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Simple approximation for the starting-energy-independent two-body
effective interaction with applications to Li
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We apply the Lee-Suzuki iteration method to calculate the linked-folded diagram series for a new
Nijmegen local NN potential. We obtain an exact starting-energy-independent efFective two-body
interaction for a multishell, no-core, harmonic-oscillator model space. It is found that the resulting
efFective-interaction matrix elements can be well approximated by the Brueckner G-matrix elements
evaluated at starting energies selected in a simple way. These starting energies are closely related to
the energies of the initial two-particle states in the ladder diagrams. The "exact" and approximate
efFective interactions are used to calculate the energy spectrum of Li in order to test the utility of
the approximate form.

PACS number(s): 21.30.+y, 21.60.Cs, 27.20.+n

I. INTRODUCTION

Conventional shell-model (SM) calculations often as-
sume an inert core with a few valence nucleons as active
particles. The calculation of the two-body effective in-
teraction for the valence nucleons can be conveniently
divided into three steps: (1) Calculate the Brueckner re-
action matrix G [1) &om a realistic NN potential; (2)
calculate the two-body Q box [2] from the G matrix; and
(3) calculate the folded diagrams [3] &orn the Q box.
The second step provides major difficulties, because one
is unable to evaluate the core-polarization diagrams to all
orders and there is no sign of convergence within the low-
est few orders [4]. This difficulty might be avoided by the
use of a no-core model space [5], for which all the nucleons
in a nucleus are treated as active. In such a model space,
because there are no hole lines, all the core-polarization
diagrams are absent and the two-body Q box reduces to
the G matrix. The folded diagrams can be calculated
&om the Q box by using iteration methods proposed by
Kuo and Krenciglowa [6] or by Lee and Suzuki [7]. Be-
yond these issues are the largely unexplored questions on
the role of efFective many-body forces in no-core model
spaces.

In previous works [8,9], we calculated the low-lying en-
ergy spectra for a few light nuclei by employing no-core
model spaces. We approximated the two-body effective
interaction by the G matrix and neglected the folded di-
agrarns. Because of this approximation, our calculations
involved the starting energy as a parameter, which, in one
study [9], was chosen to fit the nuclear binding energy.

In this work, we will calculate the G matrix using an
improved version of the Nijmegen potential (NijmTI) [10]
and we follow the Lee and Suzuki method [7] to sum the

two-body folded diagrams to all orders. The resulting
starting-energy-independent two-body effective interac-
tion is not Hermitian but its non-Hermiticity is found to
be extremely small. We obtain the Hermitian effective
interaction v,& to be used in our SM calculation by tak-
ing the average of the non-Hermitian effective interaction
and its conjugate. It is pointed out in Ref. [11] that this
is an excellent approximation.

We will also discuss the choice of the two-nucleon
Hamiltonian H~ ~ employed in the G matrix calculation,
which determines the intermediate-energy spectrum in
the ladder diagrams. Currently, due to uncertainties in
the optimal choices of one-body potentials and methods
for treating the spurious center-of-mass motion, there is
no generally accepted H~ ~. It is obvious that the two-

body effective interactions v,& depend on H~ ~, so that
one wishes to employ the H~ ~ which best represents
the physics of the two-nucleon subsystem in the nuclear
medium. We will present a choice which is physically
motivated yet retains simplicity for calculations.

We will furthermore introduce an approximation
scheme which allows us to obtain easily an effective two-
body interaction for a no-core model space directly &om
the starting-energy-dependent G matrix without evalu-
ating the folded diagrams. We will demonstrate that the
resulting approximate form is an improvement over the
procedure we introduced in Ref. [9] and more closely

represents the exact theoretical v,&.
~ (2)

II. G MATRIX AND
TWO-BODY EFFECTIVE INTERACTION

Assuming that there are only two-body interactions
among nucleons in a nucleus, the nuclear Hamiltonian
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for an A-nucleon nucleus can be written as

A A

H= ) t; —T, ~+) v...
i=1 i&j

V(r)

ure HO well

where t is the one-body kinetic energy, T, is the center-
of-mass (c.m. ) kinetic energy of the nucleus, and v is the
two-body NN potential.

The expression for the Brueckner reaction matrix G [1]
can be generally written in the following form:

0 '

ifted HO well

G12(ld) = V12 + V12 2 V12)~ —a~'~ (2)

where Q is the Pauli projection operator and id is the
starting energy. The two-nucleon Hamiltonian H~ ~ rep-
resents the dynamics of the two-particle subsystem in the
nuclear medium generated by the remaining (A —2) nu-

cleons (also referred to as spectators). It makes sense to
optimize the description of this two-particle subsystem in
order to minimize the effects of the many-body effective
interactions which we plan to neglect. Clearly the role
of the medium on the single-particle states needs to be
included and one is, therefore, led to introduce one-body
potentials into H~ ~ yielding

-VO enological well

FIG. 1. The phenomenological, the shifted HO and the
pure HO potential wells. The mean field V(r) generated by
the (A —2) spectator nucleons may be approximated by the
phenomenological well, which is further approximated by the
shifted HO potential for convenience. In the G-matrix calcu-
lation, we have added a constant shift 2VO to both the two-

nucleon Hamiltonian H and the starting energy ~, so the
pure HO potential is used along with a shifted starting energy
u' = co+ 2VO. The same amount of shift added to H and
cu clearly does not have any eH'ect on the G matrix, because
only the difFerence u —H enters the G-matrix equation (6).

H —(tl + t2) + V12 + Vl + V2: (hi + ~2) + v12&

where h = t + V is the single-particle (SP) Hamiltonian
with V the mean field generated by the spectators.

A physically motivated V(t') could be the Hartree-Fock
(HF) self-consistent mean field or the phenomenological
Woods-Saxon (WS) well with appropriate depth, width,
and surface thickness. However, to employ either the HF
Geld or the WS well is a very computationally demand-

ing project for a realistic force v12. For convenience, we

assume that the mean field V can be approximated by a
shifted harmonic-oscillator (HO) potential (see Fig. 1),
namely,

1
V(v ) VHQr"~(r):——Vp+ —mO r = —Vp+u (r).

2

(4)

The use of the HO potential in conjunction of the HO
basis not only simplifies the G-matrix calculation [12]
but also facilitates the treatment of the spurious center-
of-mass motion.

Note that, as far as the low-lying states are concerned,
one need not be greatly concerned with the obvious fact
that, when r goes to infinity, V(i ) vanishes while u (r)
becomes infinite. Actually, in the low-lying states, the
nucleons in a nucleus remain primarily within the nuclear
radius RA, so the shape of V(r) for large r, say, r ) 2R&,
plays a less significant role in the bound-state spectrum.

With the approximation stated in Eq. (4), the two-
nucleon Hamiltonian (3) becomes

H"' = (t, + t, ) + v» + (u", —V, ) + (u," —Vp)

= (h, + h, ) + v„—2V (5)

where 6 = t + u is the pure HO SP Hamiltonian.
The corresponding G matrix (2) becomes

HQ
G12(id) —V12+ 12

g HQ HQ 12 G12 (~ ) &

id' — 61 + k2 + V12

(6)

where cu' = ~ + 2VO. In writing the above equation,
we have added a constant (2Vp) to both the starting en-

ergy cu and the two-nucleon Hamiltonian H~ ~. Obviously
this does not change the result for the G matrix which
depends only on the difference between ~ and H~ ~.

For no-core model spaces, the starting-energy-
independent two-body effective interaction v,@ is the lad-
der diagram series (G matrix) plus the folded diagrams.
If we approximate the G matrix by G (u') as in Eq.
(6), v,& is written as(2) ~

v,& G (~') + (folded diagrams).

The folded diagrams can be evaluated by employing the
iteration methods proposed in Refs. [6, 7]. We will use
the "vertex-renormalization" procedure of Ref. [7]. The
input to this method consists of the G(~ ) and its deriva-
tives with respect to w', whose values are taken at an
arbitrary (in principle) but fixed starting energy td . Af-
ter the folded diagrams are included to all orders by the
above iteration method, the resulting efFective interac-

tion v,& is independent of the starting energy id' [6, 7,
13].

We use a HO SP basis with M=18 MeV and a no-core
model space containing the first four major shells (Os, Op,
1s-0d, and lp-Of). There are two commonly used ways
to relate hO to A:
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TABLE I. Selected diagonal TBMEs for the starting-energy-independent two-body effective
interaction v,&. These matrix elements should be compared with the G-matrix elements listed in

the table for three different starting energies. Values in italics indicate values in good agreement
with v &. Note that 2E'o, ——3hO = 54 MeV, 2&p„——550 = 90 MeV, 2E'pg ——7hQ = 126 MeV.
The G-matrix elements in the rightmost column "Approx. " correspond to state-dependent starting
energies as given by Eq. (10) with E = —21 MeV.

State
2

)
J=O,T=1

(p
2

)
J=11T=O

(p
2

)
J=O,T=1I 3/2

(0 2
)
J=l,T=O

J 3/2
(pd2 )

J=O,T=1
5/Z

(pd2 )Z=l T=1O

(2)
eff

-8.75
-11.78
-3.87
-2.28
-1.79
-0.78

G(~' = 30)
-8.78

-gg. 70
-3.54
-1.33
-1.09
0.76

G(4/' = 75)
-9.05
-14.18
-8.86
-2.$$
-1.38
0.05

G(41' = 110)
-9.47
-20.64
-4.35
-4.23
-1.68
-0.8g

"Approx. "
-8.75
-11.83
-3.81
-2.17
-1.62
-0.65

hO = 41A / 22.56 MeV

or

hQ 45+—1/3 —25' —2/3 ~ 17 19 MeV

The second expression is believed to be more reasonable,
especially for light nuclei. It is often used in shell-model
calculations [16]. The value that we use falls between the
above two numbers but is closer to the value given by the
second expression. We have also used smaller values of
hO. The differences in the results obtained for different
hO values will be briefiy mentioned in Sec. IV. The Q
operator in Eq. (6) is defined to forbid the scattering
of the two particles into an intermediate state inside the
model space (i.e., Q=O).

For vq2, we adopt a new Nijmegen local NN potential
(NijmII) [10],which was fitted to the world 1VN scatter-
ing data with a nearly optimal y per degree of &eedom
(1.03 per datum). Other potentials (Reid93 and AV18)
obtained by fitting the same data have a comparable y2
and yield similar deuteron and triton properties (see Ref.
[14] for more details). The derivatives of the G matrix are
calculated numerically through ninth order using 11 sets
of G(41') with u' ranging &om —75 MeV to +75 MeV,

in steps of 15 MeV. In Table I under column v,&, we
list a few diagonal two-body matrix elements (TBMEs)
of the resulting effective interaction. For comparison and
further discussion below, we also present, in Table I, G-
matrix elements at selected values of u', and at a state-
dependent choice of (d'.

III. APPROXIMATION TO e ~

As shown in Eq. (7), for a no-core model space, the

~-independent v,& is the sum of the ladder diagrams and
the folded diagrams, both of which depend separately on
the starting energy 41 (or ~'). When the folded diagrams
are ignored, as was often done in the past, one approxi-
mates v,s by G(ur'). It is obvious that the contribution of
the folded diagrams correlates with u. Below, we show
that a particular choice of cu minimizes the root-mean-
square (rms) contributions of the folded diagrams to the

TBMEs of v & . We further show that a state-dependent(2)

choice of ur' yields a remarkably good approximation to
(2)
efF '

In the full theory of the effective Hamiltonian, one has,
in principle, independence of the mean field V and of 41.

However, in practical calculations, to minimize the need
to calculate higher-order processes, one wishes to make
physically sensible choices for these quantities such as
discussed above in the case of V.

We now consider arguments that may be presented
to suggest a phenomenological choice for u that could
also simplify the calculation of the efFective two-body
interaction. This part of our reasoning is reminiscent
of earlier studies [15] of the choice of a self-consistent
single-particle basis to use in Brueckner-Hartree-Fock
and folded-diagram calculations. It is generally accepted
that the starting energy cu represents the initial energy
E2 of the two nucleons in the nuclear medium. In G-
matrix calculations, the two nucleons are treated as two
interacting particles inoving in the mean field V. We can
think of the energy E2 for a two-particle state, which is
predominantly ~ab)gT (a and b are the HO SP orbitals),
as given by

E2 = 6~+6g+A~ (8)

where e and ep are eigenenergies of the one-body Hamil-
tonian (I+V). The quantity b, represents the interaction
energy and depends implicitly on the two-particle state
~ab)z, T

When the mean field V is approximated by the shifted
HO potential as we did in Eq. (4), Eq. (8) becomes

E2 (e —VP) + (ei, —VP) + b, ,

where e and eP are the HO SP energies [e; = (2n,.+
l;+ 2)hO with i = a, b].

Since the shifted starting energy 41' used in Eq. (6) for
the G matrix is related to the original starting energy cu

through u' = u+ 2VO, we have the following equation for

HO + WHO + (10)

Note that although E2 and, thus, u are negative for a
two-particle state bound in the nucleus, u' is not neces-
sarily negative, because the quantity Vp (approximately
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representing the depth of the potential well generated by
the spectators) is always positive. This provides a par-
tial justification to the choice of ur made in Ref. [9],
where G matrices at a positive u' are found to yield the
approximately correct nuclear binding energies.

We, therefore, believe that there exists a value of 4 so
that the G matrix for the starting energy ~' given by Eq.
(10) is a reasonable approximation to v,& . This is clearly
demonstrated in Table I, where the TBMEs of G+o(~')
for three values of ~' are listed. From Table I, one can see

that the listed TBMEs of v, can be approximated by
those (numbers in italic) of G o(~') at a starting energy
~' given by Eq. (10) with 4 ranging from —25 MeV to
—15 MeV.

As we mentioned before, 6 more or less represents the
state-dependent contribution to the two-nucleon energy
from the NN interaction. It is obvious from the table
that 4 is larger in magnitude for lower-lying two-nucleon
states (e.g. , Oszi&2) than for higher-lying ones (e.g. , Ops&2

or Od2& ), which accounts for the fact that the KN in-

teraction is stronger for the former states.
The observations above lead us to suggest a simple

state-dependent choice for u'. That is, we suggest using
Eq. (10) with 6 taken as a single constant for all states
for simplicity. In this way, we hope that GHo(u') will

become a good approximation to v~&. We see that this
is, indeed, the case by comparing the "exact" results in
the first column of Table I with the "approximate" results
[i.e., those obtained with ur' of Eq. (10) using 6 = —21
MeV] in the last column of Table I.

To further illustrate the difference between a state-
independent and our state-dependent choice of ~', we
define an rms deviation of the matrix elements of G
from those of the starting-energy-independent v,& as

1.8
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FIG. 2. The rms deviation b(u') of the two-body matrix
elements of G at a fixed starting energy u' from those of
the starting-energy-independent two-body effective interac-
tion v,~, as defined by Eq. (11) (solid curve). The horizontal
dashed line is the rms deviation when the starting energy for
the G-matrix elements is given by the state-dependent choice
in Eq. (10) with b, = —21 MeV.

where the s»mmation runs over all the N=332 two-body
matrix elements for the SM space consisting of the first
three major shells. Note that our full model space con-
tains the first four major shells but we are less concerned
about the matrix elements involving the highest shell, so
we omit them from the definition of the rms deviation.

For a fixed starting energy ni', h(ni') is plotted in Fig.
2 as a solid curve. Prom the figure, one sees that the
smallest rms deviation of about 0.42 MeV is obtained
when the starting energy ~'=75 MeV.

In Fig. 2 we show, as a straight dashed line, the rms
deviation when the starting energy u' is chosen accord-
ing to the prescription in Eq. (10) with b, = —21 MeV.
With this prescription of the starting energy, the G ma-

trix approximates v,& rather well since the rms deviation
is only 0.13 MeV.

IV. APPLICATIONS TO Li

We now use the "exact" and "approximate" effective

interactions v,& to perform SM calculations for Li. The
SM effective Hamiltonian is written as

The contribution of the center-of-mass spurious motion
is removed by adding A(IIe —zhQ) (with A &) 1) to
the above Hamiltonian. This is a feature available with
the oxBAsH SM code [16].

When one compares Eq. (1) and the above equation,

Eq. (12), one sees that v,& (ij) is in the position of v,~.
Namely, we are replacing the &ee NN potential by the
effective two-body interaction. Here we wish to point out
that the SP potential (u+ ) was used only to determine

the intermediate-energy spectrum in calculating v(& (ij)
from v,~ and the SP wave functions of the basis space.
In principle, one expects some contributions from higher-
order SP insertions. We have not calculated them in the
present investigations. In Ref. [17], it has been shown
that higher-order SP insertions have a negligible effect in
large no-core space SM calculations.

In Table II, we show the results for the low-lying en-

ergy spectrum of Li. The calculations are performed in
the same model space for which the G matrices and the
effective interaction are calculated. But we only allow

up to 4hO excitations from the lowest-energy configura-
tion [(Os)4(Op)2]. With the HO SP basis that we used

(h0=18 MeV), v,z overbinds the ground state by about(2)

1.66 MeV, as shown in the column labeled "Exact." It
should be pointed out that this result depends quite sen-
sitively on the HO parameter hO. Obviously, this is re-
lated to the approximation in Eq. (4), whose quality
depends on hO. Anyway, we find that when a HO basis
with a smaller hO is used, the resulting two-body e8'ec-

tive interaction tends to overbind Li by an even larger
amount. For example, the use of h,0=14 MeV results in
an overbinding of Li of about 10 MeV. We notice that
this is also a feature of the results obtained by Poppelier
and Brussaard in Ref. [18] (see Fig. 7 in this reference),
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TABLE II. The calculated and experimental low-lying energy spectrum for Li using the "ex-
act" and "approximate" efFective interactions as discussed in the text. The results obtained using

G (&u') at a constant starting energy (u' = 0.0 MeV and u' = 75.0 MeV) are also listed. For the
ground state, the absolute energy is given. For the excited states, the excitation energies are given.
All energies are in units of MeV. Since we have not included the Coulomb interaction, the experimen-
tal ground-state energy shown in the table is Coulomb corrected: —31.996 —Ec „~ b ———33.996,
where E& „& b

——2.0 MeV is obtained from a HF calculation with the Skyrme 3 interaction.

G(~' = 0)
-21.497
2.481
2.544
4.955
5.660
7.514
11.295

G(~' = 75)
-48.386
2.200
5.246
6.638
8.472
10.057
15.994

"Approx. "
-36.854
1.916
5.168
6.161
8.406
9.438
15.719

"Exact"
-35.655
2.054
4.932
6.306
8.125
9.336
15.372

Experiment
-33.996
2.186
3.563
4.31
5.37
5.65

(NlA)

although in that work, the effective interaction has some
residual dependence on the starting energy.

The calculated excitation energies shown in Table II
for v,& tend to be higher than the experimental results(2)

but the experimental level sequence is more or less re-
produced. In Ref. [18], the excitation energies are even
higher.

It is not clear to us why the effective interactions ob-
tained through the Lee-Suzuki procedure from the G ma-
trices using a HO SP basis with hO smaller than 18 MeV
tend to overbind Li. It is quite likely that for light nu-

clei, the approximation made in Eq. (4) of replacing the
mean field generated by the spectators by a shifted HO
potential with hO ( 18 MeV requires significant correc-
tions such as effective three-body forces. Further inves-
tigations on this are necessary.

Shown in Table II under column "Approx. " are the
results of the SM calculation using the G matrix (in-

stead of v,&l) calculated at the starting energies given by
Eq. (10) with b, = —21 MeV. This G matrix has been
demonstrated in the previous section to be a good ap-

~ ~ (2)proxxmatcon to v,& when the individual matrix elements
are compared (see Table I and Fig. 2). Apparently it is

also a good approximation to v,& when tested by evalu-
ating the energy spectrum.

In contrast, the G matrix evaluated at any constant
starting energy u' is not a very good approximation to
v,&. One can see Rom Table II that the calculated(2)

ground-state binding energy of Li using G matrix at
~' = 0 is about 14 MeV smaller than the "exact" result

(—21.497 MeV vs —35.655 MeV). The calculated energy
spectrum is also different. Indeed this G matrix has an
rms deviation of about 1 MeV in its TBMEs from those
of v,& (see Fig. 2) and should not be expected to ap-(2)

proximate v & well.(2)

When the starting energy u' is restricted to be a con-
stant, the G matrix at cu' = 75 MeV best approximates
vip when the rms deviation b(u') in the TBMEs [Eq.
(11)] is used as the criterion (Fig. 2). The SM results
using G(u' = 75 MeV) are also listed in Table II. The
ground-state energy is clearly too low compared to the
"exact" result.

V. CONCLUSIONS
We have succeeded in evaluating a starting-energy-

independent effective two-body interaction v,& for a
large no-core model space for the new Nijmegen poten-

tial [10]. Our main conclusion is that v,& can be well

approximated by the G-matrix elements evaluated at a
starting energy which depends on the energy of the initial
two-particle state in the ladder diagrams. We have seen
from Table I and Fig. 2 that for the effective-interaction

TBME (ab~v, & ~cd)gT compares favorably with the cor-
responding TBME of G(~') where &u' is given by

HO+ WHO+ (13)

For Li with hO = 18 MeV, we found that 6 = —21
MeV is a good choice. Notice that when u' is away from
the poles of G(u'), a variation of a few MeV in b, is
not significant as the G-matrix element is a very slowly
varying function of u' in this case.

We emphasize that the choice of H( ) could be very im-

portant, as it determines the intermediate-energy spec-
trum in the two-nucleon multiple scattering processes
(ladder diagrams). Different H(2) will lead to different

v,&. In this work, we have approximated the mean field
generated by the spectator particles by a shifted HO po-
tential, which seems to give a reasonable description for
Li, when the HO characteristic parameter h0=18 MeV

is used.
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