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Comparison between the temperature and the time-dependent
Hartree-Fock-Bogoliubov descriptions of the pairing interaction
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The thermal and the time-dependent versions of the Hartree-Pock-Bogoliubov approximation are
used to describe the effects of the pairing interaction in a simple model. Similarities and difFerences
between the two approaches are discussed. In the one-shell case analytic results are obtained which
clearly show that as the degeneracy increases the exact energies tend to the limits provided by the
approximate methods. A relation between the quasiparticle occupation probability and the seniority
is established. In the two-shell case the time-dependent approach approximates all the families of
exact states labeled by the shell seniority and gives information on the two different phase transitions
present in the model. The finite-temperature method, instead, only approximates the exact energy
for the lowest state of each family.

PACS number(s): 21.60.Jz, 21.30.+y

I. INTRODUCTION

The Hartree-Fock-Bogoliubov (HFB) [1,2] description
of fermion systems provides a single excitation image of
the low energy part of the spectra of many-body sys-
tems. The thermal [3,4] and the time-dependent versions

[5] give on the other hand descriptions that contain es-
sentially all the information related with single-particle
excitations for the whole spectrum of the Hamiltonian
considered. Nevertheless the complexity of using one
method or the other is completely different. In princi-
ple, the thermal version can be applied in a general case
(in fact for a realistic situation the thermal calculations
are not simple but they are feasible). On the other hand,
except for very simple Hamiltonians it is quite compli-
cated to perform the time-dependent version.

An interesting question that arises is if the two approx-
imations provide the same information or which are the
differences between them. Therefore the purpose of this
work is to do a detailed comparison between the ther-
mal and the time-dependent versions of HFB. With this
aim we have decided to study the pairing interaction in
a two-level model as in this case it is possible to per-
form the exact calculation as well as both approximate
treatments and at the same time this problem contains
the essential features of much more complex situations.
We apply the temperature and time-dependent HFB ap-
proximations to study in particular the phase transitions
this system presents, not only the one for the ground
state, that appears as one changes the strength param-
eter, but also the one that resembles the disappearance

of superconductivity for higher temperatures that in our
case correspond to higher excitation energies. These ex-
citation energies can be thought of as related to the "crit-
ical temperature" at which the phase transition occurs.
It is particularly helpful to use the scaling property dis-
cussed in the time-dependent results obtained previously
[6].

We believe that the conclusions that can be drawn &om
this comparison will be more general than the particular
case studied here.

In Sec. II we review the model studied and its exact
treatment as well as the general features ot the thermal
and time-dependent HFB descriptions. In Sec. III we

apply the two methods to the one-shell case, while the
comparison between the results obtained for the two-shell
case is discussed in Sec. IV. Finally, some conclusions are
summarized in Sec. V.

II. DISCUSSION OF THE MODEL AND
DIFFERENT TREATMENTS

A. The model and its exact treatment

The model used consists of two nondegenerate shells of
the same degeneracy 0 (0 = j+ 2), and energies z' and

2, where particles in both levels interact via a pairing
residual Hamiltonian.

Defining

On leave of absence from the CNEA.
Ng= —) bt b, , (2)
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where the two shells are denoted by 1 and 2. Ni(N2)
is the total number of pairs in level 1(2) and G is the
interaction strength. The spectrum of this Hamiltonian
can be obtained using the method described in Ref. [7].
For one shell the eigenstates are of the form

Ik, v) = Afg„At"B"Io), (4)

the Hamiltonian used is

H = 6(Ni —N2) — [(Ai + A2) (Ai + A2)
GO

2

+(A, + A, )(At + At)], (3)

B",that satis6es the relations

AB"IO) = 0, NB" IO) = vB"IO),

creates v nonpaired particles. Consequently, the energy
can be expressed in terms of the number of paired parti-
cles I( and the "seniority" v as

E(k, v) = —Gk(O —k —v+ 1).

For two shells it is convenient to use the basis

kik2viv2) = Aa, s,„,„,Ai 'A2 'Bi'B2 Io) .

where JVs„ is a normalization constant, k is the number
of paired particles, lo) is the vacuum and the operator

I

In this case the matrix elements of the Hamiltonian are
simply given by

H]k~kpa yes) = —]2]ky —kg) + uq —vg] —G] y]kkk ky —
van + 1) + kg(B —kg —vg + 1)])~kykgvyvg)

2

—Gorki(0+ 1 —ki —vi)(k2+ 1)(0—k2 —v2)lki —1k2+ 1viv2)

Ggk2(fI + 1 k2 v2)(ki + 1)(+ ki vi)lki + ik2 iviv2) ~ (8)

As the Hamiltonian does not change the seniority, it does
not connect states of different seniority and therefore it
is possible to diagonalize each seniority independently.

For one shell the number of states having seniority v
1s

Studying the commutator algebra for the operators de-
fined in Eqs. (10), (11), and (12) one immediately sees
that the group that is relevant for the two-level model
described in the previous section is SU(2)*SU(2), as the
operators de6ned before have the commutation relations
of SU(2)

and for two shells the degeneracy of the states with se-
niorities (vi, v2} is directly D(vi) x D(v2). In the latter
case the exact energies can be obtained by diagonalizing
a matrix of order 0 —v+ 1 with elements implied by (8).

[K+,K *
] = 2Ko',

[Ko(', K+ ] = K+,

[K(') K(')] K(')

(14)

B. Time-dependent Hartree-Fock-Bogoliubov
treatment

When the seniorities v; are zero the vacuum state lo)
is characterized by

K(')lo) = 0,
For implementing the time-dependent variational ap-

proach we 6rst introduce the operators K,"lo) = ——'lo
2

(18)

m, ;)0

~( ) ~(')

(io) which identify lo) as the minimum weight state of the
representation of SU(2)*SU(2) with weights ~2'. The co-
herent state in this representation is

lziz2) = e~'z*f~+ I0) (19)

K(') — &
,

'bt b. (i2)

With these definitions the Hamiltonian (3) is written as

H = t(K —K( )) ——((K ) + K ))(K( ) + K( ))

+(K( ) + K( ))(K( ) + K( ))}
(i3)

' (ZiZ2I(ih&z —H}IZiZ2)
(Zi Z2

I
Zi Z2)

(20)

and it is a BCS-like state (not normalized). The equa-
tions of motion obtained through the time-dependent
variational principle with this state are equivalent to
the TDHFB equations. To obtain them one has to use
the variational principle appropriate for non-normalized
states [5] with an action defined as
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(Z, Z2IZ, Z2) = (1+Z, Z&) '(1+ Z2Z2)"' (21)

and the mean values of the operators defined in (10),
(11), and (12) are

The calculation of the overlap and the mean value of
the Hamiltonian is a well-known group theoretical calcu-
lation [5] . The overlap is given by

(~(a) )
a a

+ 1+ZZ
(~(i) )

i i

1+Z;Z;

() 0, (1 —ZZ)
2 (1+ZZ)

(22)

(24)

Consequently, the mean value of the Hamiltonian (13) is

e ( 1 —ZgZy 1 —Z2Z2 i ZgZ2 + ZgZ2
1 — + 2 — ' 1 2

2 (, 1+ ZgZy 1+ Z2Z2) (1+ZgZg)(1+ Z2Z2)

t'Qz(A& —1)Z&Z& 02(02 —1)Z2Z2 l G
—

2 +
~

——n, +n2.(1+ZgZg) (1+Z2Z2) ) 2
(25)

Although all calculations could be performed in terms
of the variables Z, , Z;, it is more convenient to introduce
new variables which are canonical [6,8]. This is done with
the transformation

the number of particles, makes the system integrable.
The most convenient variables for the integration are (for
Ag ——02 = 0)

1+Z, Z,
(26)

(d1471 + 4)2Cd2
1

&=2(V +V )

(28)

(29)
The new variables cu, are canonical in the sense that the
generalized Poisson brackets [5] have the standard form
and that the variational equations look like the ordinary
Hamilton equations

(27)

~2~2 ~11

~ = —,'(V2 —yi),

(30)

(31)

and its H.c. The dynamical problem has 2 degrees of
&eedom, the complex variables ~1 and ~2. Therefore
the existence of two constants of motion, the energy and

j

where p, = arg(ur;). Noting that ur;u7, is the mean num-
ber of pairs in the level i one gets that m is conserved
and that the range of g is —1 ( g ( 1.

The energy can then be written as

= —g + —(g + m —1 —cos(2o.) g[(m + 1)2 —F12][(m —1)2 —g2]).
eO 4

(32)

We have chosen eO as the energy unit because in this case
the equations of motion become independent of both pa-
rameters. We have also used a natural strength parame-

2&0

The equations of motion can be written as

~

M'
m= — =O,

Bp

When the seniorities v; are not zero one gets the same
equations but with 0; replaced by 0; —v;. In particular,
for Eqs. (28)—(32) we have also considered vi ——v2 ——v
and replaced 0 by 0 —v.

The TDHFB energy levels are determined by a Bohr-
Sommerfeld-like quantization condition for the action.

C. The thermal treatment
BE
Bm

BE
Q BA

(34)
We will now discuss the thermal treatment following

closely the description done in Ref. [4]. We start by con-
sidering a general two-body Hamiltonian:

BE

Bg
(36) (37)II = ) T,b,. b, + —) V~ I,ib, b~bibi, , .

U ijkl
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Ii = H —pN HHFB = Ep+ ) E;n, o.;, (38)

where the chemical potential p is fixed by imposing the
condition that the mean number of particles is well de-
fined. E,. are the quasiparticles energies while nt creates
one quasiparticle and is defined by the unitary transfor-
mation

nt = ) (U;, bt + V~b~)

If we want to obtain a thermal HFB description we
must remember that the density operator and the parti-
tion function that are defined as

which as usual, is approximated by a one-body Hamilto-
nian describing noninteracting quasiparticles, i.e.,

solving the eigenvalue equations

&H&F a ) &Ul fU;')
E-~' -HBF& ~V')

These equations are the FTHFB equations and it is to be
noted that for T = 0 one gets the usual HFB description.

We will now consider the pairing Hamiltonian in the
case of two shells with the same degeneracy 0 and en-
ergies ~~

—— 2, ~2 —— —2. The pairing potential re-
duces in this case to a constant 4 that is state indepen-
dent. One also obtains for the relevant variables, such as
the quasiparticle energies and occupation probabilities
(E;,V2, U2), very simple expressions, namely,

E; = Q(e —p)'+ b.

Z —~ —P(~—I ~)e ) (53)

Z T ( P(H PN—))— (41)

when treated by the HFB approximation (38) become
V2 1 ~, —P

(54)

ZBFB = II;(1+e '), (42) The ground-state energy is

DBFB = II;(f~n;+ (1 —f~)(l —n;)), (43)

where n; is the quasiparticle number operator corre-
sponding to the state i while

EFT = EO(Vj —V2 + (U~ —Vj )f, —(U2 —V2 )f2)
Q2

G (55)

1 1
f, =

p@ andP=1+ ePE*

The usual density and pairing matrices are

while the gap and number equations are written as
(44)

2 tanh(~z') tanh(~z') 1 —2fq 1 —2f2

p;~ = (b~b;) = Tr(DBFBb~b;)

= [U fU'+ Vt(1 —f)V], ,
N = 20(Vj' + V,

' + (U,
' —V,')f, + (U,' —V,')f,). (57)

t;~ = (b~b;) = Tr(DBFBb~b;)
= [U fV'+ Vt(1 —f)U]; (46) III. ONE-SHELL CASE

The energy is evaluated using Wick's theorem [2] for
T g 0. One then obtains

Ep~ = Tr(DBFBH) = Tr((T+ -I')p+ -b,t ), (47)

H~F ——T —p+ I', (48)

where the HF Hamiltonian as well as the self-consistent
and pairing potentials are defined as usual as

In this section we apply the results obtained in the
previous section to the one-shell case. This not only im-
plies the consideration of the limit e going to zero but
also amounts to a rescaling of the energies. Even if it is
a very simple case in which the system is always super-
conductive it is worthwhile to study it because one gets
analytic results and clear-cut conclusions may be arrived
at.

r,,-= v;, ,- p„
k,vn

(49)
A. Time-dependent description

1
4~ = —) V;; I ~to~

'k,- (50)

The coefBcients U and V of Eq. (39) are obtained by

To perform the TDHFB treatment in one shell it is
worthwhile to note that the expression of the mean en-
ergy obtained for the two-shell case can be applied to
the one-shell situation by considering in a simple way
the limit when e tends to zero. In this case the energy
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must be scaled in terms of G0 and one must take into
account that the degeneracy of the level obtained when
e = 0 is twice the degeneracy of each one of the original
levels, i.e., [cf. Eq. (32)]

1= ——(1 —rI —m
G02 8

+cos(2a) g[(m + 1)2 —rp] [(m —1)2 —rl2] j.
(58)

In the m = 0 case it is possible to obtain an ana-
lytic relation between the action S and the mean energy,
namely,

also coincide in this case.
One may also obtain the minimum TDHFB energy

minimizing Eq. (58). The result is

ETD = —-'G(0 —v) (1 —m )

which coincides with the exact energy in the limit of 0
going to infinity that is given by Eq. (63).

In Fig. 1 we show, for m = 0, the exact energy as a
function of the seniority v for different values of 0, as
well as the approximate energy obtained with TDHFB
(that is shown in full line). It is seen that as 0 increases
the exact values tend to the TDHFB ones, as already
mentioned.

Then

S~ =0 ado'=2~0 1 — —4

1 (, S. l '
4 & 2~0)

(59)

(60)

B. Thermal description

To obtain the thermal results for one shell we must
consider the limit e tending to zero in Eqs. (52) to (57)
obtaining therefore

This expression corresponds to the case of seniority
zero. When the seniority is not zero one replaces 0 by
0 —v and gets

G02 (N ) (N )—
I

—
I

+21 —I+4f* —4f]4 (0) (0)
(66)

( s.)'ETD=&= —-G~ 0 —~—
4 g 2z)

(61)

The exact energy for very large 0 expressed in terms
of the total number of particles N = 2k + v and the
seniority is [cf. Eq. (6)]

The exact energy is given by Eq. (6). The number
of pairs k may be related to the variable m using the
definition (28) and the fact that ur, u7; is the number of
pairs in level i,

G02 (N l (N'l
+2/ —

I

4 0) 0)
+ — —2

k =
2 (m + 1)(0 —v) . (62) (67)

Therefore, the exact energy for very large 0 is

E,„,t - —4G(0 —v) (1 —m ). (63)

As was already discussed in Ref. [6] the TDHFB result
is the limit to which the exact energy tends for 0 going
to infinity. Consequently, one has to compare Eq. (61)
with Eq. (63) for m = 0. Two difFerent interpretations
are possible. If one performs the TDHFB treatment for
v = 0, which is the seniority in the ground state, then
the approximate energy levels are obtained through a
Bohr-Sommerfeld-like quantization rule [6,9,10], i.e. , by
imp oslng

9 = 2mn, (64)

where n is an integer number. In this case the TDHFB
and the exact (for very large 0) energies coincide, as
expected.

On the other hand, one may perform the TDHFB cal-
culation for each value of v independently. As there is
only one energy level for each v, these are obtained look-
ing for the minimum TDHFB energy in each calcula-
tion. Obviously, the minimum corresponds to 8 = 0 [cf.
P'q. (64)] and then the approximate and the exact values

Comparing the two expressions it is seen that if the
quasiparticle occupation probability f is related to the
seniority through f =

z& then the FTHFB energy is the
limit to which the exact energy tends for 0 going to infin-

-02-
UJ

=1
~ Q=40

I

0.4
V/2n

FIG. 1. Exact energies (in units of GQ ) are shown by dots
as function of & for the values of 0 shown in the inset. The
values (that coincide) obtained using FTHFB and TDHFB
are shown in full line, as functions of f and, respectively.
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ity, as is the case in the TDHFB approach. Consequently,
with this recipe the thermal and the time-dependent ex-
pressions for the energy coincide. This recipe is in prin-
ciple rather arbitrary as in the thermal description one
has only one parameter, the temperature, that is in fact
defined through the density of states. However, it seems
reasonable because for T = 0 one has f = 0 [see Eq.
(44)] and as this temperature corresponds to the ground
state, v is also zero. For increasing temperature f in-
creases and as increasing texnperature means increasing
excitation energy also v increases. The maximum value
for f, and also for z&, is one half.

0-

0 0.2 0.4

IV. COMPARISON IN THE TWO-SHELL CASE

A. Time-dependent description

It has been shown in Ref. [6] that the TDHFB descrip-
tion is particularly good for this xnodel when considering
shell seniority zero states. In particular the approxima-
tion turned out to be exact for an infinite O. In this
work we have studied in TDHFB not only the shell se-
niority zero states but also states having shell seniorities
(v, v). We can then label the family of states by their
shell seniority.

In Figs. 2 and 3 we show the exact results presented
as families of states labeled by their shell seniority, for
O = 40, N = 80 (i.e. , m = 0) and ( = 0.5 and 3, re-
spectively. As it is already known [6] this model presents
two phase transitions. One is a ground-state phase tran-
sition that appears at the critical interaction strength
f, = 1. This means that for small coupling constants the
ground state is normal and for ( & (, the ground state is
superconductive. In this second case another phase tran-
sition appears for higher excitation energy such that the
energies below the critical value correspond to supercon-
ductive states and the energies above it to normal ones.
For v = 0 this critical energy is E' = —1 and in the exact
results it is pointed out by a maximum in the density
of states. In Figs. 2 and 3 it can be seen that all the
families present the same behavior and that for g & (,
there also exists a critical shell seniority v, such that for
v & v, all the states are norxnal.

0-
Ld

FIG. 3. Exact energies (in units of eQ) for the (v, v) families
as function of o for N = 20 = 80 and ( = 3.

Within the TDHFB approach one calculates the action
8 as function of the energy. As for v = 0 (see Fig. 2 of
Ref. [6])one gets continuous functions labeled by the shell
seniority that are the limits to which the exact results for
each family tend when 0 goes to infinity.

In particular, it is very easy to study the extrema of
the energy functional. For example, for m = 0 one has
[cf. Eq. (32)]

K= —rl ——(1 —rl )cos o.,
e(O —v) 2

(68)

where

( V~=(II- — .0 (69)

For ( ( 1 the minimum and maximum energies are

v ('R)= —1+ —'
I

—
I

&.~),. O' E.O (70)

which agree quite well with the exact results as can be
seen in Fig. 2 where they are represented as full lines.

For ( & 1 the maximum energy is the same as before
but the minimum is

(
v, =OI 1 ——I. (72)

= -- (+ - -2(—+& I

—
I

('8'l 1 1 v (vi'
geOy, . 2 ( O &0)

whereas —1+ & is now the critical energy correspond-
ing to the phase transition described above. These three
energies are represented as full lines in Fig. 3 and agree
quite well with the exact results. On the other hand, the
critical seniority is determined by the point in which the
minim»m and the critical energies join themselves and is

0 0.2
V/2Q

p4

FIG. 2. Exact energies (in units of eO) for the (v, v) families
as function of o for N = 20 = 80 and ( = 0.5.

B. Thermal description

In the two-shell case when there are enough particles so
as to fill coxnpletely the lower shell the Ferxni energy p is
equal to zero for all temperatures, making all the FTHFB
results very simple, as in this case one has fq ——f2 ——f,
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Eq ——E2 ——E, Uq ——V2, and consequently Vq ——U2.
Using these relations one obtains E = (1 —2f)GB,

GO 1 —2

and therefore the scaled ground-state energy can be writ-
ten as

(74)

The expression (73) allows us to define a critical f, or
temperature, when the gap vanishes,

(75)

If one relates the thermal occupation factor f to the
seniority through f =

&&, as in the one-shell case, then
the FTHFB ground-state energy (74) coincides with the
minimum TDHFB energy (71) and is represented by the
lowest full line in Fig. 3. Consequently, the FTHFB en-

ergy agrees quite well with the exact energy for the lowest

(v, v) states when 0 is large. This can be understood if
one realizes that in the thermal approach it is possible
to obtain in principle just two numbers for each tem-
perature: the ground-state energy and the energy of the
simple excitations (or quasiparticles). The thermal exci-
tation energies are essentially determined by the highest
seniority states (as at a given excitation energy there are
much more states with the higher possible seniority than
with smaller seniorities), and therefore these states dom-
inate completely the thermal picture.

Finally, using the above-mentioned relation between f
and v it can be seen that the expressions for the critical
seniority obtained in TDHFB [Eq. (72)] and in FTHFB
[Eq. (75)] also coincide and reproduce the exact result
(see Fig. 3).

V. CONCLUSIONS

between the quasiparticle occupation probability f and
the seniority v. Using it it is clearly shown that in this
case the two approaches provide the same results. More-
over, one gets the limit to which the exact energies tend
as the degeneracy increases.

In the two-shell case and within the TDHFB approxi-
mation we have performed a more complete analysis than
the one in Ref. [6] using as trial states not only the shell
seniority zero states but also states having shell senior-
ities (v, v). We conclude that the method provides the
limits to which the exact results for each family of states
labeled by the shell seniority tend when 0 goes to in-
6nity. Moreover, it can be applied for all values of the
coupling strength and the number of particles and dis-
plays all the relevant physical information contained in
the model. In particular, one gets the correct dependence
on the seniority of the phase transition that appears at
higher excitation energy where superconductivity disap-
pears.

On the other hand, the energy provided by the FTHFB
method agrees quite well with the exact energy for the
lowest (v, v) states in the superconductive region when
0 is large. It also gives the correct value for the critical
seniority where superconductivity disappears. These two
conclusions are based on the above-mentioned relation
between the thermal occupation probability f and the
seniority v.

Comparing the two methods one concludes that the
TDHFB one is more powerful because in the two-shell
case it is capable of approximating all the families of ex-
act states for any value of the coupling constant and it
gives information on the two different phase transitions
present in the model. Nevertheless, it must be mentioned
that the FTHFB method is simpler to apply in realistic
situations. On the other hand, the results obtained in the
FTHFB approach are also got with the TDHFB treat-
ment. In this respect an interesting conclusion is that
in those cases in which the two methods provide results,
these coincide. Once again, this coincidence is based on
the relation established between f and v.

With the aim of establishing similarities and dif-
ferences between the time-dependent and the finite-
temperature Hartree-Fock-Bogoliubov approaches we
have applied them in a simple model with a pairing in-
teraction.

In the one-shell case the results obtained are analytic.
In the thermal description we have established a relation
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