moment
and we shall only assume that the energy is a smooth
function of the parameters of the potentials V;; and that
the wave functions are well behaved for p < pr, in par-
ticular that fx(pr) are finite.

The key quantities describing the size of the system
are the moments of p which may be divided into con-
tributions from the inner (p < pr) and outer (p > pr)
region:

(") =Y n(K) + On(K)] . (8)
K

The inner parts I, of these integrals are finite for all
bound systems. The outer parts

0, = /oo f&(p)p™dp (9)

may be evaluated in the limit of vanishing binding energy.
In complete analogy to Ref. [4] (substituting K + 3/2 for
l), we obtain the following scaling behavior for small «:

5
0,, o g2E+2-n const+/ 2 "2K=3+ng,
KpL

(oK) "T2E+2 . > 2K + 2,
x ¢ In(prk), n=2K +2, (10)
const, n < 2K + 2,

where § is a nonvanishing small number.

We can now extract a few important conclusions. Nor-
malization of the wave function involves O¢ which always
is finite even when the energy goes to zero. The rms
(root mean square) radius involves O, and diverges log-
arithmically for K = 0 and converges for K > 0. In
general, for any given n the lowest K in the expansion
in Eq. (1) leads to the fastest divergence provided the
moment is divergent at all, i.e., if n > 2K, ;, + 2 where
K onin is the lowest possible K value. When K, also is
the dominating component in the wave function, the scal-
ing properties at low binding are those of O, (K = Kpia)-
When the main component has a value of K larger than
K nin, the limiting behavior will at first be determined
by the main component. Ultimately the lowest K value
will dominate, unless of course its weight simultaneuosly
approaches zero.

It is rather easy to estimate when a smaller component
from a lower K value will catch up with the dominating
term. The difference in K is at least two, as the terms
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should have the same parity. When both terms diverge
one sees from Eq. (10), upper line, that the difference
in weight can be compensated by the difference of four
powers of kpr. For an admixture of the lower K value
of a few percent this corresponds to a binding energy of
about 200 keV. This result is unchanged when the main
term leads to a logarithmic divergence (n = 2K + 2),
which is very slow in the present context. Finally, when
the admixture diverges logarithmically the leading term
is convergent, and the energy of equal contribution will
be on the eV scale.

We shall close this section by emphasizing that the
three-body system behaves quite different from the two-
body system in the low-binding limit. The probability
for finding the “halo” inside the range of the “core” po-
tential is finite for all relative angular momenta even for
vanishing binding energy (Oo remains constant). The
asymptotic value of the second radial moment behaves
like

2 In KPL), K =0,

(p%) = { COI(lst, )K # 0, (11)
where K is the dominating term in the wave function.
For K = 0 no admixture of lower values can occur and
for a nonzero K value, the worst divergence from an ad-
mixture would be logarithmic and as such not noticeable
for energies above the eV region for admixtures on the
5% level. The results expressed in Eq. (11) are therefore
in most cases accurate although not completely stringent.

The moments of the effective radial coordinate p are
the basic quantities from which we may compute all other
radial moments. In particular the moments related to
the distances  and y between the three particles are
interesting. In the only case of diverging mean square
radius, K = 0, all angular momenta are zero and the
wave function is ¥(p,Q) = 732 fy(p)p~5/2. We there-
fore have (z2) = (y2) = (p?)/2 from which we get the
physical mean square values by multiplying with appro-
priate ratios of reduced masses. For two neutrons around
a core with mass number A., we obtain from the Ap-
pendix (r2_ ) = (p?) and (rfnn)c) = (1 + 2/A.)(p?) /4,
where 7, and 7(nn)c, respectively, are the distance be-
tween the neutrons and their center of mass distance from
the core.

D. Weak-binding limit for »~* potentials

We shall now consider the case where the two-body po-
tential of longest range has the form V(r) = S/r” where
S is the strength of the potential. We shall only consider
repulsive potentials (S > 0) which fall off slower than
773 (v < 3). Otherwise the core will become too repul-
sive and the integrals in the matrix elements Wik will
diverge. Clearly the large-distance behavior of these ef-
fective potentials is the same as for the original two-body
potential. They can be neglected compared to the cen-
trifugal barrier at large p for 2 < v < 3, in which case all
the above results derived for short-range potentials are
valid.

If v = 2, we must keep the diagonal contribution from
W in Eq. (7). This amounts to a renormalized larger
value of K which in turn should be used in the scaling
behavior of O, in Egs. (10) and (11). Thus also the
second radial moment of K = 0 is convergent.

When 0 < v < 2, we are not mathematically allowed
to neglect the nondiagonal coupling terms in the equa-
tions of motion. In other words, the equations do not
necessarily decouple at large distances as for short-range
potentials. On the other hand, several computations,
where the Coulomb potential is included and K mixture
is allowed, still led to solutions, where one K value dom-
inates the wave function; see refs. [16,18]. Furthermore,
the repulsive barrier clearly squeezes a bound system to-
wards smaller radii, which will diminish the coupling at
large distances. We shall therefore assume that the off-
diagonal matrix elements can be neglected. Physically
this seems to be a very reasonable assumption in our
case, although a different large-distance behavior of the
components of the wave function mathematically cannot
be excluded.

The uncoupled one-dimensional radial Schrédinger
equation is now given by

d? K +3/2)(K +5/2
—'d?f“( //))g /2)

f)c+%f7<+f€2f;c =0,
(12)

where ) is determined from Eq. (4). As we have assumed
a repulsive potential and therefore a positive A value, we
can now introduce the dimensionless variable z = A7-v p
and obtain

0, =)\ Ein / wz(z)z"dz , (13)

L

where z;, = A% pr and w(z) = f;c(z)\v»l'2 ).

The lower limit of the integral in O, is finite, since
both A and py, are finite and independent of energy. The
integrand consequently remains finite at the lower limit.
The large-distance asymptotic behavior may be deter-
mined from the asymptotic (z large) equation for vanish-
ing energy, w = w/z", which has the asymptotic large-
distance solution

2 ﬁ*”) . (14)

w— z¥/4 exp (—
2—-v

Thus, the integral in O,, also receives finite contribution

from large distances and the conclusion is that any repul-

sive two-body potential of the kind r=%, 0 < v < 2, leads

to diagonal solutions where all radial moments remain

finite.

A particularly important example is the Coulomb po-
tential corresponding to v = 1. This case applies in
other words to charged particles in the halo of the three-
body system. The diagonal strength parameter A =
(2m/k*) Y, Z; Zre?a;16/(37) is obtained from Eq. (4)
for K = 0. The asymptotic form of the wave function
for vanishing binding energy is now (Ap)/4 exp(—2+/Ap).
This is a slower falloff than for the familiar exponential
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obtained for neutral systems at a finite binding energy
(or equivalently for a constant potential barrier extend-
ing to infinity), but the falloff is not slow enough to cause
divergences. As for the general case above, we conclude
that all radial moments are finite. The binding energy
is either negative, and the system unstable, or positive
and the system remains finite no matter how close the
binding energy approaches zero.

III. NUMERICAL RESULTS

To illustrate the actual behavior of three-body sys-
tems, we must specify the two-body potentials. We shall
in this section consider two nucleons outside a heavier
core. The nucleon-nucleon potential is kept fixed in all
calculations, whereas the nucleon-core potential is varied
to change the binding energy of the total system.

The nucleon-nucleon potential is chosen to reproduce
free low-energy scattering data for identical nucleons.
This can be achieved if the observed singlet s-wave scat-
tering length and the effective range both are repro-
duced by a simple potential. Other properties are ex-
pected to be rather insignificant for the present purpose
of studying weakly bound systems. We use a square
well potential [S,,©(r < Rn,)] with the strength S,, =
—13.4 MeV and a radius parameter R,, = 2.65 fm from
Ref. [21]. For comparison we tried a Gaussian potential
[(Snn exp(—rz/b,mz)] with strength S,,, = —31 MeV and
range parameter b,, = 1.8 fm from Ref. [10]. In addition,
we also used the Gogny-Pires-de Toureil (GPT) poten-
tial consisting of three Gaussians [22]. These potentials,
reproducing the low-energy scattering neutron-neutron
data, will be used throughout also for neutron-proton

halos.

A. Scaling properties

It is well known that the spherical two-body problem
with a square well potential has scaling properties be-
tween size and energy. This is easily obtained by mul-
tiplying all energies by RZ and dividing all lengths by
Ry, where Ry is the potential radius. For a Gaussian
potential a similar scaling holds with Rg substituted by
the range parameter b. All sizes of the potential and
in fact also potentials of different shapes then results in
one universal curve for each angular momentum; see also
Ref. [5]. This is clearly a very simplifying feature which
allows an easy overview.

The three-body problem is different, since our effective
radial equation receives contributions from three short-
range potentials and possibly also from Coulomb interac-
tions. However, scaling may still be approximately valid,
provided a single effective p potential can be used to re-
produce the energy and mean square radius of the sys-
tem. If we only consider the short-range potentials, it is
reasonable to expect that the radius po of this effective
potential must be an average over the individual two-
body radii R;;. An attempt of parametrization for square
well potentials could then be
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po? = Yoy jo1(aii Rij)?(aij Rij) Vi
0 = )
Ef>j:1(ainij)2Vi‘

where V;; are the potential depths.

This form turns out to work well in practice, although
it is based only on the following heuristic arguments. All
radii should enter with the square root of the correspond-
ing reduced mass u = a2, since this combination enters
the effective radial Schrédinger equation. The weights in
the average are conjectured to be given by the quanti-
ties (a,'jR,-j)zV,-j which determine the two-body scaling.
The average is taken over the radii squared (other combi-
nations were tried, but were not as successful). Various
limits of Eq. (15) are now reasonable. When all aR are
equal or only one R is nonzero, the radius pg reduces to
the corresponding aR. We may expect that po will de-
pend weakly on [, through the shape of the outer part of
the radial potential, see Eq. (6). We do not attempt to
include this effect at the present level of accuracy, where
we furthermore mainly want to consider low values of /.

In an application, where even the lowest lying levels
of all two-body systems only are slightly unbound, we
have that (aR)?V for a given angular momentum ap-
proximately is a constant independent of the individual
two-body channel. The change in V needed for varying
the binding energy is rather small and can therefore be
neglected at the present level of accuracy. For ground-
state s waves in all channels Eq. (15) now reduces to

(15)

po® = (16)

3
> (aiRij)?,
i>7=1

Q| =

which in the important case of two neutrons outside a
heavy core further simplifies to

P02 = scﬂcnthm + smunnRyzm s (17)
where Rc.n, Rnn and pcpn, pnn are the related radii and
reduced masses in units of m for the subsystems and
Se =28, =2/3.

When one of the potentials has a weakly unbound p
state, the strength of the potential is roughly four times
as large as for the lowest s state. (This is seen from an
infinite square well, where the energies are found from
the zero points of the Bessel functions.) Since a state of
K =1 for two nucleons outside a heavy core on average
essentially corresponds to one of the nucleons in a p state
and the other nucleon in an s state, the value of pg is
still given by Eq. (17) with s, = 5s, = 5/6. When the
two nucleons instead are in a state of K = 2 roughly
corresponding to both nucleons in p states, we obtain in
complete analogy again Eq. (17) with s, = 8s, = 8/9.

For Gaussian potentials we can most easily find the
appropriate scaling rule by relating to square well po-
tentials. The energy of a two-body system interacting
through a square well potential is determined by the
product of depth and radius squared. A tempting and
reasonable generalization of this quantity to other spher-
ical potentials is f Vrdr, which then should be indepen-
dent of the potential for a given energy. The range pa-
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rameter in a given potential V' can now be related to the
radius of a square well by
JVridr _ J Vigr3dr _ RZ,
f Vrdr f Visqrdr 2’

(18)

where we again use the second radial moment, since
we only attempt to reproduce mean square radii. For
a Gaussian potential with range parameter b this
gives R, = bv2. For a Woods-Saxon potential,
{1 + exp[(r — R)/a]}7!, it gives aproximately Ry, =
R+\/1+5/3(ma/R)2. This relation enables us to derive
the square well equivalent py to be used in the scaling of
other potentials.

These prescriptions provide a rather general way of
comparing the results (mean square radii and energies)
for different potentials with each other as well as with
measured values. Other examples may also be worked
out if needed, e.g., corresponding to the first excited K =
0 state where excited two-body s states contribute.

The scaling parameter pg in Eq. (17) is a sum of two
terms, where the neutron-core term is larger than the
neutron-neutron term by roughly a factor of 4A,2;/ % where
A, is the mass number of the core. This factor arises by
combining the weight factor 2, the reduced masses, and
the ordinary estimate of nuclear radii. The scaling pa-
rameter is consequently dominated by the neutron-core
interaction and rather insensitive to the actual choice of
the neutron-neutron interaction.

B. Two neutrons in the halo

We must here specify the neutron-core potential
and use a square well [S.,O(r < R.)], a Gauss-
ian [Sen exp(-rz/bcnz)]a or a Woods-Saxon potential
(Scn{1 + exp[(r — R)/a]}~!). The radius and range
parameters are fixed to the values R., = 1,3,5,7 fm,
ben = 2.55 fm [10,19], R = 3.02 fm, and a = 0.75 fm [9],
whereas the strength parameters are left as free param-
eters to allow for variation of the binding energy of the
total system.

We illustrate first in Fig. 2 the scaling as well as the
asymptotic behavior for the lowest three K values. The
lines correspond to calculations with the square well po-
tential where only a single K value is included. As
the binding energy decreases, we observe that the mean
square radius converges towards finite values for K = 1,2
and diverges logarithmically for K = 0. The centrifugal
barrier is seen to confine the system rather strongly in
perfect agreement with the general discussion in Sec. II;
see, for example, Eq. (11). The limiting behavior is, like
in the two-body case, essentially reached at around 1
MeV fm?. However, the asymptotic three-body system is
more confined due to the larger effective centrifugal bar-
rier. The behavior in the two cases is rather analogous,
if the translation [ = K + 3/2 is used.

The scaling behavior suggested in Eq. (17) is followed
remarkably well. Even the results for a neutron-core ra-
dius of 7 fm (not shown) can hardly be distinguished from
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FIG. 2. The mean square radius as function of binding en-
ergy for K = 0,1,2 for two neutrons outside a core of nine
nucleons. The curves are calculated with the square well po-
tentials using one K value only. Short-dashed, long-dashed,
and full curves are for 1 fm, 3 fm, and 5 fm radii of the
neutron-core potential, respectively. All are obtained with a
neutron-neutron square well potential of S,, = —13.4 MeV
and Rn. = 2.65 fm, see Ref. [21]. The solid squares and solid
triangles are for the GPT potential from Ref. [22] and a neu-
tron-core potential specified in the text. Even though several
K values were allowed the main components had K = 0 and
K = 2, respectively. The depth of the neutron-core potential
is varied along the curves. The scaling parameter po is taken
from Egs. (17) and (18).

the other two curves with K = 0. The relative weights of
the radii are about right, since the variation displayed in
Fig. 2 covers the range from small to large neutron-core
radii compared to the neutron-neutron radius.

The solid points in Fig. 2 are the results using several
K values and Gaussian potentials (for K = 0) or Woods-
Saxon potentials (for K = 2). For K = 0 the strength
Scrn is about —10 MeV for all partial waves, for K = 2 we
used a repulsive s-wave potential (S., = 25 MeV) and an
attractive p-wave potential (S, =~ —22 MeV). This latter
choice makes the (K, L,l,,l,) = (2,0,0,0) component of
the wave function dominant. The value of pg is obtained
by use of a neutron-neutron radius of b = 1.8 fm from
Ref. [10] although the actual numbers were computed
with a more complicated potential [22]. This is permiss-
able as seen in Fig. 2 and as argued above. Furthermore,
the calculations allow mixing of K values which means
that many states of even K are mixed, but each state is
still dominated by one contribution. The same energy is
then found by a slightly more shallow potential, but as
seen in the figure, the shape of the curves still remain
unchanged. All these features underline the power of the
scaling procedure, where apparently only gross features
of the potential are important. Even a square well can
therefore be used to obtain quantitative results with an
accuracy of about 10% for pronounced halos.

The K dependence of the relative extensions of the var-
ious states may be seen in Fig. 3, where we, for a given
small energy, show the probability as function of p for the
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FIG. 3. The absolute square of the wave function fx as
function of p for the square well potentials of Fig. 2 for three
K values. The binding energy is 0.013 MeV and the radius
of the neutron-core potential is 3 fm.

three lowest K values. The volume element is in other
words included and the integral of the plotted function is
unity. The strong suppression of the tail is clearly seen
as K increases, although even the K = 2 state has a sub-
stantial fraction of the probability at distances outside 5
fm. The K = 0 tail is significant between 10 and 15 fm
corresponding to 3-5 times the radii of the square well
potentials.

The energy dependence of the wave function for K = 0
is shown in Fig. 4. The probability in the tail is increased
substantially when the binding energy decreases from 1
MeV to 100 keV, whereas the increase is much slower
when even lower binding energies are considered.

C. Charged nucleons in the halo

When the core is charged and the halo contains pro-
tons, we must include both short-range attractions and
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FIG. 4. The absolute square of the wave function fo as
function of p for the square well potentials of Fig. 2 for three
binding energies. The radius of the neutron-core potential is
3 fm.
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the long-range Coulomb repulsion. The potential be-
tween halo particles must be similar to the neutron-
neutron potential and not deuteronlike. Otherwise a
bound subsystem would appear and the present treat-
ment would be meaningless. Here we do not treat the
case of a deuteronlike structure surrounding a core even
though it might give a lower energy, but concentrate in-
stead on the isospin 1 relative halo state. Such a state
could appear, for example, at high excitation energy as
an isobaric analogue state of a two-neutron halo nucleus.
The neutron-core and the proton-core short-range po-
tentials are assumed to have the same range. For the
following numerical calculations only the sum of the two
strengths is important.

The asymptotic behavior of the mean square radius as
function of energy is shown in Fig. 5 for zero, one, and
two charges in the halo. The two-neutron case of Fig. 2 is
included for comparison and we observe clearly the con-
vergence at low binding energy as soon as the Coulomb
potential is present. One proton in the halo still leaves
room for a significant increase of size by decreasing the
energy, whereas already two charges confine the system to
a size almost independent of energy. Even larger charges
would of course magnify this trend.

The scaling applied in Fig. 2 is used completely un-
changed in Fig. 5. Since the Coulomb potential is not
taken into account in the scaling rule, it is not surprising
that larger deviations occur for charged particles. We
notice that the (charge independent) scaling is better
at larger than at smaller binding energies in accordance
with the reduced influence of the Coulomb potential on
strongly bound systems. The tail of the wave function de-
creases exponentially for strong binding, where the short-
range potential itself is keeping the system confined be-
fore it is large enough to be influenced by the Coulomb
potential. The opposite behavior is seen at smaller en-
ergies, where the short-range potential allows for an ex-
tended system, which then instead is squeezed by the re-
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FIG. 5. The same as Fig. 2 for K = 0 for two neutrons, two
protons, and one neutron and one proton in the halo outside
a Li core. The scaling applied is as in Fig. 2, although the
Coulomb interaction is present.
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FIG. 6. The absolute square of the wave function fo as
function of p for the square well potentials of Fig. 2 for an en-
ergy of 3 keV for two neutrons, two protons, and one neutron
and one proton in the halo outside a Li core. The radius of
the neutron-core potential is 3 fm.

pulsive Coulomb potential. It is simply a question about
which asymptotic behavior is the physically relevant one,
exp(—kp) or exp(—2+/Ap). Mathematically it is of course
the former (the latter only applies as long as the bind-
ing energy is small compared to the Coulomb potential),
but if the wave function is sufficiently confined, the large
distances are weakly populated and the behavior at in-
termediate distances is most important.

The wave functions corresponding to the systems in
Fig. 5 are shown for a small binding energy in Fig. 6.
We see again that the large tail of the neutral system is
reduced as the Coulomb potential is increased. Although
the two-proton tail still has not disappeared altogether,
it is clear that an additional Coulomb potential, obtained
by increase of either core or halo charge, will confine the
system to “normal” sizes.

IV. APPLICATION IN PRACTICE

Except at the drip lines the threshold for separation of
two nucleons will lie above the threshold for separation of
one nucleon. Examples of three-body halos are therefore
most likely to be found at the drip lines, since the region
of high excitation energy where they would appear closer
to stability is harder to investigate experimentally. We
apply in this section the general theory developed above
to some specific nuclei. A better description of these
nuclei can of course be obtained with more detailed and
dedicated studies as has already been done [9], e.g., for
5He and !'Li. However, here we are mainly interested in
extracting the general features and therefore do not need
such a level of sophistication.

A. When halos appear

To apply the scaling in Fig. 2 between size and energy
for a given nucleus one must obtain a value for pg, which

obviously is related to the potential between core and
halo particles. This potential in turn is related to the
density distribution of the core nucleus. As the potential
has a larger radius than the density, we may write

<r2>pot = <7'2>core + A%, (19)

where A then has to be estimated. If the potential
is found by folding the point density and the nucleon-
nucleon interaction used in Sec. III we obtain A =
2.20 fm for Gaussian and 2.05 fm for square well po-
tentials. Using the measured point radius of the core
and a given form of our potential, pg is computed from
the appropriate relation in Sec. III A. The value of (p?)
is then found from Fig. 2 and the total rms radius for a
system with core mass number A. and total mass number
A= A, + 2 is given by

Ac
A

<T2>core + i</’2> . (20)

<7‘2>tot = A

For a given energy the rms radii are more sensitive to the
value for the potential range than was the case [4] for two-
body systems. For s waves one there had an asymptotic
scaling law

(7'2) 1
‘R~ ERZ (21)

where Ry was the radius of the potential well. The rms
radius is therefore independent of Ry in the limit of van-
ishing binding energy. For the three-body case we have
instead from the behavior displayed in Fig. 2, which in
turn was derived from Eq. (11), that

2
2 poIn(kpo), K =0,
() o { p3 X const, K #0, (22)

where the larger sensitivity to po is seen explicitly. The
scaling with the square of the core radius is the typical
behavior for normal nuclei.

The definition of a halo state is not as clear-cut in the
three-body case as in the two-body case. Should one use
the probability for all particles to be separated from each
other or the probability that just a pair is far apart? In
terms of p it is clear from Figs. 3, 4 and 6 that the sys-
tems generally have a large probability (more than 80%)
of being at distances larger than py. They reside in the
“pocket” created by the combined effect of the repulsive
centrifugal barrier and the tail of the effective W poten-
tial. The probability of being in the asymptotic region
(p > pr) will never get close to one, again due to the
influence of the centrifugal barrier that here confines the
system. If we instead use the probability for one nu-
cleon to be outside the core (independent of the position
of the other) as the measure, we find similarly that the
probability for having 7, larger than 3% (ie., that
the nucleon is outside the bulk of the core) again will be
large. On the other hand the probability of being outside
the two-body potential (7., > Rcpn) is more moderate —
reaching 90 and 40 % asymptotically for small energies
for K = 0 and 2, respectively. The probability reaches
50% for {p?)/p3 about 3-5. Due to the scaling properties,
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a certain probability for being outside the core converts
to a fixed ratio of halo to core radii.

A crude estimate indicating when halos appear can
be inferred from the mean square radii of two nucle-
ons around a core. It seems reasonable to demand that
the ratio (r2,)/RZ, at least should exceed 1-2 if the
state should be considered a halo. For a heavy core
(r2.) =~ (p?)/2 and by use of Eq. (17) one finds that
the ratio (p?)/p2 should be at least 3-6. (This inciden-
tally agrees with the alternative definition (p?) > p3,
since pr, can be expected to be a few times larger than
po.) Referring back to Fig. 2 we would therefore consider
K =0 and K = 1 states at low binding energy as halo
states, whereas more detailed calculations are needed to
decide for a K = 2 state.

As already shown the two-body systems are more di-
vergent in the limit of small binding energy, but it is
noteworthy that the mean square radii are quite simi-
lar at binding energies of a few hundred keV. For very
small binding energies we certainly expect the two-body
systems to give larger effects, but for “normal halos” at
binding energies 100 keV or larger, we would expect two-
and three-body systems to give experimental signatures
of similar magnitude. When one goes to heavier systems
R.,., and as seen from Sec. III A therefore also po will
scale as A!/3. It follows immediately from Egs. (20)-
(22) that all our conclusions drawn for light nuclei can
be transferred provided the binding energies are scaled
as A=2/3. As a general rule we therefore conclude that
halos only can appear for states with EA?/3 less than a
few MeV.

B. Halo states

We list in Table I some nuclear states that should be
well described as consisting of three particles. It gives
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some basic experimental quantities and our calculated

“value for the halo size and for the probability P,.; of

having 7., > Rcn. An explicit calculation was done for
each case with a square well potential, the radius of which
is also listed.

Among the nuclei mentioned in Table I the ground
state of ®He and its isobaric analog state, the lowest
isospin 1 state in Li, are unique since the nucleon-core
potential is well known. Detailed ab initio calculations
can therefore be performed [9]. These nuclei are special
in the sense that the core (an alpha particle) is tightly
bound and small and the computation therefore sensi-
tive to the average value chosen for A. The total rms
radius for He would from our calculations be 2.36 fm,
which can be compared with the experimental value [24]
of 2.52 £+ 0.03 fm.

Much work has also been done on the nucleus Li,
see, e.g., the review in [9]. Here, as in the other cases
in Table I, the core is unstable and the nucleon-core po-
tential is consequently not very well known. It is not
even known with certainty in what orbitals the two outer
neutrons are placed; we have therefore calculated both
for the cases K = 0 and K = 2. The resulting total
rms radii become 3.37 fm and 2.79 fm, respectively, to
be compared with the value of 3.10 £+ 0.17 fm extracted
from experiment. For K = 0 the sensitivity of the rms
radius to variations in the energy is about 1.5 fm/MeV
at —E = 0.25 MeV. Even though the latter value does
not include the uncertainty stemming from the extrac-
tion procedure (see Ref. [24]) these values still indicate
that the K = 0 and K = 2 components in !'Li are com-
parable. Note also that the cross section for processes as
1B(x~,w*)!Li will converge to a constant as the bind-
ing energy vanishes even for a pure K = 0 solution. This
deviates drastically from the rz_,f scaling (72, is the rms

TABLE 1. Halo states in the one hyperharmonic approximation. For each state the binding
energy, the rms core radius with corresponding potential radius and the K quantum number of
the halo particles are listed. The probability Poy: for a neutron to be outside the neutron-core
potential and the expectation values of p? for the halo particle and the total rms radius of the
system calculated for a square well potential is given in the last columns.

Nucleus -E* Configu- AL Ren K Pout ©? L2
(keV) ration (fm) (fm) (%) (fm?) (fm)

5He 975 n + n+THe 1.59 3.35 2 49 23.3 2.36
b P 250° n + n+°Li 2.32 4.00 0 60 76.2 3.37
2 47 37.1 2.79

14Be 1120 n + n+?Be 2.58 4.25 0 42 42.8 2.96
2 41 36.2 2.88

17g 1520° n+n+°B 2.40 4.07 0 39 36.3 2.69
2 40 32.9 2.65

1B 500 n+n+!"B 2.654 4.33 0 52 63.0 3.10
2 44 415 2.91

SLi® 136 n + p+iHe 1.59 3.35 2 50 24.5 2.40
"Ne 950 p+p+°0 2.72f 4.40 0 20 23.6 2.81

2From Ref. {23] except where noted.

bFrom the point density. From Ref. [24] except where noted.

“Reference [25].
dQur calculated value.

°The excited state at 3.56 MeV, all other states are ground states.

fThe 0 radius charge.
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radius of the last two neutrons) suggested in [26].

The nuclei “Be and "B are not nearly as loosely
bound so that the difference between the total rms ra-
dius for K = 0 and K = 2 becomes quite small. None of
them can be considered as having well-developed halos.
The experimental value of the rms radius of *Be is 3.1
+ 0.4 fm, which is consistent with our calculated value
of 2.9 fm.

There is very little experimental information available
on the nucleus 1°B, but mass extrapolations predict it to
be rather loosely bound. We have used a binding energy
for the last two neutrons of 500 keV and our calculated
core radius for "B to estimate its radius. If the binding
energy does turn out to be low, °B could become as
interesting as 'Li. There are more potential ground-
state two-neutron halo nuclei further up the neutron drip-
line, e.g., 22C and 2°F, but their binding energies are
again not yet experimentally known and one can only
hope that some of them will turn out to be very loosely
bound and therefore interesting.

The first Borromean nucleus on the proton drip line
is 17Ne (if one excepts °C for which both the one- and
two-proton daughters, °B and ®Be, are unbound — it
has a two-proton separation energy of 3.8 MeV), but as
seen from the calculated radius it can hardly be counted
as a halo even if K should turn out to be zero. The
Coulomb confinement effects are too large for this case
of two protons outside 8 unit charges in the core.

V. SUMMARY AND CONCLUSIONS

We have investigated the asymptotic behavior of the
nuclear three-body problem for small binding energies.
The system interacts through two-body potentials, which
are so weak that no binary subsystem is bound, although
the three particles are bound in a quantum mechani-
cal state. The interactions are of short range except
for charged systems where the Coulomb potential enters.
We speak of a core and two halo particles although this
terminology sometimes is rather artificial. The basic as-
sumption is that all three “particles” are inert and the
corresponding intrinsic degrees of freedom are completely
decoupled. Thus the results are only applicable when the
particle overlaps turn out to be small.

We use the hyperharmonic expansion and assume for
simplicity that all “particles” are spinless. The method is
simple and useful for these systems, where usually about
90% of the wave function is in a state of given so-called
hyperharmonic quantum number K. An accurate calcu-
lation of the binding energy for a given set of interactions
requires that many K values are included in the expan-
sion. However, the functions with different K-values de-
couple at large distances for short-range potentials and
we are left with an effective radial equation with a cen-
trifugal barrier term and a potential falling off at least as
the third power of the distance.

For each K we compute analytically for short-range po-
tentials the asymptotic behavior of the radial moments
in the low binding energy limit. The results are easily
obtained from corresponding two-body systems by the

substitution ! = K + 3/2 where [ is the two-body an-
gular momentum. The second radial moments are all
convergent for vanishing binding energy except that of
K = 0, which diverges logarithmically. In general, the
lower the K, the faster the divergence, the higher the K,
the smaller the system. A mixture of K values therefore,
in the extreme low-energy region, lead to a size of the sys-
tem which is determined by the lowest possible value of
K. When this K value is also the dominating component
in the wave function, the asymptotic behavior is deter-
mined accordingly. When a higher K value dominates
the wave function, it also determines the asymptotic be-
havior of the radial moment for all binding energies of
interest in the nuclear context.

An approximate scaling of size versus energy is found
independent of the details of the potential even when the
asymptotic mean square radius is finite. This results in
a universal scaling plot (Fig. 2) of the second radial mo-
ment versus binding energy. We argued that halos would
appear for (p?)/p2 above 5, i.e., mainly for K = 0 and
1. The asymptotic behavior is reached at about 0.2 MeV
for light nuclei and at smaller energies for heavier nuclei.
This implies that halos only can be expected to show
up for heavier nuclei at binding energies scaled down by
the square of the characteristic length. Crudely speak-
ing the limiting binding energy should then behave like
1 MeV/A?/3. In this connection it is worth emphasizing
that halo states may be ground states as well as excited
states.

Inclusion of repulsive power law (1/p") potentials, like
the Coulomb interaction for charged particles, confine
(for 0 < v < 2) all radial moments to finite values
for all binding energies. The asymptotic wave function
[(Ap)Y/* exp(—24/Ap) for a Coulomb potential with an in-
verse effective Coulomb length parameter )] for zero en-
ergy decreases fast enough to make all radial moments
finite. The confinement due to the Coulomb interac-
tion is rather severe and already two protons outside a
core charge of three units limit the extension significantly
compared to the case of two neutrons outside a core.

Only a few three-body halos have been investigated
experimentally. Table I gives our numerical results for
these cases and for a few heavier nuclei.

A three-body system certainly gives room for more
types of structures than a two-body system. Rather gen-
eral results could however be obtained here for the weakly
bound nuclear three-body systems where no binary sub-
systems are bound. Even though the extreme asymptotic
limits might not be realized in nature our results are use-
ful not only as a “guideline “ or “reference unit” but also,
due to the scaling, for qualitative first estimates of the
two-nucleon halo nuclei on the drip lines.
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APPENDIX A: HYPERSPHERICAL
HARMONICS

We consider a system of three particles with masses m;
and coordinates r;. The Jacobi coordinates, see Fig. 1,
are defined as

Xi= QjkTjk, Yi = Q(jk)iT(jk)i>
m;mp

/1 1/2
Aj= mm; T mg )

(A1)

oo (1 (m - mi)m \ T
R\ mmy + my +ms ’
m;T; + MgT

ik = ————T;
(dk)i m; + myg ’

rjk: l'j — Tk,
where i, j, k is a cyclic permutation of 1,2,3, and a? are
the reduced masses of the subsystems in units of m, which
is a normalization mass chosen to be equal to the nucleon
mass.

The hyperspherical variables [16] are introduced as

Py Mg, = Xi/|%i|, ny, =yi/lyil, o, (A2)
where a is in the interval [0, 7/2]
p% = x> +yi%, |xi| = pcosay, |yi| = psina; . (A3)

We omit the indices where we need not emphasize the
particular set of Jacobi coordinates. Note that p is inde-
pendent of what set is used. The kinetic energy operator
is in these coordinates

K@)

p?

A2 | d?
2m | dp?

5d

pdp
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where K 2(Q) is an angular operator. It has the eigenval-
ues K (K +4) and the hyperspherical harmonics (Yx) as
eigenfunctions

Yi = Nx (cosa)'=(sina)'v Py +1/21=%1/2(¢os 2q)
x[Ys, (nw)Yly (ny)]L,

K=(K,l;l,,L,M), n=(K -1, —-1,)/2,

N _( nl(n 4l + 1y + 1) 2(K + 2) )1/2
KT \IT(m+1 +3/2)T(n+1, + 3/2) ’

(A5)

where Y;,,Y;, are ordinary spherical harmonics, PP s
the Jacobi polynomial of order n (n must be a non-
negative integer), and I' is the gamma function. The
total angular momentum L and its projection M is ob-
tained by coupling the relative angular momenta, [, and
ly, corresponding to the = and y coordinates. Only the
total angular momentum L is a conserved quantity which
may be obtained by coupling of different combinations of
I, and L.

Extracting the factor p~3/2 from the radial wave func-
tion allows one to get rid of the first derivative in the
radial equation and leads to the (K + 3/2)(K + 5/2)/p?
form of the centrifugal barrier.

The quantum number K corresponds to definite com-
binations of relative two-body states. As an example
consider the case of two nucleons around a heavy core
and let x be the nucleon-nucleon distance. Then a state
with (K, L,l,,l,) = (0,0,0,0) will correspond to the two
nucleons being in s waves relative to the core. A state
with (K, L,l.,l,) = (2,0,0,0) corresponds to the two nu-
cleons being mainly in p waves (already 99% for a core of
mass 9). Finally, (K,L,!,,l,) = (1,0,0,1) corresponds
mainly to one nucleon in a p wave and the other in an s
wave.
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