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We calculate the effective mass of the w meson in nuclear matter in a relativistic random-
phase approximation to the Walecka model. The dressing of the meson propagator is driven by its
coupling to particle-hole pairs and nucleon-antinucleon (NN) excitations. We report a reduction
in the w-meson mass of about 170 MeV at nuclear-matter saturation density. This reduction arises
from a competition between the density-dependent (particle-hole) dressing of the propagator and
vacuum polarization (NN pairs). While density-dependent effects lead to an increase in the mass
proportional to the classical plasma frequency, vacuum polarization leads to an even larger reduction
caused by the reduced effective nucleon mass in the medium.

PACS number(s): 21.65.+f, 24.10.Jv

I. INTRODUCTION

Understanding the role played by the nuclear medium
in modifying hadronic properties is one of the most in-
teresting and challenging problems facing nuclear physics
today. For example, the spin-independent (or old) Eu-
ropean Muon Collaboration (EMC) experiment revealed
a medium-modified electromagnetic coupling of the nu-
cleon relative to its free-space value. Trying to explain
the origin of this modification, in terms of, either, conven-
tional nuclear physics effects (e.g., binding energy, Fermi
motion, correlations) or more exotic mechanisms (e.g.,
nucleon swelling), is still the source of considerable de-
bate.

Also very interesting is the study of the modification
of meson properties in the medium. Indeed, many inter-
esting phenomena in finite nuclei have been attributed to
an in-medium reduction of the mass of the rho meson [1].
These phenomena include the lack of an enhancement
in the ratio of the spin-longitudinal to spin-transverse
responses measured in quasielastic (p,7) scattering [2],
the enhancement of the K*-nucleon interaction in the
medium [3], and the behavior of certain spin observables
measured in inelastic (7,7 ) transitions [4].

In the medium, a meson gets modified due to its cou-
pling to nuclear excitations. This modification is con-
tained in the meson self-energy whose imaginary part is
a physical observable characterizing the linear response of
the nuclear system to an external probe. To date, much
work has been done (experimentally and theoretically)
in understanding the response of the nuclear system in
the spacelike region (i.e., g2 < 0). All of the information
gathered so far about the response of the nuclear system
to a variety of probes (e.g., e, m, K+, N), and for a
variety of kinematical conditions (covering the inelastic,
giant-resonance, quasielastic regions) can only reveal the
nature of the nuclear response in the spacelike region. In
these experiments the coupling of the probe to timelike
excitations can only occur virtually. It therefore becomes
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very interesting to study the behavior of the meson self-
energy in the timelike region. This could be done, for
example, in colliding (e*e™) experiments and relativistic
heavy-ion collisions. Alternatively, it can be studied by
directly measuring the medium dependence of the decay
of the meson into lepton pairs. Indeed, a proposal has
been put forward to measure (at CEBAF) the nuclear-
mass dependence of vector mesons by detecting lepton
pairs [5].

The dependence of meson properties on the density of
the nuclear medium is far from understood. In particu-
lar, predictions for the shift in the value of the w meson
at normal nuclear-matter density range anywhere from
—100 to +100 MeV. These predictions are based on a
variety of models that include quantum hadrodynamics
(QHD) [6], Nambu-Jona-Lasinio models [7], and QCD
sum rules (QSR’s) [8,9].

In this paper we attempt a more detailed analysis and
so elect to use the simplest version of QHD, namely, the
Walecka model, to study medium modifications to the w-
meson propagator in the timelike region. The Walecka
model is a strong-coupling renormalizable field theory
of nucleons interacting via the exchange of (isoscalar)
scalar (o) and vector (w) mesons [10,11]. The model
has already been used extensively in calculations of nu-
clear matter and finite nuclei. The saturation of nuclear
matter and the strong spin-orbit splitting observed in fi-
nite nuclei were among the first successes of the model
[10-13]. More recently, the model has been used to cal-
culate such diverse topics as collective modes in nuclear
matter [14], isoscalar magnetic moments [15,16], and elec-
troweak [17-19] and hadronic responses from finite nuclei
[20] with considerable success.

In spite of these successes, the theory remains (practi-
cally) untested in the timelike region, which holds special
relevance for a model that incorporates negative-energy
degrees of freedom from the outset. In this calculation we
will show that the in-medium shift in the value of the w-
meson mass arises from a sensitive cancellation between
two competing effects. On the one hand, the (virtual)
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coupling of the meson to particle-hole excitations leads
to an increase in the value of the mass. This is consistent
with the result reported by Chin using an approximation
to QHD that ignored the coupling of the w meson to
NN excitations (vacuum polarization) [6]. By also in-
cluding vacuum polarization in the present calculation,
we believe that we have performed a more consistent
field-theoretical calculation. We have found that NN
excitations generate a shift in the value of the w-meson
mass proportional to the shift of the nucleon mass in the
medium. Since in QHD the scalar field is responsible for a
reduction of the nucleon mass, NN excitations (by them-
selves) give rise to a reduction of the w-meson mass. For
values of the model parameters consistent with the de-
scription of nuclear matter at saturation, we have found
that vacuum polarization overwhelms the corresponding
density-dependent contribution, and, ultimately, leads to
a reduction of the w-meson mass in the medium.

We have organized the paper as follows. In Sec. II we
present the formalism needed to calculate the self-energy
corrections to the propagation of the w meson through
the nuclear medium. In Sec. III we present results for the
effective mass of the w meson with special emphasis on
the competition between the density-dependent dressing
of the meson and vacuum polarization. Finally, in Sec. IV
we offer our conclusions and outlock for future work.

II. FORMALISM

In this section we calculate the self-energy correc-
tions to the w-meson propagator in nuclear matter. The
dressed meson propagator will be calculated to one-loop
order by solving Dyson’s equation in a nuclear-matter
ground state obtained from using a relativistic mean-field
approximation to the Walecka model.

The Walecka model (or QHD-I) is a renormalizable,
relativistic quantum field theory of the nuclear system
which involves an explicit description of the nucleon (V)
and meson (o, w) degrees of freedoms [10,11]. The La-
grangian density for the Walecka model is

L = Y[y (i0* — g,V*) — (M — g,9)|¥
+%(aﬂ¢6“¢ ~ m2¢?)

1 1
— FuF* 4 omiVuVe 4 6L (1)

where 1 is the baryon field with mass M, ¢ is the neu-
tral scalar-meson (o) field with mass m,, V# is the neu-
tral vector-meson (w) field with mass m,, and F* =
O*VY — 9¥V*#. The term 6L contains renormalization
counterterms. In this model, nucleons interact via the
exchange of isoscalar mesons with the coupling of the
scalar field ¢ to the baryon scalar density %, and the
vector field V# to the conserved baryon current 1/;'7#1/)
introduced through minimal substitution.

Since the exact solutions to the field equations are un-
known (and perhaps unattainable), we resort to a mean-
field approximation in the usual way. In a mean-field
approximation, one replaces the meson field operators

by their (classical) ground-state expectation values:

VH 5 (V) = g*oVO . (2b)

The mean-field equations can now be solved exactly with
the solution becoming increasingly valid with increasing
baryon density. Traditionally, the mean-field equations
have been solved in two approximations. In mean-field
theory (MFT) one calculates a baryon self-energy which
is generated by the presence of all the nucleons in the
occupied Fermi sea. The effect of the (infinite) Dirac
sea is, however, neglected. In contrast, in the relativistic
Hartree approximation (RHA) one includes the contribu-
tion to the baryon self-energy arising from the occupied
Fermi sea as well as from the full Dirac sea. As a conse-
quence, the baryon self-energy diverges in the RHA and
must be renormalized.

In both approximations, the mean scalar-meson field
¢o is responsible for a (downward) shift of the nucleon
mass M* in the nuclear medium relative to its free-space
value M. In contrast to the ground-state expectation
value of the vector field, which is fully determined by the
conserved baryon density,

95 9;
g V° = 22 (%) = B, (3)

m’U m’U
the expectation value of the scalar field (and consequently
the effective mass) is a dynamical quantity that must be
determined self-consistently from the equations of motion

g2 A
M~ M* = gido= S (M) = “5ps(M") . (4)

There are five parameters to be determined in the model.
The nucleon mass and the w-meson mass are fixed at their
physical values (M = 939 MeV and m, = 783 MeV, re-
spectively). The other three parameters must be fixed
from physical observables. For example, the ratios of the
coupling constant to the meson mass (C? = g>M?/m?
and C? = g2M?/m?2) can be chosen to reproduce the bulk
binding energy (15.75 MeV) and density (corresponding
to a Fermi momentum of kg = 1.3 fm_l) of nuclear mat-
ter at saturation. Finally, the mass of the scalar meson
is adjusted to reproduce the root-mean-square radius of
40Ca. These parameters along with the effective nucleon
mass M* at saturation density are listed in Table I.

In order to compute the meson propagators in the nu-
clear medium we solve Dyson’s equation in the random-
phase approximation (RPA) [21]. This approximation
is characterized by an infinite summation of the lowest-
order proper polarization. In a relativistic theory of
nuclear structure the polarization insertion, or meson
self-energy, describes the coupling of the meson to two
kinds of excitations: the traditional particle-hole pairs
and nucleon-antinucleon (NN) excitations. In the nu-
clear medium real particle-hole excitations can be pro-
duced only if the four-momentum carried by the meson
is spacelike (g2 < 0). In contrast, real IV N pairs can be
excited only in the timelike region (g2 > 0).

To date, most of the relativistic RPA studies of the
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TABLE 1. Mean-field parameters in the Walecka model. The nucleon mass and the w-meson
mass were fixed at their physical values (M = 939 MeV, m, = 783 MeV). The effective nucleon
mass M* is the appropriate value at nuclear-matter saturation density (kr = 1.3 fm™1).

Model g2 g2 m, (MeV) c? c? M*/M
MFT 109.626 190.431 357.469 273.871 0.541
RHA 54.289 102.770 228.198 147.800 0.730

nuclear system have been carried out in a kinematical
domain considerably different from the one relevant to
the present analysis. These studies have investigated the
response of the nuclear system to a variety of probes.
In all of these cases the four-momentum transferred to
the nucleus (and hence carried by the mesons) was con-
strained to the spacelike region. Hence, NN pairs could
only be virtually excited. In the present work we need
to study the w-meson self-energy in a (timelike) region
around the position of the w-meson pole (g2 ~ m2). This
is a kinematical region where both particle-hole as well
as NN pairs can only be virtually created (at least at low
density) and where the Walecka model has been largely
untested.

In the Walecka model one cannot decouple the o me-
son from the analysis of the w-meson propagator. In
the nuclear medium the w and o propagators are inex-
tricably linked because of scalar-vector mixing. Scalar-
vector mixing occurs, for example, when a particle-hole
pair becomes excited in the medium by means of a (lon-
gitudinal) vector meson which subsequently decays into
a scalar meson. Scalar-vector mixing is a purely density-
dependent effect that generates a coupling between the
Dyson’s equation for the scalar- and vector-meson prop-
agators. The full scalar-vector meson propagator and the
lowest-order (one-loop) proper polarization can be repre-
sented by a set of 5 x 5 matrices D®® and II,;, with the
indices a and b in the range —1,0, 1,2, 3 [14]. In this rep-
resentation Dyson’s equation becomes a (coupled) matrix
equation given by

D = Do + DoIID , (5)

where Dy represents the lowest-order meson propagator,

A 0
D0=( 00 D(;)w) ) (6)

written in terms of the noninteracting scalar- and vector-
meson propagators

1
Ao(q) = E-mitin’ (7
1
D = - 8
D§* = (=g + ¢*¢”/m3) Do(q) , 9)

and where g2 = ¢§ — q®. Notice that since the w meson
always couples to a conserved baryon current the g*g”
term in D will not contribute to physical quantities.

The lowest-order polarization insertions will be ex-
pressed in terms of the self-consistent nucleon propa-
gator. The nucleon propagator is written as a sum of
Feynman [Gr(k)] and density-dependent [Gp (k)] contri-
butions, i.e.,

G(k) = Gp(k) + GD(]C) , (10)
Gr(k) = (v"k;, + M*)m ) (11)
Gp(k) = (v*k, + M*)

X o0k — BT 000Gk — k), (12)

where the momentum k** and energy E*(k) are de-
fined, respectively, by k** = (k°—g,V? k) and E*(k) =
vk? + M*2, The Feynman part of the propagator has
the same analytic structure as the free propagator. The
density-dependent part, on the other hand, corrects Gg
for the presence of occupied states below the Fermi sur-
face and vanishes at zero baryon density. In terms of the
nucleon propagator the lowest-order scalar-scalar, vector-
vector, and scalar-vector (mixed) polarizations are given,
respectively, by

W) = —ig? [ G TEMGE+a)],  (139)
(o) = —ig? [ (‘j—;’;—‘;ﬁmc(kmc(k +q), (13b)
17 (a) = igugn | (;%’)%mwmk)a(k tgl. (139

In the above expressions the traces include isospin and
we have adopted the conventions of Ref. [22]. As in the
case of the nucleon propagator we can write the above
polarization insertions as a sum of two contributions,

1°t(q) = M (q) + I (q) - (14)

The Feynman contribution to the polarization, or vac-
uum polarization (II%), is a bilinear function of G and
describes the self-energy corrections to the meson prop-
agators due to their coupling to NN excitations. The
Feynman contribution to the polarization insertion di-
verges and must be renormalized. The density-dependent
part of the polarization (II%), on the other hand, is fi-
nite and contains at least one power of Gp. The density-
dependent part of the polarization insertion describes the
coupling of the meson to particle-hole excitations. In ad-
dition, it contains a term which has no nonrelativistic
counterpart. This term arises from the negative-energy
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components in the Feynman propagator and describes
the Pauli blocking of NN excitations. This term en-
forces the Pauli principle by preventing the nucleon from
the NN pair (in II$®) to make a transition to an occupied
state below the Fermi surface [18,23].

For a mean-field ground state obtained in the MF'T (no
vacuum loops) approximation, it has been shown that
the consistent linear response of the system, and hence
the consistent meson self-energy, is obtained by neglect-
ing the Feynman part of the polarization insertion. This
consistency is reflected, for example, in the proper treat-
ment of (spurious) excitations associated with an overall
translation of the center of mass of the system. Notice,
however, that in the MFT approximation one retains the
Pauli blocking of NN excitations even though one is ne-
glecting the Feynman contribution to the polarization.
Retaining the Pauli blocking of NN excitations has been
proven essential to satisfy current conservation in cal-
culations of the electromagnetic response of the nuclear
system. Nevertheless, one should question an approxi-
mation that retains the Pauli blocking of an excitation
that has not been put in from the outset. If the effect
from Pauli blocking of NN excitations represents a small
contribution to the overall size of the observables, then
one might be justified in making this approximation. If,
however, the observables are seen to depend heavily on
this assumption, then one would be forced to neglect this
approximation in favor of the RHA where vacuum loops
are included in, both, the description of the ground state
as well as in the linear response of the system. We now
present results for the effective mass of the w meson in
both (MFT and RHA) approximations.

III. RESULTS

The effective mass of the w meson (m}) in nuclear mat-
ter is obtained by finding the value of the four-momentum
qz for which the imaginary part of the propagator attains
its maximum. Alternatively, since the w meson has a very
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narrow width in the region of interest, we can find the
effective mass by searching for zeros in the inverse propa-
gator. In the particular case of the transverse component
of the polarization (unaffected by scalar-vector mixing)
we obtain

D7'(q) = Dy,'(q) = D35 (9)

=q) —m2 —T(gkr) =0, (15)
where we have defined the z axis along the direction of
three-momentum q. The (transverse) effective w-meson
mass has been plotted in Fig. 1 as a function of the
Fermi momentum (relative to its value at saturation,
k% = 1.30 fm~1) for two values of the three-momentum
transfer. These MFT results are in agreement with those
published in Ref. [14] and have been included here for
completeness.

One can gain some insight into the physics driving
these modifications to the w-meson mass by examining
the low-density limit of these results. By performing a
low-density expansion of the transverse meson propaga-
tor one can show that the effective mass of the w meson
is given by

m?? =m?2 4+ Q% + O(m?2/4M?)

v

(16)
where we have introduced the classical plasma frequency

92 — gzszB
M .

(17)

The above set of equations indicate that the density-
dependent dressing of the w-meson propagator leads to
an increase in the mass of the w meson in the medium
which is proportional to the classical plasma frequency.
This is the (old) result obtained by Chin in 1977; e.g.,
see Ref. [6].

Two features of this plot are particularly noteworthy.
First, the area between the dotted lines represents the
region where the imaginary part of the transverse polar-
ization is nonzero. Inside this region the w meson can
“decay” into NN pairs. This region is bounded from
below by the curve

3.0_...|‘.'..I|7.1j T 3.0
C q=1MeV 7 g q=1GeV 1
25— - — 25
o ] 1
20 -] — 20 .
> H 1 N FIG. 1. Effective transverse w-meson mass
E C ] i as a function of the Fermi momentum for
> 15 - i lg| = 1 MeV and |q| = 1 GeV in MFT. The
g L ] 1 dotted lines enclose the (¢°) region where the
C o] ] imaginary part of the transverse polarization
LoF — [ - 10 is nonzero and damping of the modes is pos-
L 1 1 sible.
N 1 r ]
0.5 — oy — ] 0.5
C 1 ]
C 1 r ]
00 i1 1 1 l N T 1 l 1 . - — 1 1 l 1 1 1 1 l 1 1 1 1 00
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

ke /Kp ke /K7
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if |q| < 2kp ,

[qo]min = { q? + 4M2

VEE M7 + /(] = kp)? + M2

and from above by the curve

[0%]max = \/kF + M*2 + V/(la| + kp)? + M*2 . (19)

This region is defined by imposing energy-momentum
conservation for the (on-shell) production of a NN pair
with the nucleon three-momentum constrained to be be-
low the Fermi momentum. Note, however, that by itself
this nonzero imaginary part contributes to an unphysical
(i-e., negative) decay width for the w meson. This can
be seen, for example, by considering the case of NN pair
production at ¢ = 0 (NN pair produced with equal mag-
nitude but opposite direction of the three-momentum).
In the absence of Pauli blocking the threshold for pair
production would start at ¢° = 2M* (nucleon and anti-
nucleon created at rest). In the medium, however, all
nucleon states with momentum 0 < |k| < kp should be
Pauli blocked and, hence, should not contribute to the
width. The threshold for pair production in the medium
should, therefore, move (for q = 0) from ¢° = 2M* to

q° = 24/k% + M*2. This is precisely the region

[qo]min =2M* < qo < 2\/ k%‘ + M*2 = [qo]max ; (20)

where the density-dependent contribution to the polar-
ization (II22) develops an imaginary part which would
exactly cancel the contribution from vacuum polarization
to the decay width of the w meson. Therefore, vacuum
polarization must be included in the study of the damp-
ing of the meson (collective) modes. The other feature
that one should stress is the many meson branches that
are developed for 0.3 ~ kr/k2 ~ 0.9. In Ref. [14] it has
been suggested that this structure is also related to the
Pauli blocking of NN excitations. Indeed, by removing
the negative-energy (antiparticle) components from the
Feynman propagator it was shown that the multibranch
structure disappears. Hence, vacuum polarization might
also play an important role in the modifications of the
real part of the propagator and should be included in the
study of the effective w-meson mass.

We now present results for the effective w-meson mass
in the relativistic Hartree approximation (RHA). In the
RHA one must include vacuum contributions to the nu-
cleon self-energy in the calculation of the mean-field
ground state as well as the vacuum dressing of the me-
son propagator. Details of the renormalization procedure
can be found in Ref. [24] (note that in the present work
the renormalization point is taken at qﬁ = m2 and not
qf‘ = 0). In Fig. 2 we present results for the effective
w-meson mass obtained by finding the zeros of the in-
verse transverse propagator in analogy to the MFT case
[see Eq. (15)]. In the present RHA case, however, the w-
meson self-energy includes density-dependent corrections
and vacuum polarization. We observe, in particular, that

if |q| > 2k , (18)

the multibranch structure present in the MFT calcula-
tion has now completely disappeared. Hence the effec-
tive mass in the medium (driven by virtual excitations)
and the modified width (driven by the decay into NN
pairs) are dramatically affected by vacuum polarization.
Note, however, that the combined effect of the density-
dependent dressing plus vacuum polarization generates,
in contrast to the MFT case, a reduction in the value of
the effective w-meson mass in the medium. One can shed
some light on this result by studying the low-density limit
of vacuum polarization. In particular, if only vacuum
polarization is included in the dressing of the propagator
one obtains an effective meson mass given by

2 *__
m2? = m? [1 + —397:2 (M —M) MM) + O(m2/4M?)
2 2
9, Cs
:mlzJ_ngfa@_*_o(miz’/‘le)' (21)

This result indicates that the shift in the mass of the w
meson is proportional to the shift of the nucleon mass in
the medium, and thus negative in the Walecka model. If
we now add both effects, namely, the density-dependent
dressing plus vacuum polarization, into the calculation of
the fully dressed propagator, we obtain (the low-density
limit of) the in-medium w-meson mass in the RHA:

92 C?
372 C2

m2? ~m? + Q? [1 — (22)

The above equation embodies the central result from the
present work. It indicates that the shift in the value of the
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FIG. 2. Effective transverse w-meson mass as a function
of the Fermi momentum for |q| = 1, 500, and 1000 MeV in
the RHA. The damping of the modes occurs for values of ¢°
outside the range shown in the figure.
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w-meson mass arises from a delicate competition between
two effects. On the one hand, the density-dependent
dressing of the w-meson propagator leads to an increase
in the mass proportional to the classical plasma frequency
[see Eq. (16)]. On the other hand, the vacuum dressing
of the propagator is proportional to M* — M and gives
rise, in the present model, to the opposite effect. Because
in the Walecka model the scalar field is responsible for a
downward shift in the value of the nucleon mass in the
medium, the w meson “drags” along lighter NN pairs
(relative to free space) that are, ultimately, responsible
for reducing the w-meson mass. The final outcome of this
competition depends on the particular values+of the cou-
pling constants adopted in the model [see Eq. (22)]. In
the present model (g2/372)(C2/C?%) ~ 5.36 > 1 and the
vacuum polarization dominates over the corresponding
density-dependent dressing leading to a reduction of the
w-meson mass in the medium. In the Walecka model, the
values of C? and C2 were selected in order to reproduce,
at the mean-field level, the binding energy and density
of nuclear matter at saturation. By further associating
the value of the vector-meson mass to the physical value
of w-meson mass, one obtains the NNw coupling con-
stant given in Table I. One should mention that this
large value for the coupling constant is consistent with
other estimates based on fits to empirical two-nucleon
data [25]. Thus we believe that the parameters adopted
in the present calculation are realistic, and that the shift
in the value of the w meson should be largely insensitive
to a fine tuning of parameters. Other models, where the
parameters have been constrained by different physical
observables, might lead (and actually have led) to differ-
ent predictions in the magnitude, and even in the direc-
tion, of the shift of the w-meson mass [7-9]. Therefore,
the value of the w-meson mass in the nuclear medium is
model dependent and should be determined experimen-
tally [5].

We now close with a brief discussion of the longitu-
dinal meson propagator. In studying the longitudinal
effective mass of the w meson in the medium one must
find the zeros of the longitudinal propagator. Because of
scalar-vector mixing, however, Dyson’s equation for the
longitudinal propagator becomes a 3 x 3 matrix equa-
tion (actually a 2 x 2 matrix equation because of cur-
rent conservation). However, our calculations, as well as
those of Ref. [14], suggest that the scalar-vector mixing
is quite small; the shift in the value of the w-meson mass
is at most 1.5 MeV for all densities below the nuclear-
matter saturation density. We have also shown that
this result is fairly insensitive to the particular choices
of width and renormalization point for the scalar propa-
gator. In Fig. 3, the longitudinal effective mass is plotted
as a function of the Fermi momentum for |gq| = 1 MeV
(dashed line) and 1 GeV (dot-dashed line) along with the
transverse mass (solid line). For small values of |q|, the
transverse and longitudinal effective masses are practi-
cally identical (in fact, they are not resolved in the fig-
ure). This can be traced to the low-density behavior of
the longitudinal mass (ignoring scalar-vector mixing)

1 g, Cd

—_— = 23
1+q2/m2 3x2C2]° (23)

*2 2 2
my® ~mi + Q [

12—

T T T

LA I N I

—— g=1MeV [Tran.] A
--- g=1MeV [Long.] A
--- q=1GeV [Long.] 1

T T

o.er; e -
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kg/kg

FIG. 3. Effective transverse w-meson mass as a function of
the Fermi momentum for |q| = 1 MeV (solid line) in the RHA.
Also shown is the longitudinal mass at |q] = 1 MeV (dashed
line) and |g| = 1 GeV (dot-dashed line). The damping of the
modes occurs for values of ¢° outside the range shown in the
figure. Note that the transverse and longitudinal modes at
1 MeV are indistinguishable in this figure.

which should be compared to Eq. (22). For large values of
the momentum, however, the longitudinal effective mass
is more sensitive to the value of |q| and displays an even
stronger reduction (see Table II).

IV. CONCLUSION AND FUTURE WORK

We have calculated the effective mass of the w meson
in nuclear matter in the Walecka model. The ground
state of nuclear matter was obtained by solving the field
equations in a mean-field approximation. The effective
mass of the w meson was subsequently obtained by solv-
ing Dyson’s equation for the propagator in a relativistic
random-phase approximation. We have calculated the
dressing of the meson propagator in two approximations.
In MFT one neglects vacuum polarization and computes
the self-energy corrections to the propagator by including
the coupling of the meson to particle-hole pairs and the
Pauli blocking of NN excitations. In the RHA, on the
other hand, one computes the full (one-loop) dressing of
the propagator by also including vacuum polarization.

TABLE II. Effective w-meson mass as a function of
momentum transfer at nuclear-matter saturation density
(kp = 1.3 fm™!') in the RHA. Meson masses and the mo-
mentum transfer are measured in MeV.

Mode lq| my/m, m;, m, —m;,
Transverse 1 0.786 615.7 167
Transverse 500 0.780 611.0 172
Transverse 1000 0.776 607.5 176

Longitudinal 1 0.786 615.7 167
Longitudinal 1000 0.718 562.1 221
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Both approximations have been used extensively in the
past (with considerable success) in the study of the lin-
ear response of the nuclear system to a variety of probes.
In all these cases the momentum transfer to the nucleus,
and hence the momentum carried by the meson, was con-
strained to the spacelike region. In contrast to these find-
ings, we have shown that in the timelike region probed
in the present work, a MFT description is inappropri-
ate. Because in MFT one includes the Pauli blocking of
NN excitations, but not vacuum polarization, one ob-
tains an unphysical (i.e., negative) contribution to the
decay width of the w meson. Furthermore, one generates
a dispersion curve for the collective meson modes having
a complicated multibranch structure that arises from the
Pauli-blocked NN excitations.

These two obvious deficiencies of the MFT approach
were corrected by calculating the meson propagator in
the RHA. In contrast to the MFT results, the w-meson
mass displayed a very smooth behavior as a function of
nuclear density. In addition, the damping of the meson
modes was now caused by the decay of the w meson into
NN pairs. The Pauli blocking of NN excitations (al-
ready present in the MFT description) simply reduced
the decay width of the w meson by suppressing those
transitions to nucleon states below the Fermi surface.

In the RHA the effective w-meson mass was reduced
relative to its free-space value. This reduction arose from
two competing effects. On the one hand, the density-
dependent dressing of the meson propagator (with no
vacuum polarization) caused an increase in the w-meson
mass proportional to the classical plasma frequency. Vac-
uum polarization, on the other hand, led to a reduc-
tion in the mass. This reduction was, ultimately, traced
to the corresponding reduction of the nucleon mass in
the medium. For the particular values adopted in the
model, vacuum polarization effects dominated over the
density-dependent dressing and led to a reduction of
about 170 MeV in the value of the w-meson mass at
nuclear-matter saturation density (see Table II). We ar-
gue that because the parameters of the model were con-
strained by bulk properties of nuclear matter at satura-
tion, our finding should be largely insensitive to a fine
tuning of parameters. However, since other theoretical
models, constrained by a different set of observables, can
apparently lead to different predictions, it is important
to make an experimental determination of the effective
w-INeson mass.

In the future we plan to examine the effects of a
medium-modified w mass to the photoproduction of ete~

pairs in a kinematical region around the w-meson mass
pole. Many dynamical components must be integrated
in such a calculation. For example, in addition to the
calculation of an effective w-meson propagator in the nu-
clear medium, one needs a model for the YN — wN
transition amplitude that can be extrapolated off shell.
Ideally, one would like to have a single underlying model
for the calculation of both the dressing of the propagator
and the photoproduction amplitude. One should also fur-
ther study the effect of the three-momentum transfer on
the photoproduction cross section. In free space the w-
meson propagator is a function of only one kinematical
variable, namely, the four-momentum squared (qﬁ) In
the nuclear medium, the self-energy (and thus the prop-
agator) depends, in addition, on the magnitude of the
three-momentum transfer (q). For small values of the
three-momentum transfer the effective longitudinal and
transverse masses of the w meson are practically iden-
tical. At larger values of the three-momentum transfer
(la| ~ 1 GeV), however, the two modes get well separated
with the longitudinal mass reduced, near the nuclear-
matter saturation density, by an additional 50 MeV rel-
ative to the transverse value. This suggests that at large
enough values of the three-momentum transfer the spec-
trum for the production of e*e™ pairs might show two
well-separated (w-meson) peaks. This statement obvi-
ously requires that the signal be extracted from the wide
“backgrounds” associated with Bethe-Heitler (nonreso-
nant) pairs and the formation and decay of the (isovector)
p meson. This may be done by a careful study of the in-
terference of these amplitudes, for example [5]. The study
of a medium-modified p-meson propagator is, unfortu-
nately, much more complicated in the context of a renor-
malizable quantum field theory and will not be addressed
here; see Ref. [11]. We believe that detailed measure-
ments of the photoproduction of lepton pairs from nuclei
are essential and should provide invaluable insights into
the formation, propagation, and decay of vector mesons
inside the nuclear medium.
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