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Analysis of the spreading width of the particle-hole giant resonances
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We evaluate the spreading width of the giant resonances using the discontinuity in the second
derivative of the propagator of the vibrational phonon. This allows us to isolate the processes that
contribute to the spreading width in terms of the Feynman diagrammatic expansion of the full boson
propagator. Utilizing for classification purposes the nuclear field theory perturbative treatment of
the one-phonon state, we obtain a very simple expression for the spreading width in the lowest
(nonvanishing) order of perturbation theory.

PACS number(s): 21.60.Jz, 21.10.Re

I. INTRODUCTION

The giant multipole resonances can be thought of
macroscopically as vibrations of the nuclear surface and
are strongly populated in experiments involving photoab-
sorption or inelastic scattering of alphas, 3He, and pro-
tons. They are produced by the proxnotion of nucleons
across the Fermi surface to unoccupied major valence
shells and can be described microscopically as coherent
particle-hole excitations that exhaust a large portion of
the sum rule for multipole electric or magnetic opera-
tors. The contribution of processes that are partially in
the continuum has attracted interest due to possibilities
of measuring and calculating partial widths [1—7].

The centroid of the distributions of multipole strength
can be taken into account through a random phase ap-
proximation (RPA) calculation, which provides a repre
sentation of the excitation energy of the corresponding
collective state. These calculations successfully repro-
duce the experimental data, linking each giant mode to
the corresponding term of the nucleon-nucleon interac-
tion.

The mixture of the collective state with more compli-
cated nuclear con6gurations appearing at similar energies
is beyond the framework of the RPA calculations because
it involves states with two-particle —two-hole (2p-2h), (Sp-
Bh), etc.

The damping of the giant resonance collective xnotion
is due mainly to three processes, for which considerable
efFort has been devoted: (a) The Landau damping in the
6nite nucleus or the fragmentation of the resonance over
the RPA configurations. (b) The escape width related to
direct particle emission [1—4] is frequently associated with
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the portion of the giant resonance (GR) having the par-
ticle (of the particle-hole pair) in the continuum [8—12].
(c) The spreading width, related to the second moment
p, ( ) of the strength distribution, provides instead a direct
measure of the leading-order admixture of the collective
mode with neighboring more complicated con6gurations,
mainly 2-particle —2-hole states. Considerable work has
been done on this subject using pure 2p-2h configura-
tions [13—19] or approaching the 1p-1h collective state
with one- and two-phonon configurations [20—25]. These
ideas have been used within the consistent Green's func-
tion method [26] and in a simple model using nuclear
field theory (NFT) [22,27). This model [22,27] underesti-
mates the spreading width by a factor of 2 as is indicated
in Ref. [25].

In this paper, we develop a method to calculate the
spreading width based on the time evolution [28] of the
collective degrees of freedom, which leads to a particu-
larly simple diagrammatic expansion for the second mo-
ment of the strength distribution. In our method we
worked on the one- and two-phonon configurations. In
nuclear field theory (NFT) [29] a siinple two-level model
(the Lipkin model) is used for classification purposes. In
this model there are two levels of degeneracy 20 with
an energy separation e, and the particles interact via a
particle-hole monopole interaction that scatters particles
&om the lower level to the higher one and vice versa.

NFT gives a good prescription for treating collective
states as bosonic degrees of &eedom, even if they have
been built &om fermionic degrees of &eedom through
a RPA or Tamm-DancofF approximation (TDA) treat-
ment. In this &amework, the bosons and the fermions
are treated on an equal footing and any physical observ-
able can be calculated using a perturbative diagraxnmatic
expansion and a set of well prescribed rules. In this way,
any physical calculation can be done perturbatively up
to the desired order in O. The price that has to be paid
in order to use this method is to work on an overcomplete
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basis and to de6ne a NFT Hamiltonian in which one adds
to the original one a collective single-boson Hamiltonian
and a particle-boson interaction (Fig. 1).

One of the rules of the NFT allows only one fermionic
line in the initial or final states, avoiding in this way
overcompleteness of the basis. However, this rule is not
fulfilled by the intermediate states which are defined in
an overcomplete space of fermions and bosons. This leads
to two kinds of problems: (a) The mixture of the collec-
tive state with states of more than one coherent fermionic
pair is not clear because of the overcompleteness of the
intermediate basis. (b) The minimum number of vertices
that contribute to the perturbative expansion is three,
because two of them are needed in going &om the bosonic
state to the fermionic pair. As the number of time or-
dering diagrams is equal to n.', where n the number of
vertices, this implies that the number of diagrams to be
calculated increases rapidly. That is even worse due to
the two types of vertices (fermionic and particle-boson)
that are included in the NFT Hamiltonian.

It must be noted, nevertheless, that the vertices of Fig.
1(a) must not be considered as interactions, but only as
amplitudes of the fermionic pair in the collective state.

= X„(king)

= Y„(king)

(b)

+ Y„{ki~)&k~k V k&j~

n,

X„(kiA.) & i, i V jzk & +

ki
+ Y„(king. )&~ik V i2i&

FIG. 1. List of the particle-boson vertices. In our model,
the NFT vertices shown in (a) are not considered interactions
but rather the forward and backward amplitudes of the boson
and are represented by heavy dots. Instead, the scattering
vertices of (b) are real interactions that change the number
of bosons by +1.

For example, consider a particle-hole RPA creation op-
erator

1 t = ) X„(k,i)a&a, —Y (k, i)ataA. ,

where k denotes states above the Fermi surface, i states
below the Fermi surface, and at the operator that creates
a particle in a given state. The NFT interactive vertices
of Fig. 1(a) are replaced by

(I'„jaI,a;) = X„(k,i),
(1'„ja,as) = Y„(k,i) . (1.2)

These are not interaction vertices of the Hamiltonian and
consequently do not have an intermediate time in a Feyn-
man diagrammatic expansion. In this way, the diagrams
needed to calculate the admixture of two-boson states in
a one-boson state are reduced drastically, and they are
the only ones that contribute to the spreading width of
the collective state in leading order.

For a weak interaction (where the strength parameter
is smaller than the critical one), NFT demonstrates that
for a system formed by 20 particles (i.e. , the lower level

filled), the energy of the ground state has a Hartree con-
tribution proportional to 0, the Fock terms give a con-
tribution of order 1, and the RPA (without exchange)
is also of order 1, while the exchange terms of the RPA
yield contributions of order 1/0 and higher in this pa-
rameter. All the other contributions can be classi6ed in
terms of different powers of 1/0, if the collective excita-
tion is described by a nonexchange RPA.

It has been found in real calculations that a classi6-
cation in terms of different powers of 1/0 is meaning-
ful. For example, in the calculation of the energy asso-
ciated with the two-pair addition ( 2Pb) and two-pair
removal (2o Pb) [30], the 1/0 contributions were smaller
than 10% of the terms of order 1, and the (1/f)l) terms
yielded contributions less than 10% of those of order 1/O.
It is necessary to be rather careful in summing up all the
diagrams of a given order, because there could be very
large cancellations. It has been found to be a better ap-
proximation not to consider at all some diagrams of an
order of perturbation theory rather than to include only
some of the contributing diagrams.

In this spirit, we will study which are the processes that
contribute in the lowest nonvanishing order (which turns
out to be order 1/0) to the spreading width. We will see,
moreover, that these contributions can be summed up to
a very simple expression and that will be the main result
of the present paper. It is worthwhile to remark that
NFT will be used to isolate the diagrams that contribute
to the first order in &, and also to evaluate them.

In Sec. II, we will review the relevant points related
to the width of the collective excitations and to their
calculation in the TDA. In Sec. III, we discuss some

physical properties that can be extracted &om the short-
time behavior of the collective-state Green's function and
its derivatives, with special emphasis on the results rel-

evant to the RPA. We will also calculate the first-order
contribution (in terms of &) to the spreading width of a
collective state.
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II. STATEMENT OF THE PROBLEM AND THE
SPREADING WIDTH OF PARTICLE-HOLE TDA

COLLECTIVE STATES

Let H be a Hamiltonian matrix with elements h;j and
U the unitary matrix that brings H to its diagonal form
with eigenvalues E;. The matrix U is built &om the
eigenvectors of H. Then the following equations hold:

HU= UE, UtU=1,

In the Appendix, we described a calculation in a two-
level model that shows which are the processes (or dia-
grams), in the leading order of the NFT framework, that
are taken into account by our calculation of the spreading
width of the one-phonon state.

(H) = (UEUtUEUt) = (UE Ut) = M(E ) . (2.3)

Thus the second moment associated with the ith unper-
turbed state is

p,, = (UE Ut);; —(UEUt);, = ) hi, ; .
kgi

(2.4)

Equation (2.2) is just an energy-weighted sum rule for the
eigenvector components u, k, relating the unperturbed en-

ergies contained in h;; to the final eigenvalues Ek. We see
that the weighted average of the final eigenvalues is given

by the diagonal matrix element h;; that is composed only
by the bare single-boson energy ui. Introducting the 2p-
2h states changes the next moment of the strength distri-
bution through the off-diagonal terms of the Hamiltonian
matrix. To see this, we note that

and thus

~ij&jk —uikEk
2

H = UEUt = M(E),

(2.1)
It is conceptually helpful to develop a perturbative in-

terpretation of p,, l [31]. For this purpose, we analyze
the Brillouin-Wigner (BW) perturbative expansion of the
state li) with energy ur;. This amounts to solving the
equation

k;, =) (u;.)2E. =):u..E»„.
k k

(2.2)
with

E = f;(E), (2.5)

f*(E) = ~'+ (~lv (1 —li)(il)vl~) + (~lvE (1 —l~)(~l)vE (1 —l~)(il) l~)+"1

E —Hp 0 0

V,.k VikVk. V"= (di+ + + ~ ~ ~- E —~i, -. (E —(ui, )(E —(u„)kgi k~gi
(2.6)

p=. i zdz=
kgi

(2.7)

In (2.6) we have assumed that the Hamiltonian splits
into an unperturbed (diagonal) Ho and a perturbation
V that couples the state li) to more complicated config-
urations k, r, ... We further assumed that any diagonal
contribution Vii has been already absorbed into ~, .

It can clearly be seen, by straightforward application
of the Cauchy theorem, that

cally displayed in Fig. 2.
The arguments that we have presented can be applied

to the evaluation of the spreading width of a collective
particle-hole excitation assuming that the boson basis is
not overcomplete. That is the case of the TDA bosons,
at least in a first-order approximation. The RPA bosons,
on the other hand, form an overcomplete basis due to
ground-state correlations and will be treated in the next
section.

The TDA boson is defined by

where c is a closed contour in the complex energy plane
that encircles all eigenvalues of Hp. We thus conclude
that p,,- is uniquely determined by the second (in power
of V) order in the BW perturbative expansion.

More complicated configurations, entering in higher
orders of the BW expansion, only change higher-order
moments. This amounts to stating that the details of
the strength distribution will change upon the inclu-
sion of such terms, but in such a way that the average
Gaussian envelope remains the same. This is schemati-

I

lA, n) = ) Xg „(ki)[ctsc;]g .
ki

(2.8)

As we have already seen, the only contributions to p~ ~

are Rom the matrix elements involving the erst power of
the two-body interaction and having the giant resonance
lA, n) as initial state. Since these can only connect lA, n)
with states of two-particle —two-hole structure, the only
matrix element that survives is

(Aini, A2n2lHlAn) = ) Xp, „,(kiii)Xp, „,(k2i2)Xp „(ki)(kiii, k2i2lHlki)
k's, i' s

(2.9)
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FIG. 2. Sche. Schematic illustration of the successive corrections to the one-boson ro a ator a
h io. ()a e zero or er in the BW expansion corres onds to the

fragmentation. (b) In the next order
p s to the bare energy of the boson without any
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and the spreading width is

'=y() = ) ((A, „A 2iHiA ))'.
Agng, A2n2

(2.IO)

InE . ~2.q. ( .9) we define an energy-independent vertex
between one- and two-boson states. This is diagrammat-
ically represented in Fig. 3.

III. SPREADING WIDTH OF A
PARTICLE-HOLE RPA COLLECTIVE STATE

AND THE SHORT- TIME BEHAVIOR
OF THE GREEN'S FUNCTION

The arguments of the previous section have to be used
cautiously when trying to evaluate the spreading width in
the RPA. In this case, the basis is overcomplete because
the RPA ground state has an undefined number of bosons
and is due to the simultaneous consideration of fermion
and boson excitations. We therefore prefer to work di-
rectly with the Feynman- Goldstone diagrams, through

a perturbative expansion of the one-boson Green's func-
tion. In Ref. [28], it was shown that there exists a direct
relation between the matrix elements of different powers
of the Hamiltonian and the short-time behavior of the
derivatives of the Green's function. We start by de6n-
ing a Hamiltonian of the system that can be split into a
one-boson Hamiltonian Ho and a perturbation H1)

Hp = HRpA+h ~

Hi ——V —h,

where HRpA is the one-RPA-boson Hamiltonian while h
is an arbitrary one-boson potential that contains all the
resi ua interactions or Pauli corrections that can mi th

different roots of the RPA. V is the rest of the interaction
of a general two-body force. We will start &om the boson
representation in) that diagonalizes Ho

The one-phonon Green's function, corresponding to
the total Hamiltonian [Eq. (3.1)] in the Lehmann rep-
resentation, is given by the following equation:

~1)i) 2~2 ~1~1 4~2 Q~Aq $2ll2 Aq fl& A&~2 Aqnq .NLNyg)gN

yi

FIG. 3. TTwo-body matrix elements (including direct aud
exchange parts) that are relevant to the admixture of one
and two TDA bosons. Diagrammatic representation of Eq.
(2.9) in the text Heavy dot.s represent the amplitudes X.

FIG. 4. General form of Feynman-Goldstone diagrams con-
tributiug to the one-boson Green's function. (a) Schematic
representation of restricted diagrams. (b) The same for unre-

stricted diagrams.
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(3.2)

where I'„creates a RPA boson with quantum numbers (n) and RPA energies ur„, while W are the excitations
energies for the eigenstates Q of the total Hamiltonian.

As we are interested in a diagrammatic expression for p, t ~ we can utilize the expansion in Feynman diagrams of
the Green's function (see Fig. 4),

G(n, n';tp —fg) = Go(n;t& —f~)h' +f d7'dr') Gp(n;r —ty)E(n, m;r —r)'G( mn';t~ —7'), (3.3)

where E(n, m; 7' 7) is t—he self-energy of the problem and
is represented by'the same diagrams of Fig. 4 without the
externailines. Go(n;t2 —tq) = e ' "~ ' "l8(t2 —tq) is the
bare RPA-boson Green's function for positive energies.

The diagrams that are relevant here are time diagrams
rather than energy diagrams (time running upwards),
where in the blobs could be anything including the ver-
tices of the Hamiltonian that introduce the ground-state
Buctuations.

Looking at the definition of the second moment of the
strength function [Eq. (2.4)], we see that the second
derivative minus the square of the first derivative is the
only contribution to the spreading width.

In Ref. [28], it is shown that a lot of relevant infor-
mation can be obtained by looking at the short-time be-
havior of the Green's function and its derivatives near
tz —tg ——0,

(3.4)

Following Ref. [28] we classify the Feynman-Goldstone
diagrams as two types: (a) Restricted diagrams [Fig.
4(a)]. These are the diagrams that have a continuous

I

chain of boson and fermion lines, where the intermediate
times are always between tq and tz, i.e.,

or

(b) Unrestricted diagrams [Fig. 4(b)]. In these diagrams,
the intermediate times do not follow the above rules.
Therefore, all such diagrams are continuous as tq ~ tz,
and do not contribute to the discontinuity at tz ——tq.

The restricted diagrams, instead, exist only for tz ) t~
or tq & t2 If the ch.ain contains more than one link, each
integration produces a factor tz —t~ when tz ~ tq. There-
fore, it can be easily seen that the contribution to the nth
derivative is given only by the restricted diagrams that
have a maximum of n intermediate times (or vertices).
For example, the contribution to the discontinuity of the
Green's function comes only &om the discontinuity of the
bare Green's function [see Eq. (3.3)] because none of the
diagrams of the Fey~man expansion gives any contribu-
tion, i.e.,

G(n, n', t2 tx) lg —g, o+ —G(n, n'; t2 t&) lt —t, -+o-

= [Go(n» t2 —ti)l.. .,~o+ —Go(n; t2 —ti)lg, c,~o-]S„„=b„,„, (3.5)

given a normalization condition for the "strength distribution" of the bare boson state in the eigenstates of the total
Hamiltonian.

In the same way we treated the Green s function, we can study the discontinuity of its first time derivative. To
obtain the Feynman expansion of G'(n, n', t), we have to calculate G(n, n'; t + dt) —G(n, n', t) and divide the result
by dt. This leads to the result

G(n, n'; t2 —t~) = ~„G(n, n'; t2 —tg) + B(n, n') t2 —tg),
Btz

(3.6)

where B(n, n'; t2 —tq) involves the same diagrams as in Fig. 4, except that they terminate at the time t2 with a
vertex. In a complete basis, this vertex cannot be any of the interactions that have already been taken into account
in the RPA formalism.

The discontinuity of the first derivative can be calculated as the difference between G'(n, n', t2 —tz) for t2 —tq ~ 0+
and G'(n, n'; t2 —tq) for t2 —tq ~ 0
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t2 —t1~0

(3.7)

= ~„b„„+B(n, n'; t2 —ti ——0),

where some of the diagrams that contribute to
B(n, n', t2 —ti ——0) are shown in Fig. 5.

It can be seen that this discontinuity takes into account
the fact that the energy centroid of the dressed bosons is
equal to the bare energy of the boson plus contributions
coming either from the residual interaction between the
particle and the hole of the boson (not taken into account
by the RPA) or from the one-vertex interaction between
the boson and the correlated ground state.

Furthermore, the right-hand side of Eq. (3.7) is the
matrix element of the total Hamiltonian between two dif-
ferent roots of the RPA equation. This means that the
diagrams of Fig. 5 do not mix the one-boson state with

I

states of more than one boson, since states that appear
diagrammatically with more than one particle-hole pair
at a given time are produced by the ground-state Buctu-
ations:

(n~H~n') = u„b„„+B(n, n'; t2 —ti ——0) . (3.8)

This property has been pointed out in Ref. [31] and
has been utilized in Ref. [28] to explain the sum rule of
spectroscopic factors for single-fermion energies and in
Ref. [32] to obtain the first-order energy-weighted sum
rule for bilinear operators.

In the same way, we can examine the discontinuity of
the second derivative of the Green's function:

(n~H ~n) = ( lim — lim ) G(n, n;t2 —ti)
0

t, —t, -+o+ t, —t, -+o

(3.9)

In order to obtain a relation between the above equation and the diagrammatic expansion, we must study the
second derivative of the Feynman expansion of the Green's function:

(3.10)

where B(n, n; t2 —ti) involves the diagrams finishing with
an interactive vertex at t2, defined before and shown in
Fig. 4; C(n, n; t2 —ti) is the same but beginning with the
vertex at ti, and D(n, n; t2 —ti) involves those diagrams
with two vertices, one at each time (Fig. 6). The last set
of diagrams can be split in two parts, those that pass by
an intermediate state equal to the initial one [Fig. 6(a)]
and those in which none of the intermediate states are

equal to the initial one [Fig. 6(b)].
The discontinuity at t2 —tq ——0 of the three first terms

of Eq. (3.10) plus the discontinuity of the diagrams of
D(n, n, t2 —ti) that can be divided in two by cutting
those intermediate states that are the same as the initial
state produce a contribution equal to (n~H~n)2.

Finally, the only contribution to the second moment of

t2

t2

FIG. 5. Schematic representation of the diagrams finishing
with a vertex at time ts, included in B(n, n';t2 —ti). The
representation of fermions by dashed lines implies that their
propagator must not be included. They are utilized for label-
ing the matrix element. The blob can be anything provided
it is linked to the initial boson.

FIG. 6. Schematic representation of the diagrams finishing
with two vertices, one at time t2 and the other at time ti,
included in D(n, n'; t2 —tq). (a) Diagrains that can be divided
in two by cutting the intermediate state whenever they are the
same as the initial states. (b) Diagrams where this division is

not possible.
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gg n) gqnq

kn g~n~ ),&ng ~n Aqn&4»

FIG. 7. Diagrams that contribute to the energy of
one-boson states in the leading order (1/0). All the time
ordering of the vertices must be included in the calculation.
In the figure, we have shown only one of the possible time
orderings for simplicity.

the strength distribution comes from the discontinuity of
those diagrams that begin and end with an interaction
and have no intermediate state equal to the initial one,
because these contribute to ((n!H!n)) and are canceled
in the subtraction. It is worth noting that in the limit
t2 —tq ——0, the two vertices occur at the same time and
there is no propagator between them, giving a contribu-
tion equal to the product of the two matrix elements.

In the NFT framework, the diagrams contributing to
the leading-order correction to the energy of the one-
boson state are shown in Fig. 7. However, not all of
them contribute to the calculation of p~ ~. The diagrams
relevant to the calculation of p, ~ ~ are those that have two
interactions changing the number of bosons (or particle-
hole pairs) by +I linked to the initial or final boson line.

FIG. 9. Two-body matrix elements (including direct and
exchange parts) that are relevant to the admixture of one
and two RPA bosons. (a) Diagrammatic representation of
the forward vertex Eq. (3.11) and (b) of the backward vertex
Eq. (3.12). Heavy dots represents the forward (backward)
amplitudes X (Y) of the RPA bosons.

These vertices must act at times which are between the
annihilation of the initial boson and the creation of the
final one. Figure 7 includes these types of diagrams but
part of them only moves the energy of the one-boson state
without changing its strength distribution. Examples of
these diagrams are shown in Fig. 8.

It is not simple to see from these diagrams that the in-
termediate state is a two-boson state, because of ground-
state Huctuations. Otherwise, within our method, the
contribution of these diagrams to the discontinuity of the
Green's function is reduced to the square of the matrix

(b)

FIG. 8. Some of the diagrams that contribute to the change
in the energy of the RPA boson without contributing to its
spreading width.

FIG. 10. Schematic representation of the contributions to
the square of the spreading width (second moment of the
strength function). It must be remembered that the two ver-
tices occur at the same time, which implies that there is no
propagator between them. It means that these diagrams have
no energy denominators. (a) Contributions from the forward
one-boson —two-boson matrix element. (b) Contributions from
the backward one-boson —two-boson matrix element. (c) Cor-
rection to the spreading width due to the first-order Pauli
correction of the RPA one-boson wave function.
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element between one-boson and two-boson states.
Vfe can conclude by saying that the only intermedi-

ate states that can be reached Rom the one-boson state
through the two-body interaction and contribute to the

l

leading order in perturbation theory are those shown in
Fig. 9. Those shown in Fig. 9(b) are related to the back-
ward vertex of the RPA and are not present in the TDA.
The corresponding vertices are

(Agng, A2n2[H[An) = ) ([X„(jgj2A)X„,(jg jsA&) + Y„(jgj2A)Y„, (jgj3A])]
212223

xA, (j2,j3, A2) + X (j2jsA2)Y, (jyj3A])A (jy, j2, A)j

x Q(2Ag + 1)(2A2 + 1)(—)~'+~'+"'+ . . Ql + 0„,„, ,j3 j2 jl (s.ii)

([Aznz, A2n2]&An~H~O) = ) ([X„(jqj2A) Y„,(jq jsAq) + X„,(jq j2A)Y„(jqjsAQ)]
2122/3

xA„, (j2, js, A2) + Y„,(j2jsA2)X„,(jzjsA&)A„(jl, j2, A))

x Q(2Ag + 1)(2A2 + 1)(—)~'+~'+"'+". . . Ql + 0„,„, ,j3 j2 jl (3.12)

where X„(kiA) is the RPA forward amplitude and Y„(kiA) is the RPA backward amplitude, while the scattering
matrix element A is [29]

A„(j,j', A) = ) [X„(kiA)(ji~V~j'k) + Y„(kiA)(jk~V~j'i)] . (s.is)

The label k denotes states above the Fermi surface and i those below.
It is important to note that the scattering matrix element changes sign depending whether the levels j's correspond

to particles or holes.
There still exists an additional contribution to the spreading width due to a Pauli correction between the particle

(hole) of the initial boson and the ground state [Fig. 10(c)]. These, in fact, contribute to the width of the single-
particle states and, thus, to the width of the RPA collective states. If we take into account all the contributions, the
spreading width to first order in A is given by

~1~2~1~2

[((A~n~ A2n2IHIAn))'+ (([A~n~ A2n2]~AnlHI0))']

) ) ([X (jlj2A)] + [Y (jlj2A)] j 2
.

1
[A (j2jsA1)]

2j2 + 1
~1&1 j1j2j3

(3.14)

This is our final expression for the spreading width and
it is summarized in Fig. 10. It takes into account all the
contributions coming from the NFT diagrams up to first
order in the parameter 1/O. It depends only on the two-
body interaction and on the collectivity of the two bosons
that mix with the giant resonance.

IV. CONCLUSIONS

There are many different approaches to evaluate the
spreading width but in almost all of them the physics is
very similar: The spreading width is due to the mix-
ture between the coherent one —particle-one-hole state
and more complicated structures.

It is well know that if the ground-state correlations are
not considered then the spreading width can be obtained
exactly in terms of the admixture between the giant res-
onance and the two-particle —two-hole states (see for in-
stance Ref. [si]).

The problems gets more complicated when there are

ground-state correlations. Here the correlations are taken
into account by using an effective Hamiltonian that cou-
ples the one-boson state to two-boson states and the
ground state to the three-boson states. In Ref. [21] this
approach has been used to obtain an effective dispersion
relation for the collective sates. This way not only is the
spreading width obtained but also the Landau damping
is included in a very natural way. Another possibility
is to consider "dressed" one-particle —one-hole states that
include a configuration more complicated than the usual

RPA (see, for example, the treatments developed in Refs.
[24] and [12]).

In this paper we have proposed a simple version of
the spreading width for the giant resonance that corre-
sponds to the leading order (in terms of &) obtained
when the spreading width is evaluated in the framework
of NFT. Our result must be compared with similar re-
sults obtained using the same framework [22,27]. In their
approach, which uses a mixture basis of collective RPA
bosons and particle-hole states, at least some diagrams
that take into account ground-state correlations are ne-
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glected [for example, the last term of Eq. (3.14) is ab-
sent]. We worked in a complete basis of only RPA bosons
and show explicitly that all the contributions of this order
in NFT have been included. It is also possible to extend
our method to finite temperature in a sixnilar way to what
has been done, for example, in Ref. [33]. It is important
to remark that to consider only the & terxns is a reason-
able approximation since usually it is enough to get an
estimate of the order of magnitude when evaluating the
spreading width.

This work was supported by the Consejo Nacional de
Investigaciones Cientificas y Tecnicas.

APPENDIX

In this appendix we show that the diagrams relevant to
the calculation of the spreading width can be interpreted

I

V
H =Hsp ——Q

2
(A1)

Because of the presence of scattering terms in the
monopole interaction, the initial Hamiltonian does not
satisfy the Hartree-Fock minimization condition. Conse-

quently, a Hartree-Fock transformation between single-

particle states was carried out, in yielding a new Hamil-

tonian, that can be treated with a diagrammatic expan-
sion:

as the square of the matrix element of one-boson and
two-boson states.

The model considered in Ref. [29] consisted of two
single-particle levels, each with degeneracy 20 and a
monopole particle-hole interaction that couples the parti-
cles in the two levels. A closed-shell nucleus is sixnulated

by considering a systexn of 20 particles in the lower level
and the upper one exnpty:

(A2)

H = Ksp+Hq+ U,
Hsp ——~pe —eqNq,

H = ——(A + 2A A+ A ) —V[A (qiNi —q-Ni) + (qiNi —qiNi)A] ——[(qiNi —qiNi) —(q Ni —q~Ni)],
V

where U is the Hartree-Fock contribution to the ground-state energy and is not important in the calculation of the
excited RPA energies, qi (qi) are the single-particle (single-hole) monopole moments, and At, Ni, and Ni are defined
by

A —) c icrnl )
f t Ni —) col cm 1 )

t N, =) c —,c-~-, .

Following closely the NFT calculation [29], we define
an adimensional parameter

I

Hamiltonians that produce new vertices and allow a di-
agrammatic perturbative treatment of the problexn:

4VO
E' = E'y —6y (A4)

HNFT ——Hsp + Hq + u)l I'+ Hpy + U,
Hpv = —A(it+ I)(At+ A+ qiNi + qiN ), (A6)-

(1 —z),
x = (1lc~,c~'ilo) = b~,~' ~

(e + (d)

2 2ecu0

Y = (Ilc,,c~, ]o) = b~ ~, .(E —(d )
2/2ao0

(A5)

NFT introduces collective and particle-vibration
]

In this way all the physical observables can be written as
a polynomial in z.

The construction of the phonon is done through a RPA
formalism. In this case, only one collective state is ob-
tained with energy and forward and backward amplitudes
given by

where A is obtained &om the normalization condition of
the phonon,

A = V20{X+Y') .
All the vertices of the NFT interaction are defined by
the Hamiltonian of Eq. (A6). The calculation of the
diagrams is now straightforward following the rules of
NFT. In Ref. [29], the leading-order (&~) contribution to
the energy of the one-boson state, including all terms up
to x, was calculated. We have extended the calculation
up to the next order (z4) in order to take into account the
leading-order contributions of all the & diagrams which

are relevant for the calculation of p~ ~, shown in Fig. 6,
and which is given by

ex' f 9,) ex', C 3 9,1
l

1+*+-*'
I

— (q. —qi)'I 1+ -*+-*' I+160 g 8 ) 40 i 2 4
(A8)

We can recalculate this up to the same order in perturbation theory, utilizing the xnatrix elexnents between one-
phonon and two-phonon states [Eqs. (3.11), (3.12)] and the diagrams of Fig. 10(c) [third term in Eq. (3.14)]. In the
two-level model, the matrix elements of Eq. (3.11) and Eq. (3.12) are
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(1IH[2) = (X + Y + XY')A20v2(qi —qi),
(0III13) = —3X&A2fl ~2(qi —qi) (A9)

where the ~2 comes from the normalization of the two-boson state. Using these given matrix elements, we calculate
the contribution to the energy of the one-boson state, up to the same order in 1/0 and z, and obtain

l(1IHI2) I' l(1IHI2) I'

(la) —2M)

l(0IHI3) I'

(3(u) 640

ez' , t' 3 33
40 l, 2 16(qi —qi)'I 1+ -z+ —*'

I

(A10)

In addition, the diagrams of Fig. 10 contribute an amount

(X'+ &')A'»
((d —3Ld )

The sum of the three contributions is

cz' t' 9
16n l 8I

1+z+ —z (A11)

ez' ( 9,l sz'
@1+ @2 + @3 =

I

1 + *+-*'
I

— (qi —qi)'
I

1 + -z + -z'
160 ( 8 ) 4fl k 2 4

(A12)

which is the same result as was obtained within the NFT formalism [Eq. (A8)]. This demonstrates that our method
of constructing the matrix elements between one and two RPA bosons is correct and that mixing one-boson states
with more complicated configurations produces the spreading width. The additional contributions coming from the
diagrams of Fig. 10 are due to the width of the single-particle (-hole) states from which the boson has been built. They
incorporate the Pauli corrections between these fermionic states and those coming from the ground-state correlations.
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