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Randem-phase-approximation-type vertex carrectiens to the axial-vector current
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We study the isovector weak response of the core to an external perturbation using linear response
theory in nuclear matter. We extend previous results to the kinematic region away from the long
wavelength regime where the efFects have been proven small. For the muon capture process we found
a sizable quenching of the contribution of the induced pseudoscalar term. Applied to actual nuclei,
however, the strong density dependence of the weak isovector response washes out the screening
found at nuclear matter densities, slightly modifying muon capture rates.

PACS number(s): 23.40.Bw, 21.60.Jz, 21.65.+f

I. INTRODUCTION p + O(0+, g.s.) ~ N(0, 120 keV) + v„

It is well known [1] that the axial-vector current is
considerably modified by hadronic processes when em-
bedded in the nuclear medium. In particular, transitions
driven by the zeroth component of the axial current ap-
pear to be strongly enhanced with respect to &ee space
estimates (up to a factor of 2 for heavy nuclei [2]) when in
the presence of other nucleons. In Ref. [3], as part of an
investigation related to this enhancement in heavy nuclei,
we calculated the isovector weak response of the core to
the presence of a valence particle, and found that it was
negligible for the small momentum transfers involved in
nuclear P decay (in [3] we concentrated on first forbid-
den P transitions). (The contribution of meson-exchange
currents within the same framework was studied in [4].)

Axial charge transitions, however, do not always take
place at zero momentum transfer. In ordinary muon cap-
ture processes the four-momentum transfer q2 is large
( —0.9m2), and therefore it becomes of interest to in-
vestigate whether the weak response of the core gener-
ates any sizable contribution in this kinematic region.
As it turns out, the response of the core, which we calcu-
late in linear response theory within the context of rela-
tivistic hadrodynamics, difFers appreciably &om the zero
momentum result. Modifications arise in the induced
pseudoscalar term of the hadronic axial current which
produce moderate to strong efFects (with some model de-
pendence) in the calculation of capture rates. In this pa-
per we investigate the isovector weak response of the core
to the external perturbation in the approximation of nu-
clear matter and in linear response theory summing the
ring diagrams to all orders in the random phase approx-
imation (RPA) —the so-called backflow correction [5,6].
We present results for the efFects of this core polarization
(of positive and negative energy nucleons) as a function
of the moment»Tn transfer and illustrate these results by
calculating the effects expected in the transition

using the local-density approximation (LDA). Earlier
work on this same transition by Price and Walker [7] and
by Nedjadi and Rook [8] utilized relativistic wave func-
tions in finite nuclei to calculate the transition rate, but
left unanswered the efFect of the backflow corrections.

II. ISOVECTOR WEAK RESPONSE IN
NUCLEAR MATTER

Our starting point will be the most general form of the
hadronic axial current consistent with G invariance (ab-
sence of second-class currents) and pseudovector z'NN
coupling for the pion-pole dominance term,

(2.1)

With I'~ we indicate a generic matrix in spin-isospin
space. Making gA ——gp in (2.1) the partial conservation
of the axial current (PCAC) is straightforwardly satisfied,
namely, lim ~o B„J"s(z)= 0. This choice of the form
factor is known as the Goldberger- Treiman value and dif-
fers somewhat &om what is customarily defined as g~ in
the literature (see, for example, Gmitro and Truol [9]);
they are related by

m + mhere GT( 0 88 2) & P GT (2 2)" (m„+m„)m„6.78

In free space, pseudoscalar or pseudovector coupling
can be used indistinctly in the pion-pole term both sat-
isfying the PCAC constraint. In the nuclear medium,
however, pseudoscalar coupling has the disadvantage
that, besides not satisfying PCAC at the level of oper-
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ators, yields muon capture rates which are anomalously
large [8].

To study the response of the core to the presence of
a valence particle, a valence hole, or a particle-hole pair
we start by calculating the matrix elements of a generic
current operator Jp„ in the form

2F& (*)= (WfinalI Jt'zk (+) I4'initial)

= (Aft..il ij(~)~jtt)'j(*) Iginitiai)

between initial and Bnal states that have in common the
same core (the filled Fermi sphere) and may differ only
by the addition of a particle (hereafter we shall con-
sider only the valence-particle case) to an unoccupied
state with the quantum numbers (k, , s;, r;) for the ini-
tial and (kf, sy, ry) for the final state. The extra par-
ticle gives rise to additional meson fields which modify
the core. In nuclear matter, the addition of a nucleon to
the Fermi sphere introduces changes in the single-particle
core wave functions and consequently in their matrix el-
ements. Thus, in the single-particle approximation, we
write

I4'initial) = (iit, e, r, I4'core) j

(4'snalI = (4'coreIaicj, s j,rj i (2 8)

and, therefore,

jr (*) = (0 o-Ia).j, j, t)j(*)l'&(q)&(~)dii, .„., I&.o-).
(2.4)

To calculate this we first write the operators correspond-
ing to the creation or the annihilation of the added par-
ticle in terms of the field operators g(x) and t)'j(x),

dxf
ai,... , —— U(kf Bf Tf)p Q(z) exp(ijkfx),

(2.5a)

dx3
a&, —— x p U k, , 8;, w; exp —ik,x, 2.5b

where U(k, , ;s, r;) and U(ky, sy, ~y) are four spinors cor-
responding to solutions of the Dirac equation for the in-
teracting baryon fields normalized such that

Ut(k, s, 7.)U(k, s', 7.') = 8, , b (2.6)

We work with a uniform system of A baryons in a box
of volume 0 in the mean-Beld approximation in nuclear
matter which means that the meson fields are substituted
by their classical expectation values. The symmetries of
the problem simplify things since, on the one hand, the
expectation value of the pion Geld vanishes due to par-
ity conservation and, on the other, rotational invariance
around the z axis in isospin space makes the neutral com-

ponent of the p field the only one to survive.
Substituting Eqs. (2.5) back in (2.4) and arbitrarily

choosing initial and Gnal times so as to introduce a time
ordering we obtain

je, (z) = —f dzi dzexp(ikjz) exp,( ikz) (j (kiej—, zj)p , Pxee

x ((it'coreIT 0ce(+f )t)'jp(&)'j(j&s) pt)j(&i) I4'core)gpcUe(ki j sij 'ri). (2.7)

This matrix element can be calculated using standard perturbation theory in terms of the unperturbed (by the
extra particle) field operators. In the relativistic quantum hadrodynamical model QHD-II of Ref. [10] the interaction
Hamiltonian reads

1 — 1
'Rl(g) = l:1(Q) =g~gp„—~ g —g Jog+ g~Qp„v p t('j+— egg„A"(I+7s—)g+ig gp v. ng — gm m —nirP P 2 P 2

(2.8)

oi (
—g gpj'ps/~ B„n) for pseudovector 7rN coupling.

Schematically, each meson-baryon vertex in (2.8) is of the
form

I

mesons. Given the interacting Hamiltonian the matrix
element

(2 9)

where I ~ is a matrix in Dirac space and II(x) is a meson
field operator. There are also meson-meson vertices that
are represented by

(2.IO)

with I'~ a c number. These generalized vertices carry
implicitly a summation over the diferent couplings to the

~(+f ~' ~ **)= (&--I T [&(*x)&(~')@(*)@(**)II&--)
(2.&I)

is expanded in perturbation theory, and the series
summed to all orders in the RPA approximation as rep-
resented, diagramatically, in Fig. 1.

Finally, substituting Eq. (2.4) in the expression for

jr„(x) and taking the appropriate limits for the initial
and final times, after some tedious calculations we arrive
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where

T('xq, x', x,xi ) — A,~
B

6(q)

B a 6(q)

de4
Iio" (q) = i 4 exp ik )q Tr [I'~G(k + q)I'~G(k)]

2vr 4

{2.i3)

t6(q) i5 (q)

7 j, Q(q)
+

B
4~ (q)

is the polarization insertion, b(q) is the dressed me-
son propagator, and u, &

are the initial and final valence
single-particle wave functions

FIG. 1. Diagramatic representation of the perturbative cal-
culation of the matrix element of Eq. {2.11}.

0 1
u, y

—— e *"' ' U(k; g, s; y, r; g). (2.14)

at an expression for the current of the form

&r (&) = (AI JP„(&) + b Jr.'"(&)I&')

uf I'~ u,' —4 q II," q u~ I'~ u,'
(2.12)

I

Equation (2.12) contains a single-particle current term
plus an extra term originating on the polarization of the
core —the backflow current. If we use this result to calcu-
late the matrix element of the axial-vector current given
in (2.1), we obtain

—q I„") & (q) I
))." ' (q)— , 11,"(q) I( ylq-w" v' +I,') . (2.15)

Clearly, the only components of the polarization inser-
tion tensor that contribute are II&' (q) and II& ' . The
other components vanish even at this value of the four-
momentum transfer (as already shown in [S]). They are
related in following fashion,

Il,""()= f ( },

and therefore

11,"(q) = (q )' tv(q),

(2.i7)

(2.is)

ilo'(q) = qplio" (q) (2.i6)

Also, from the explicit calculation of the polarization in-
sertion

with fpv a complicated function of the four-momentum
transfer, not singular at the origin and which depends
on the density through M' and k~ [11]. Substituting
Eqs. (2.17) and (2.18) back into (2.15) and rearranging
we arrive at an expression of the form

(61@v+(&)I&.-) = u~ (upi~" ~'—

+gA

qp,",q-v" ~'~+ lu,')

& (q) fpv(q) (uf I q- z"z' ~+ Iu,') (2.i9)

Notice that the axial response of the core is proportional to the momentum transfer which indicates that it will vanish
as the momentum decreases (as was the case for P-decay processes). This behavior is unlike that of the electromagnetic
response which at zero momentum transfer makes a sizable contribution to the current (e.g. , in the calculation of
magnetic moments).

It pays to define the momentum-dependent function

Cvv(q) = 1 —m„{ ) 4"(q) jvv(q) (2.2O)

since with this definition Eq. (2.19) may be recast in the form
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&Al~pv (~)14*) = gA

(ural

~"~'~+ lu,'& —Cpv(q),
q —fA

(2.21)

allowing for the definition of an effective axial —vector current of the form,

Jpv s(&) = 40(&) gA 'Y 'Y CPv(q) g 2 q Y Y + A(+).
1

(2.22)

Equation (2.22) is our main result. It shows that all
effects originating on the isovector axial response of the
core add up to a renormalization of the induced pseu-
doscalar term which can, alternatively, be accounted as a
renormalization of the form factor gp(q) = gA(q)Cpv(q).
This e8'ective current satisfies PCAC since, from (2.20)

lim |py ——1.
m -+0

(2.23)

2.0 I I I

)

I I I I | I I I I

)

I I I I

I

I I I I

1.0

L

One point to remark is that this polarization correction
originates almost entirely in particle-hole excitations (the
density-dependent terms in the Green's function) as op-
posed to particle-antiparticle excitations characteristic of
the isoscalar electromagnetic response [5]. The relativis-
tic dynamics leaks into the calculation of the polarization
insertion through the effective mass M*.

The function Cpv(q) depends on the momentum trans-
fer as shown in Fig. 2. The value of qo has been fixed to
that of muon capture, qo

——0.01m„. The dashed line cor-
responds to the mean-field approximation (MFA) where
one-loop vacuum effects are ignored and the solid line
to the relativistic Hartree approximation (RHA). The
parameters for both calculations are given in Table I.
The peaks in both curves relate to the resonance exci-
tation, at finite density, of particle-hole pairs centered
at q = M'q0/KP which gives q = 20.6 MeV/c in MFA
(M*/M = 0.556; kp = 1.42 fm i) and q = 29.6 MeV/c

in RHA (M'/M = 0.731; k~ = 1.3 fm ). For the muon-
capture kinematics q = 99.5 MeV/c which, from the fig-
ure, implies a quenching of the pseudoscalar induced term
in the MFA case of CpMvF+ (—0.88m2 ) = 0.57. In RHA the
screening of the axial charge by vacuum excitations is not
as strong, and one gets CpRvHA( —0.88m2) = 0.82. Since in
both calculations the effect is substantial, it becomes im-
portant to investigate implications for finite nuclei where
the density is not constant.

III. THE p, +~60 ~~~N+ u„REACTION
REVISITED

To explore the consequences of the results in the pre-
vious section we analyzed the muon-capture process in

0 using the local density approximation. This par-
ticular transition has been extensively studied in the
literature, particularly employing relativistic dynamical
models (Refs. [7,12—14]). The current understanding is
that the capture rate is insensitive to relativistic dynam-
ics with the proviso that pseudovector coupling be used
at the nN vertex [8,14]. The claim is that the axial-
charge density and the spacelike piece of the induced
pseudoscalar term roughly cancel each other leaving a
contribution for which the relativistic correction is not
very large [14].

If, as shown in the previous section, the induced pseu-
doscalar term undergoes a sizable modification due to
vacuum polarization processes then this cancellation may
not take place and an enhancement appear. Unfortu-
nately, a clean calculation is hindered by the nuclear
structure of the problem which is not free from some
ambiguity. Standard calculations use a closed-shell de-
scription of 0 and a (2si~21p~&2) - (Ids~21p~&2) mixing

for the 0, T = 1 first-excited state in N. The amount
of the mixing, A, is usually treated as a parameter used to
fit simultaneously the muon-capture and the beta-decay
rates.

0.0
0

1 I I I I l I I I I

20 40 60 80 100

q (MeV/c)

FIG. 2. The real part of the function Cpv as
given by Eq. (2.20) in the text as a function of the
three-momentum transfer q = lql. The solid curve is the
mean-field-approximation (MFA) result. The dashed curve is
the relativistic Hartree (RHA) calculation.

TABLE I. Parameters used for the calculations presented
in the text. The masses were fixed to their experimental val-

ues: M = 939 MeV, m = 783 MeV, m~ = 770 MeV, and
m = 139 MeV. The coupling constant gp corresponds to the
value that fits the p —+ mx decay.

giv m g'~ g' gp ~~(fm ') M/M
MFT 91.64 550 136.2 181 36.79 1.42 0.556
RHA 69.97 520 102.8 181 36.79 1.30 0.731
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TABLE II. Muon-capture rates in sec for the transition

p + 0 —+ N+ v„. The mixing parameter A has been
set to zero. Cpv = 1 corresponds to no polarization effects,
and Cpv ——LDA to the results of the polarization calculation
using the local density approximation. Pseudovector coupling
is employed at the AN vertex.

Cps =1
3807.0

MFA
Cps =LDA
10148.7

As=&
3288.3

RHA
Cps ——LDA
10017.9

TABLE III. Same as Table II but for pseudoscalar coupling
at the 7rN vertex.

Cpv =1
3193.9

MFA
Cpv=LDA
3336.1

Cpv =1
2762.1

RHA
Cpv=LDA
2779.2

enhancement in the capture rates of 266% in MFA and
304'%%up in RHA.

In Table II we show the results for the muon-capture
rate obtained in MFA and RHA. For each case we quote
the value without inclusion of the medium response
(Cpv=l), and that using the function Cp& in (2.20) in
LDA (Cpv=LDA). These results were obtained setting
the mixing parameter A = 0. A more realistic value
(from our calculations 0.08 & A & 0.12) would not al-
ter the conclusions appreciably. The important point to
remark is that despite the strong quenching of the in-
duced pseudoscalar term at nuclear matter densities in
actual nuclei, its effect is small. The fact is that Cpv
has a strong density dependence that can be appreciated
by looking at Fig. 3 where the real part of Cp~ is shown
for the MFA calculation. At the center of the nucleus
it has roughly the nuclear matter value and decreases as
the density diminishes. Upon reaching the nuclear ra-
dius, it starts to increase and becomes larger than one,
to finally fall asymptotically toward this value. This is
the expected limit since, as mentioned, only contribu-
tions from the density-dependent terms in the Green's
functions enter in the polarization. A similar analysis
applies to the RHA case. The total effect on the capture
rate is of the order of 4'%%uo in MFA and less than 1% in
RHA.

For completeness we have included in Table III the
results corresponding to calculations employing pseu-
doscalar coupling at the vrN vertices. Clearly the effects
are dramatic now, with the function Cps producing an

I I I I

~

I I I I

I

1.0

0.8

0.4

IV. SUMMARY AND CONCLUSIONS

Summarizing, we have investigated the isovector weak
response of the core to an external perturbation driven
by a particle, a hole or a particle-hole pair, using linear
response theory in nuclear matter. The idea behind the
work was to extend previous results to a kinematic re-
gion away from q2 0 where we know that the effect is
negligible. We concentrated on muon-capture processes.
After some algebraic manipulation we noticed that the
polarization contribution could be described as a factor
multiplying the induced pseudoscalar term in the axial
current. For the kinematics of muon capture we found
a sizable quenching, due to this factor, of the contribu-
tion of the induced pseudoscalar term. When applied
to actual nuclei, however, the strong density dependence
of the weak isovector response washes out the screen-
ing found at nuclear matter densities, slightly modifying
muon-capture rates.

The presence of the weak response of the core as calcu-
lated here must, however, be taken into account in rela-
tivistic calculations carried out assuming a uniform den-
sity distribution for the nucleus (see Ref. [15]). In such
cases the induced pseudoscalar term is quenched as in-
dicated, and relativistic effects become important. This
backflow effect is substantial and may help one to better
understand the experiment in these types of calculations.

On the other hand, the results of the previous section
suggest that the uniform density approach to muon cap-
ture may be altogether fiawed because of the strong de-
pendence of the backfiow current on the density. Fearing
et aL [15] have already pointed out that muon-capture
calculations are sensitive to a number of effects which, if
not included, make results difBcult to interpret.

Another important remark relates to the calculations
of Chiang et al. [16] where it is concluded that medium
renormalization effects are instrumental in bringing the-
ory to accord with experiment specially for medium and
heavy nuclei. We anticipate a larger effect from the weak
response in these heavy nuclei. Work on this direction is
currently in progress.

0.2

10
I l I I I I I I I I I I I I I I I I I I I I I I

0 2 4 6 8

r (fm)
FIG. 3. The real part of the function Cpv calculated in lo-

cal—density approximation for 0 as a function of the nuclear
radius. The solid line corresponds to the MFA case and the
dashed line to the RHA.
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