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Specific heat and shape transitions in light sd nuclei
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A systematics of thermal properties, for nuclei with 16 ( A ( 30, is presented. The study has
been motivated by previous reports on phase transitions involving nuclei belonging to the 28-1d shell.
We have used the nuclear SU3 scheme to calculate the specific heat and the temperature dependence
of the intrinsic quadrupole moment for each nuclei. We have found that finite size efFects and not
true phase transitions are aR'ecting the temperature dependence of these quantities, at least within
the SU3 scheme and for the nuclei which we have considered.

PACS number(s): 21.60.Ev, 21.60.Fw, 21.10.Re, 27.30.+t

I. INTRODUCTION

In a series of recent papers [1—4] the finding of phase
transitions in finite nuclei has been reported. On the
other hand, similar calculations, for some of the light
nuclei belonging to the 2sld shell, have shown that the
proposed phase transition does not occur [5]. This phase
transition was related to a change in the nuclear shape in-
duced by thermal excitations [1]. In the work of Ref. [2]
the nuclear specific heat, for the case of 24Mg, was com-
puted using nuclear eigenstates obtained with a number
of realistic interactions and also using the available data
on the observed energies. The appearance of a prominent
peak in the specific heat, for temperatures of the order
of 1.7 & T ( 3 MeV, was interpreted as the signature
for a phase transition. Moreover, a change in the nuclear
shape was associated with it [2]. However, from the re-
sults reported by Dukelsky et al. [5] no change in the
sign of the intrinsic quadrupole moment was obtained at
these temperatures. In a more recent work [6] the ques-
tion of the nature of the suggested phase transition is
reviewed, this time with reference to finite size effects.
In the present work we have computed the specific heat
and the intrinsic quadrupole moment, among other tem-
perature dependent quantities, for 11 even-even nuclei
in the sd shell and in the context of the nuclear SUs
model [7, 8]. The results predicted by this model have
been tested previously, by Dukelsky et al. [5], against
the results obtained by using realistic interactions. Since
the nuclear SU3 model of Elliot allows for a systematics
in the above mentioned mass region, we have adopted it
in order to include the relatively large number of con-
figurations required for the calculation of mean values at
finite temperatures. Because of the relatively good agree-
ment found between descriptions based on the nuclear
SUs model and realistic interactions for the s-d shell [5],
although spin-orbit and pairing effects are not included in
the crude SU3 approach, the present results are expected
to show similar overall features as compared with results
obtained by using more realistic nuclear Hamiltonians.

II. FORMALISM

The SU3 scheme reproduces the overall features of the
spectra and transition probabilities involving collective
bands. Detailed comparisons between SUs descriptions
[8] and results obtained using realistic two-body interac-
tions [9] have been reported extensively and we shall not
discuss it here again. The clasification of nuclear states
according to the SUs scheme was proposed by Elliot [7].
The Elliot SU3 nuclear model has been described in de-
tail in review articles [8). It has been succesfully applied
to nuclei belonging to the 2sld shell [10]. In terms of the
SUs quantum numbers (A, ls) the eigenvalues of the nu-
clear Hamiltonian are given by the following expression
[5, 8]:

E(A, p, L) = ~[Ap 4(A +is +—Ay+3(A+p))+3L(L+1)],

(1)
where L is the angular momentum. The constants K

(strength of the quadrupole interaction) and Ap (the en-

ergy shift) are adjusted by fitting, for each nucleus, the
energy of the first excited J = 2+ state and by imposing
the condition E(A, li, L = 0) = 0 for the representation
(A, p) associated to the ground state. Since the model
has been extensively described [8], we shall omit further
details about it and we shall directly introduce the for-
malism which we have adopted for the present calcula-
tions.

The values of (A, p) representations of the SUs group
for the different nuclei which are included in the calcu-
lation, namely 0 Ne, 2 0 2 Ne, Ne, Mg Ne,

Mg, 26Mg, Si, and 2 Si, are taken from the compila-
tion of Perez and Flores [11]. The constants e and Ap,
the number of representations of the SU3 group, the total
number of configurations including the degeneracy in the
total angular momentum and in the total isospin, and the
experimental energy of the first excited 2+ state, for each
nucleus, are the input of the present calculations. The
number of configurations has been calculated, for each
case, by applying the rules of Elliot [5, 8] in the following
form:

K = min(A, p, ),min(A, p) —2, ..., 0 or 1

A. Classi6cation of states according to SUq group
The success of the SU3 description of collective fea-

tures in light nuclei has been established long ago [8].

and

K, K+ 1, ..., K+ max(A, p) if K g 0,
max(A, ts), max(A, ts) —2, ..., Oor 1 if K = 0 .
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For a state belonging to the SUs representation, the in-

trinsic quadrupole moment is given by

(24+ @+3) if A & p, ,
(—A —2p —3)if A( p, .

10

B. SU3 model and the partition functions

We shall assume the validity of the SUs description and
proceed with the calculation of relevant expectation val-

ues at finite temperature, such as the intrinsic quadrupole
moment, the excitation energy, etc. The canonical parti-
tion function is defined by

12
24

~10
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I' ~
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28

Z(P) = ) (2I;+1)(2J;+l)e ~ ', (2)

where the subscript i labels irreducible representations of
the SUs group and P is the inverse temperature P = 1/T
(with T in MeV) [5]. The isospin and the total angu-
lar momentum, for each irreducible representation, are
denoted by I; and J;, respectively. With this partition
function one can calculate the mean energy

RnZ(P)

and the specific heat

(4)

Other observables are calculated as

g, (2I;+ 1)(2J;+1)e ~@*'(0)

z(p)

where (e)I & is the diagonal matrix element of the op-
erator 0 in a given SUs representation.

III. RESULTS AND DISCUSSION

We have adopted, for the SU3 Hamiltonian, a pure
quadrupole-quadrupole interaction [8]. The constants en-
tering in the definition of the energy, Eq. (1), have been
determined from the data on the excitation energy of the
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FIG. 1. Yrast line for some of the nuclei considered in the
text. Solid lines (with open squares) indicate the energies
predicted by the SU3 model. Experimental values are taken
from Refs. [15, 16] and are denoted by solid squares.

first excited quadrupole state. The resulting values for
tc and Ao are listed in Table I together with the number
of SU3 representations and the corresponding number of
configurations for each nuclei. These values have been
taken from [11].We have performed our calculations for
all the nuclei listed in Table I. To illustrate the results
we have selected some cases, which are shown in Figs.
1—7. The predicted yrast line, for some of the nuclei con-
sidered in the present analysis, is shown in Fig. 1. The
overall agreement between data and the values predicted
by the SUs scheme is acceptable, as we have verified from
the results corresponding to the complete set of nuclei.

The spectral distribution D(E), i.e. , the number of
eigenstates per unit energy normalized to the total num-
ber of eigenstates, corresponding to the set of SU3 con-
figurations included in the calculations, is shown in Fig.

TABLE I. SU3 parameters used in the calculations. The constants Ap and e have been adjusted
to reproduce the energy of the Srst excited quadrupole state in each nucleus. The number of SU3
representations aud configuratious is taken from Perez aud Flores [11].

Nucleus
18O

18N
20O

2oNe

e
Mg
Ne
Mg
Mg

26S.
28S.

Ap

112
112
352
352
456
456
592
592
640
640
720

a [MeV)
0.11
0.10
0.09
0.09
0.07
0.07
0.11
0.08
0.10
0.10
0.08

SU3 representations
3
3
20
20
90
90
263
263
501
501
622

SU3 con6gurations
8
8

78
84
493
500
170
625
417
454
525
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FIG. 2. Spectral distribution functions D(E) in the SU3
scheme, as a function of the energy E.

2. It is observed that D(E) is strongly mass dependent
but it saturates; i.e., it reaches a maximum value and
then decreases at energies of the order of 20—30 MeV.
The fragmentation is larger for the heavier isotopes. We
have verified that an increase in the number of configura-
tions does not change the structure of D(E) significantly.
The same can be said about the maximum excitation
energy used in the calculation, which has been fixed at
Em~ = 30 MeV, since changing this value to E~~ = 50
MeV does not affect the results. The results for D(E),
of Fig. 2, reproduce the observed trend, namely, a dom-
inant rotational ground state band followed by a large
number of configurations belonging to other SU3 repre-
sentations. The eigenvalue densities, except for collective
ground state bands, have a shape which can be described
by a distribution similar to the binomial shape reported
by Cortes et at. [12]. To summarize the analysis based on
the SU3 model the following features can be mentioned:

(a) The rotational ground state band is well reproduced;
it goes typically up to energies of the order of 12 MeV for
J = 8+. (b) The spectral distribution D(E) is approx-
imately binomial. (c) The spectral distribution shows,
practically in all cases, a number of low-lying collective
states followed by a larger number of noncollective exci-
tations. The diR'erence between collective and noncollec-
tive excitations is, of course, given by the associated SU3
clasific ation.

Statistical expectation values have been calculated
with the partition function (2). The structure of Z(P)
is practically the same for all nuclei, except for 0 and
isNe where the increase of Z(P) with T is less pro-
nounced. The temperature dependence of the mean-
value of the energy, Eq. (3), is shown in Fig. 3. All
functions displayed in Fig. 3 show an increasing trend
with T but this tendency is still far from the linear one
which is expected to appear at high temperature and in

'I'
( Xl e V }

FIG. 3. Average excitation energy E as a function of the
temperature T.

the presence of saturation. For most of the cases a change
in the slope is observed at low T.

The specific heat is shown in Fig. 4. The shape of
these curves is similar to the one reported in [2, 5]. How-

ever, the present systematics shows that the presence of a
bump at T of the order of 2—4 MeV is a common feature
in all cases. The appearance of a peak at lorn temperature
depends upon the cases; it is more pronounced for Ne,

Ne, and 2 Mg and less evident for the other nuclei. The
result corresponding to the case of Ne reproduces the
trend reported by Dukelsky et at. [5]. The interesting
question is of course related to the identification of the
high temperature bump as a signal for a phase transi-
tion [2]. Following the discussion advanced in Ref. [5],
and in order to answer the above question, we have cal-
culated the expectation value of the intrinsic quadrupole
moment (Qo). The results are shown in Fig. 5. The
important feature shown by these curves is that the in-

trinsic quadrupole moment, for all the cases considered
here, does not change sign. It means that the SUq model
does not lead to any temperature dependent effect so no-

torious as the phase transition claimed by the authors of
Refs. [1—4]. There is, however, a tendency to decrease
the absolute value of the intrinsic quadrupole moment,
but the change in shape is well beyond the maximum
temperature allowed in the present calculation and well

beyond an acceptable value of T for finite nuclei. Con-
cerning the bump at T of the order of 2—4 MeV it can
be better explained by the finite size of the configuration
space, i.e., the so-called Schottky effect [13]. To clar-
ify this point we have computed the specific heat for a
model situation where the spectral density distribution
is represented by a rotational band followed by a bino-
mial distribution corresponding to high-lying vibrational
states [14]. The results are shown in Fig. 6, together with
the results obtained with the SU3 model. The agreement
between both models is good and it gives support to the
conclusion of the work of Ref. [5]. Finally, and in or-

der to support this conclusion concerning the structure
of the bump shown by the specific heat, we have com-

puted the expectation value of the number of quanta for
each degree of freedom described by the SU3 model. The
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phase transition. In this respect and taking the value of
the intrinsic quadrupole moment as an order parameter
its temperature dependence does not show the features
expected for phase transitions.

We have shown that the conclusions of Ref. [5] are
indeed valid for all the nuclei which we have considered

and that they are not restricted to an isolate example,
like, i.e, the case of Ne.
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sejo Nacional de Investigaciones Cientificas y Tecnicas
(CONICET) of Argentina.
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