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Unstable infinite nuclear matter in stochastic mean field approach
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In this article, we consider a semiclassical stochastic mean-field approach. In the case of un-
stable infinite nuclear matter, we calculate the characteristic time of the exponential growing of
Quctuations and the difFusion coefBcients associated to the unstable modes, in the framework of the
Boltzmann-Langevin theory. These two quantities are essential to describe the dynamics of Quctua-
tions and instabilities since, in the unstable regions, the evolution of the system will be dominated
by the amplification of Quctuations. In order to make realistic 3D calculations feasible, we suggest
to replace the complicated Boltzmann-Langevin theory by a simpler stochastic mean-field approach
corresponding to a standard Boltzmann evolution, complemented by a simple noise chosen to repro-
duce the dynamics of the most unstable modes. Finally we explain how to approximately implement
this method by simply tuning the noise associated to the use of a finite number of test particles in
Boltzmann-like calculations.
PACS number(s): 21.65.+f, 25.70.Mn, 47.20.—k

I. INTRODUCTION

In recent years many efforts have been concentrated on
the study of complex fragment production, which is ob-
served in heavy ion collisions at intermediate energies [1].
In fact, it has been seen that some reactions, in this en-

ergy range, lead to the formation of dense and hot drops
of nuclear matter, which decay by emission of particles
and fragments. This kind of reaction may carry very im-

portant information on the properties of nuclear matter
at high density and temperature, such as, for instance,
its equation of state and, in particular, the nuclear com-
pressibility and the nucleon-nucleon cross section in the
medium. Concerning the formation of intermediate mass
fragments, a large debate is developing about the respon-
sible mechanism between two main classes of interpreta-
tion: (i) statistical decay from an equilibrated source or

(ii) direct explosion of the nuclear system, or multifrag-
mentation, expected on the basis of the prediction of a
liquid-gas phase transition [2].

The purpose of this paper is to study the growth of
nuclear instabilities which are associated to the latter
scenario. To achieve this goal we will consider mean-field
approaches, which are well suited to study nuclear mat-
ter. We will study the properties of all collective modes,
present in the considered system, in order to understand
if they are unstable or not, and derive the most unstable
ones as a function of the various charactenstics of the
system. We will explicitly achieve this task in the case of
infinite nuclear matter at given density and temperature.
We mill discuss the role of the finite range of the nuclear
force and of the nuclear surface energy. We will par-
ticularly stress that, in a realistic calculation, the most
unstable wavelength is slightly dependent on the position
of the system in the spinodal region. Moreover, since we

find this wavelength to be of the order of a few fm, the
requirement that it must be smaller than the character-

istic size of the nucleus is easily verified and therefore
does not introduce a strong reduction of the instability
region, in the case of a finite size system. Conversely,
we will show that the requirement that, in order to get
fragments, the instability time must be shorter than the
typical time associated to the dynamical evolution of our
finite system is a strong condition.

It is important, as well, to know the right value of
the amplitude of fluctuations in the unstable region. In-
deed pure mean-field equations are not valid in regions
where instabilities, bifurcations, or chaos are present.
This is the reason why, in the following, we will con-
sider a stochastic mean-field approach to deal with the
instability regions. In this sense the recently developed
Boltzmann-Langevin (BL) theory [3,4], in which Huctua-
tions are coming &om the stochastic part of the collision
integral, provides a well-founded. method to be applied
in the spinodal region.

Nevertheless, since, up to now, three-dimensional (3D)
calculations of the BL type are not feasible, we will try in
the following to propose a simpler stochastic mean-field
approach in which the Langevin term is replaced by a
simple noise tuned to give the correct dynamics for the
inost unstable modes. In particular, considering ordi-
nary simulations of the Boltzmann-like dynamics within
the test particle approach, it is possible to take advantage
of the noise associated to the use of a finite number of
test particles and to adapt these numerical fluctuations
to the predictions of the BL theory in the considered sit-
uation. This possibility has been already tested on some
simplified cases in two dimensions [5] making a compar-
ison between the results of calculations with a suitable
number of test particles per nucleon and an exact solu-
tion of the BL equation on a lattice [6]. In this work we

mill derive the strength of the fIuctuations projected on
the unstable modes and we will estimate the number of
test particle to be used in order to mimic a stochastic
mean-field calculation.
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II. UNSTABLE MODES AND GROWING TIME

Let us consider first, for the sake of simplicity, a cubic
box filled with uniform nuclear matter, at given density
and temperature. In such a simplified situation, for sym-
metry reasons, the collective motions are associated to
plane waves, characterized by a wave number k. For
each mode k, we need to study the corresponding dis-
persion relation and to define its possible instability re-
gion. Indeed we are interested in unstable modes because
we want to study if the fragmentation mechanism can
be associated to the growing of the related Buctuations.
Therefore we will define a k dependent spinodal region
[7] and we will give the values of the instability growing
time.

A. Dispersion relation

In order to gain insight into the definition of an un-
stable mode, let us consider the linear response theory,
starting &om a pure mean-Beld approach. Let us discuss
this approximation in some detail because some impreci-
sion can be found in the literature about it [8]. We will
consider a semiclassical approach describing the time evo-
lution of the one-body phase-space density f(r, p, t) by
the mean of the Vlasov equation:

+(H, f) =0.

Here II = p2/2m + U is the effective one-body Hamil-
tonian and (, ) the Poisson bracket, so that Eq. (1)
describes the Vlasov evolution for f in its own self-
consistent mean field U = U[p] generated by the den-
sity p(r) = f dpf(r, p)/hs. If we are interested in
the small fluctuations around the mean density po, as-
sumed to be independent of r, we can decompose the
one-body distribution function as follows: f(r, p, t)
fo(p, t) + bf(r, p, t), where bf represents a small. ampli-
tude perturbation on the mean value fo Then, it is .possi-
ble to demonstrate that bf fulfills the following equation:

Bbf Bbf p Bf BbU
+ —+

Bt Br m Bp Br (2)

The difFerent wave numbers k are decoupled as we ex-
pect from symmetry considerations. In the region where
k . p g mba, i.e., in the whole complex ug plane, except

where bU[p] is the variation of the self-consistent mean
field

bU = — bp.
OU

Bp

This product must be considered as a folding if U is non-
local: bU = BU/Bp bp. Intr—oducing the k representa-
tion of bf(i.e., perform'ing a Fourier transformation on
the r variable) the linear response equation (2) can be
reduced to the eigen&equency problem:

(he@ + p . k/m) bf (k, p, u) = 2 p . k bp(k, u).BU(k) Bfo
Bp Bp

(4)

on the real axis between —kv~/h and kv~/h, if we are
at zero temperature, we can solve this relation formally:

The dispersion relation is then obtained by expressing the
self-consistency condition p(k) = f dp f (k, p)/h . This
integration over the momentum p yields the following
condition on EI, ——hen:

f BU(k)1 dp Bfp 2 p k
Bp ) hs Bp2 EI, +p k/m

(6)

Since the integral G is invariant under the transformation
p ~ —p, the solutions of Eq. (6) always appear by pairs
ur and —ur. Moreover, we observe that [G(u)] = G(u')
and since, to verify Eq. (6) we need G(u) to be real, it
comes out that, if u is a solution, cu is a solution too.

B. Zero temperature

1 + 1/Fs ——p arctan(1/p). (8)

This equation can be solved if I'0 ( —1, i.e., if the fol-
lowing condition is fulfilled:

2
BU(k)/Bp+ —s~ jp ( 0.

3

Equation (8) always has two opposite solutions +p [9].
Therefore it corresponds to an unstable regime. The cor-
responding imaginary energies are shown in Fig. 1.

Let us come back to the special case ]Es] ( kv~. In
such a case Eq. (4) cannot be simply inverted in the sense
of the functions because of the presence of a zero in the
quantity to be inverted. The simplest way to avoid this

Let us solve first the previous equation at zero temper-
ature (T = 0). After solving the integral of Eq. (6), we
obtain the following equation:

s (a+1) 1—lni
i

=1+ —,
2 (8 —1) Fp

where s = Es/k vy—and Fo(k) = [BU(k)/Bp]/
(2s~/3p), s~ = mv&~/2 being the Fermi energy and p
the density. In Eq. (7) the logarithm is defined in the
complex plane with a cut on the negative real axis. It
should be noticed that Eq. (7) is completely analogous
to the dispersion relation obtained using the Fermi liquid
formalism [8,9].

As already discussed, Eq. (7) is valid in the whole
complex plane except for s on the real axis between —1
and +1. It can be seen that Eq. (7) has only real or purely
imaginary solutions and that they always come by pairs
(s and —s). Real solutions for s2 greater than 1 are found
for positive I'o. In this case all modes are stable, their
phase velocity is larger than the Fermi velocity, and they
are neither damped nor amplified (they only propagate).
The corresponding energies are shown in Fig. 1.

If we look for imaginary solutions of the dispersion
relation, s = ip, we come to the relation
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In Fig. l the roots of Eq. (7) are displayed as a function
of Fo, including also the "Landau-damping" contribution

(—1&Fo &0).

C. Finite temperature

Let us now study the condition to get unstable col-
lective motions and let us illustrate the results in the
low-temperature limit (T « s~). In such a case we can
integrate the dispersion condition (6) which leads to an
extension of the instability condition (9):

(BU(k) 2 sF x T I

& 0.
Bp 3 p 18sy p )

FIG. 1. The roots of the dispersion relation as a function
of Fo.

problem is to add a small imaginary part ig to the en-

ergy and to, later on, take the limit q' , 0. In this case
Eq. (6) is still valid if the logarithm of a negative real
number n is considered as being ln( —a) + im. There-
fore, there are no actual solutions of Eq. (7) with a real
s of modulus lower than 1, since the left side has an
imaginary part while the right side is just real. We have
gotten the known result that the collective mode is dis-
solved in the noncollective background: The singularity
u = —k.p/(mh) gives rise to a damping of the considered
modes, which corresponds to a coherent interaction be-
tween the collective mode and those particles which "surf
ride" on the crests of the running wave. Since, in equilib-
rium conditions, there are more particles going slightly
slower rather than slightly faster than the wave, there
will be an energy transfer &om the mode to the individ-
ual particles which will result in a damping of this mode.
This damping is usually called "Landau damping. " It
should be remembered that it does not correspond to an
actual solution of Eq. (7). However, in order to explain
the shape of the response function [9] of the system we

can analytically continue the dispersion equation, start-
ing &om the negative real axis, into the lower half of the
complex plane. This is equivalent to consider that the
logarithm is cut along the positive real axis. In this case
a root will be found on the negative imaginary axis as-
sociated to the condition —1 & Fo ( 0. Indeed on the
imaginary s axis the dispersion condition is now given by

In the limit of long wavelengths, II ~ 0, or for zero-
range interaction the relation (11) reduces to the condi-
tion for mechanical instability,

OP
&0,

Bp
(12)

where P is the pressure.

D. Finite-range interaction, surface energy
and instability condition

UmUgg.

In such a case the instability condition simply reads

The dispersion relation (8) predicts an instability time
7s = h/Es proportional to the wavelength A = &. This
is evidently an unphysical result since the smaller the
wavelength the faster their growing time. This result is

coming &om the fact that a zero-range interaction does
not introduce any scale.

A physical situation can be recovered if we introduce
a finite range for the mean field. This finite range will

generate a surface energy which will prevent from getting
too small clusters and will introduce a natural cuto8' in
the unstable lengths. As we will see it will also make the
spinodal region k dependent.

The pedagogical simplest way to introduce a finite
range mean field is to fold the zero-range one with a func-
tion g (such as a Gaussian), the range of this function
being selected under the requirement of getting a good
surface energy:

7l 1——arctan(p) = 1 + —.
2 Fp

(10)

We observe that, since this condition is the same as Eq.
(8) in the half plane of the positive imaginary part, the
Landau damping branch is the continuation of the unsta-
ble branch we discussed previously. The only di6erence
is that, if the interaction Fo is too attractive (Fo & —1),
the modes become unstable, and give rise to the appro-
priate exponential growing of Quctuations in the system.
However, it shall be remembered that in this case the
collective modes do exist and that they appear by pairs
at +M and —co.

It is also possible to introduce a gradient term in the po-
tential. This may simulate some quantum effects because
in quantum mechanics the kinetic energy corresponds to a
Laplacian term and therefore we get a term of the type~ in addition to the potential. Strong surface gradients—a2& S

2~ ~p
will therefore introduce some surface energy. In particular, in

the Fourier representation, the Laplacian term introduces a
term proportional to k, so that I'0 can still be formally rep-
resented as in Eq. (15). However, most of the surface energy
is due to the 6nite range of the interaction.
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(BU 2s z T )
gk + ——+ j

(0.
(t9p 3p 18sF p )

This condition and, therefore, the growing time will de-

pend on k. In fact, it means that we have a k dependent
I'0 parameter:

Iip, g(k) Ilp.

Therefore, for fixed conditions of the system (p and T),
inside the static spinodal region (related to k = 0), there
will be a limiting k, k~;, corresponding to the condition
—g(ki; ) Fp ——1, above which the dispersion relation is
no more unstable. Moreover, between 0 and k~;, there
will be a maximum of the instability parameter p which
will define the most unstable mode km~ and its corre-
sponding maximum value of the imaginary &equency, or
minimum value of the instability time rI,

Figure 2 displays the contour of the spinodal region for
infinite nuclear matter for k = 0 and for different modes
corresponding to diferent values of k. In this calcula-
tion we have used a folding function gnexp( —r /2a ). A
Skyrme-like parametrization has been considered for the
mean-field potential with A = —356 MeV, B = 303 MeV,
aild 0' = 7/6.

It is possible to observe that this instability region is
smaller for smaller values of A: this can be explained by
the fact that oscillations characterized by a small wave-

length, shorter than the range a of the forces, cannot be
unstable. In this sense the value of A for which the asso-
ciated mode is not unstable anymore, for the given values
of density and temperature, depends on the parameter a.
We use a = 0.87 fm in order to reproduce the interaction
radius of the nucleon (rp = 1.2 fm) [5]. It should be no-
ticed that this value of a gives a surface energy close to
the liquid drop value.

Let us consider for instance the mode corresponding to
A = 10 fm. This mode results to be approximately the
most unstable mode as soon as the system lies deeply
enough inside the spinodal region. Therefore the most
unstable modes happen to be of a rather short wavelength

E. Collisional damping

The introduction of the collision term in the Vlasov
equation mainly adds a damping (i.e., a positive imagi-
nary part) to the frequency:

' 1/rk 1/rrelax. (i6)

This can be more clearly seen in the relaxation-time ap-
proximation, where I[f] is replaced by bf/r„i—, so that
the average effect of the collisions is to change the &e-
quencies u&, which are the opposite imaginary solutions
of Eq. (6), into u&+i/r„i . When the system is very
unstable, this correction is not very important and the
growing of Buctuations is essentially dominated by the
unstable mean field. Therefore the inclusion of the col-
lision term does not change the main conclusions of the
previous section.

and so in realistic collisions the resulting partitions will
favor small nuclei such as Ne.

From the dispersion relation, in the Vlasov case, it is
possible to calculate the characteristic time r responsible
for the growing of Quctuations. In Fig. 3 we represent
the isocontour curves for the time r in the (p, T) plane.
The curve corresponding to 7 = oo and A = 10 fm is the
limit of the instability region for the considered value of
A (the dashed line corresponds to r = oo, A = oo).

The time 7 is related to the "degree of instability" of
the system, since it is smaller when the system is more
unstable. One can see that when the mode starts to be
unstable its instability time is infinite. Therefore it is
actually dynamically stable. In fact, in the realistic case
of a nuclear reaction, a given mode can be considered
as dynamically unstable only when its instability time
becomes shorter than a characteristic time for the global
evolution of the system. If we consider that the good
time scales in nucleus-nucleus collisions are around 50
fm/c, we realize that the dynamically unstable region is
much smaller than the actual static spinodal one.

20
20

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P ~ Po

FIG. 2. Contours of the spinodal region for different val-
ues of the parameter A = &.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIG. 3. Isocontour curves of the growing time 7, in the
(p, T) plane, for A = 10 fm. The dashed line defines the
spinodal region for A = oo.
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III. FLUCTUATIONS AND DIFFUSION
COEFFICIENT

where D, the so-called diffusion coefFicient, is related to
the elementary collision number dv.

Up to now we have studied the instabilities and sponta-
neous symmetry breaking in the framework of mean-field
approximations eventually complemented by the average
of a Boltzmann-like collision term. This means that we

have projected the many-body dynamics onto a reduced
many fold retaining only a small part of the dynamical
information: a one-body density corresponds to an entire
ensemble of many-body states. This lack of full informa-
tion about the state of the system, both initially and in
the course of time, can be taken into account by adding
a stochastic term in the effective equation of motion for
the one-body variables. In this case one is forced to con-
sider not only one single trajectory, but an ensemble of
trajectories.

A. Boltzmann-Langevin approach

In the Boltzmann-Langevin approximation [3] the
stochastic nature of the individual collisions is considered
to be the dominant source of fluctuations, the collision in-

tegral playing the role of the fluctuating Langevin force.
This approach considers an ensemble of N identical sys-
tems, labeled by n = 1, ..., N. Each one is described by its
reduced one-body phase-space density f(")(r, p, t) The.
time evolution of each of these functions is given by an
equation of the form

c) (n)
+ H(n) f (n) I[f(n)] + bI(n) [f(n)] (17)

Bt

where the left-hand side describes the Vlasov evolution
for f (") while the term on the right-hand side represents
the effect of the stochastic two-body collisions. In this
equation the stochastic collision integral was separated
into two pieces: the average collision term usually con-
sidered (I) and a fluctuating part (bI). The collision term
I can be obtained &om the mean number of transitions
dv, in which nucleons are scattered from two phase-space
elements around the locations si, s2 [s = (r, p)] into two
other phase-space elements around si, s2 .

d+],2;g', 2' fgf2f,'f,'b(» —r2)b(» —r2')b(r1 r1')
x~(pi~ p2i pi, p2i)dsids2dsgids2f .

Here f, = f (s, ) is the phase-space occupancy at one
of the initial locations and f,' = 1 —f(s; ) is the
Pauli blocking factor expressing the availability at the
final locations. A phase-space element is represented
by ds = drdpih . The elementary transition rate
~(pi, p2', pi, p2 ) incorporates energy-momentum con-
servation and can be related to the in-medium nucleon-
nucleon cross section.

The fluctuating term bI is defined through its correla-
tions which is assumed to be of Markovian type,

(bI(r, p, t)bI(r', p', t')) = 2D(r, p; r', p', t)b(t —t'),
(19)

B. Small amplitude fluctuations

Considering an unstable situation, the stochastic term
bI will test the spontaneous symmetry breaking. Let us
illustrate this point by studying the linear response in
the Boltzmann-Langevin approximation. IF bf are the
eigenmodes of the density fluctuations, we can write

bf =) A„bf (2o)

(22)

where we have introduced the inverse of the overlap ma-
trix of the eigenmodes,

O.-„'=, f.(r, p)*f„(r,p),
drdp

and the expectation value 6 „ is related to the elemen-
tary collision rate:

+vp d+]2&', 2' v 1 *
& 1 + v 1 *

&
1'

+f (1)*f„(2)+ f (1')'f„(2')
-2f-(1)'f.(1')
—2f-(1')*f,(1)]. (24)

C. Inflnite nuclear matter

For example, in the case of an unstable mode of the
infinite nuclear matter we have defined T„= i/u„, so that
the solution of the previous equation for the diagonal
terms o. = o.„reads

2t 2t
0 (t) = D„7 (e.- —1) + o„,e.-, (25)

where o is the initial value of o
vo

Using the results of the previous section we can label
the eigenmodes by k and a sign, since, for each k, two
solutions of opposite sign were found. By convention we

will associate the positive solution either with the posi-
tive frequency in the stable regime or with the exponen-
tially growing solution in the unstable regime. In this
case Eq. (20) reads

If we define the fluctuation 02 „=(A„A„*),it is possible
to demonstrate that the time evolution of this quantity
follows the so-called Lalime equation [10]:

d

dt
o vp = lav p+v p, + 2Dvp. &

where the frequency ~ „=~ —cu„* is the difference of
the eigenvalues associated to the considered mode v and

p while the diffusion coefBcient D „represents the fluc-
tuation source term.

It was shown in Ref. [10] that the difFusion coefficient
can be related to the elementary collision rate as follows:
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hf = ) (A~+bf~++ A„hf„)
k

(26)

(27)

This Fourier transform of the fluctuations in r space can
be easyly developed onto the eigenmodes associated with
a given k, leading to the following relation [11]:

a(k, t) = D+7.I, [e ~" —1]+0'+ e
'l

+D 7 [1 —e ~ "]+a' e
'l

—4 D~ t+ o~0,

For instance, in the unstable regime, the amplitude Ak
increases following an exponential behavior determined
by the characteristic time 7.I„described in the previous
section. If we call D& the diffusion coefficient related
to the k+ mode, the corresponding variance o„=o& ——

(A&+A&+') follows the equation &, 0&+ = a&+—+2D&+ which
is analogous to Eq. (21).

Let us now consider the density fluctuation hp(r, t) in r
and let us define the Fourier transform of the fluctuations
of the density, F(k, t) = J dre '"'~"hp(r, t); we find

~(»t) =(I+(I t)l')

drdr' e '"'~' ' /'"
p r, g p r', g

until a chaotic regime is reached and the linear response
theory does not apply anymore. In Fig. 4 the coeffi-
cient D&, for the mode A = 10 fm, is represented corre-
sponding to diferent values of temperature and density
inside the spinodal region (see Fig. 2). We have used the
nucleon-nucleon cross section o~N ——4.1 fm . Since the
diffusion coefficient Dp is directly related to the number
of collisions swered by the system, it increases both with
temperature (like T at small temperature) and density
(like p).

IV. SIMPLIFIED STOCHASTIC MEAN FIELD

Calculations of the BL type [6] contain the fluctuation
term coming &om the stochastic part of the collision in-
tegral, which has been used in the previous derivation of
the coefficients DI, . Unfortunately, realistic simulations
in a real three-dimensional space are not feasible. Nev-
ertheless, since we have an analytical estimation of the
amount of fluctuations present in the system, we can con-
sider the possibility to replace this correct value of the
fluctuation rate by a simple noise. Indeed, we have seen
that the dynamics is dominated by a few unstable modes.
Therefore we may think to introduce a simple noise, in
the mean-field approaches, tuned in such a way to repro-
duce the amount of fluctuations in the unstable modes
predicted by the Langevin theory developed above.

0'(k, t) = D& rg [e ~ ' —1] + cri,+ oe (29)

where 0'go ——+I+, 0 + o&0 + 0&o represents the initial
'l )

value of the variance 0 (k). From this equation one can
see that the dynamics of the fluctuations in r is fully
determined, in the linear regime, by the instability time
and the diffusion coefficients which can be analytically
derived using Eq. (22). It should be noticed that for
a time larger than the instability time the behavior of
0'(k, t) can be approximated by

A. Fluctuating mean Beld

In particular, we may introduce a noise in the one-
body Hamiltonian. In Ref. [12] such a possibility was
suggested and the special case of a noise commuting with
the Hartree-Fock Hamiltonian was studied. It was shown

[13] that this method, called iterative-time smoothing,
yields very promising results as far as thermalization is
concerned. One may even think to extend the previous
approach by adding random matrices to the one-body
Hamiltonian, building some bridge to the quantum chaos
problem. These studies are now in progress both &om the
quantum mechanical point of view than &om the semi-
classical approximations.

~ 0.001CI
~~
V

~~
0)

U
O 10

a
~~I

10
Cl

T=3

T = 1.5 MeV

0.375 0.4 0.425 0.45 0.475 0.5

FIG. 4. The diffusion coefBcient D as a function of the
density, for three different values of the temperature. We
consider A = 10 fm.

B. Fluctuations in the test particle methods

A simpler approach has already been tested, namely
to use the noise associated to a finite number of test
particles, in ordinary semiclassical simulations, as a Huc-
tuation source [5]. In this case, if Nt„t is the number of
test particles per nucleon, the equation for 0 (k) reads

(3o)

because the stochasticity coming &om the Monte Carlo
estimation of the collision integral corresponds to the dif-
fusion coefficient of the BL approach reduced by a fac-
tor Nt„&, while an initial noise pro, of statistical nature,
is present. However, it should be noticed that, since

0'(k) = (Di+, rl, /Nt„t) [e " —1] + 0& oe

+(D—
~~/N ) [1 e

—2t/ra] + o
— 2t7g—

—4 Dq /N~„t, + 0.~ o
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FIG. 5. Test particle number to be used in order to re-
produce the physical amount of Buctuations of the BI the-
ory. The figure shows the dependence of this number on the
density, for three diferent values of the temperature T, for

A = 1.0 fm.

test particles are actually propagated in the simulation,
the sources of fluctuations may contain more information
than the Boltzmann-Langevin term divided by Nt„t, be-
cause a gas of test particles may contain higher order
correlations of a classical type.

The statistical noise may be easily calculated starting
from the statistical fluctuations of the number of test par-
ticles around a mean value n N„,t. bp/p = 1/gn Nt„t,
where n is the number of nucleons contained in the cells
where the density is calculated. This noise is big in com-
parison with the fluctuations coming from the diffusion
coeKcient. In such a case, the growing of the fluctua-
tions will be soon dominated by an exponential increase
determined by the characteristic time wp and by the co-
efficient (og o + D~r~/Nq„t, ), while in the calculations of
the BL type [6] this coefficient is equal to D~7I„since
o g 0 = 0. On the other hand, since in the test parti-
cle case og 0 scales like 1/Kq„t, it comes out possible to
tune the number of test particles in order to mimic the
BL dynamics predicted for the most unstable modes, i.e. ,

in order to fulfill the equation ohio +'DI, 7I, /Nt„t ——Dgrl,
[5]

In Fig. 5 this number is given as a function of the
density for different temperatures. As the diffusion coeK-
cient DI, increases with temperature and density the plot-
ted number of test particles correspondingly decreases
since a larger noise is associated to a smaller number of
test particles. Of course, in order to have a correct de-
scription of the mean dynamics, this number must not
be too small (Nt„t ) 20). Therefore if the Boltzmann-
Langevin term is too large, this method cannot be ap-
plied and one must keep a large number of test particles
and introduce an additional noise in the dynamical equa-
tion.

C. Application to multifragmentation: Discussion

The method presented above may apply to nuclear col-
lisions and, in particular, to multifragmentation. Indeed,
if we believe that the nuclear fragmentation is due to the
fact that the system enters a volume instability region,
which is one of the most probable scenarii, at a given
point of the reaction the system will be characterized by
the presence of an extended participant region. This re-
gion is predicted to be approximately equilibrated (with
a given temperature T), its mean density p being below
the normal density. Following Eq. (22) with these values
of p and T the right value of fluctuations can be deter-
mined at this point for all modes, while Eq. (8) allows us
to calculate the associated growing time and, then, the
most unstable modes.

We would like to stress here that fluctuations are not
important before the system enters an instability region
since they are not amplified; in a stable situation, in fact,
their amplitude is related to the mean value of the density
and it evolves according to the mean density behavior.
Even if fluctuations in the compression phase are larger
than in a situation corresponding to a volume instabil-
ity, when the system is still stable, they relax toward
the instantaneous equilibrium value during the course of
the evolution because of the collisional damping. Indeed,
due to the collisional damping, the variance oy reaches
its equilibrium value more rapidly (by a factor of 2) than

f reaches fo [4]. Few memories of the previous ampli-
tude will be kept and the actual value of fluctuations will
reach the one corresponding to the new reduced density,
before getting amplified. In our scenario we do not con-
sider the possibility to enter the spinodal region with
some clusters (n particles, for instance) already formed.
This would change the mechanism of fragmentation in
the sense that the effects of the interaction between these
clusters should be taken into account to describe frag-
ment formation [14].

The values of density and temperature that the sys-
tem presents when it reaches the spinodal region may
be used to determine the related fluctuation amplitude
and then the number of test particles to use if we want
to reproduce it by ordinary semiclassical simulations, as
explained in the previous section. Actually also in the
Boltzmann-Langevin calculations some fluctuations are
already present when the system becomes unstable [cro is
not equal to zero in Eq. (25)]. This underestimation of
the right value of fluctuations introduces just a negligible
shift in the fragment formation time [15].

Even if these calculations remain of qualitative nature
since they contain many approximations (actually the
density of the unstable region formed during a nuclear
collision is not uniform, the system is not homogenous
and surface effects can be very important), they make
it possible to get an idea of the pattern followed by the
fragmentation. In fact it must be observed that the frag-
mentation obtained in semiclassical simulations [16] is
not just a "numerical" effect but it may contain a physi-
cal meaning. Fragments come up because there is an in-

stability in the system and this is a physical effect. The
Rnite sampling noise just allows the system to show up
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this instability. The use of an adapted nnmber of test
particles and then of a controlled noise may make calcu-
lations nearer to the reality by introducing the right time
scales for the symmetry breaking processes.

D. Validity of the stochastic mean-field approach

dynamics, with pointlike particles, the exact many-body
density matrix can always be represented as a distribu-
tion of independent particle densities. Therefore, as far
as the stochastic term is well chosen, stochastic mean-
fie1d theories may contain exactly a11 many-body corre-
lations.

All these conclusions have been obtained within
stochastic mean-field approaches. However, one may
worry about the limits of validity of this approximation
at small densities. In fact it must be observed that, even
if we are dealing with a strong force, these approaches are
justified by the huge quantum zero-point motion of the
nucleons, which is much greater than the typical ranges
of the nuclear forces (0.5 fm for the hard repulsive core
and 1 fm for the nuclear attraction). In fact these ar-
guments are at the basis of the introduction of the shell
model and mean-field approximation in nuclear physics
[17]. Some correlations and, in particular, pairing efi'ects,
which are known to be important, can still be treated in
an extended mean-field &amework, such as the Hartree-
Fock-Bogoliubov treatment.

These considerations are valid also at low density, ex-
cept in a small region of density and temperature where
p-n correlations start to be important. This region can be
roughly estimated by p 3/(4xr&) io po and T Bd,
where r&~ is the deuteron mean square radius ( 5 fm )
and Bd is the deuteron binding energy ( 2 MeV). There-
fore, outside of this region, the fragmentation of nuclear
matter is driven by the instabilities of the mean field and
is far away &om the aggregation mechanism characteris-
tic of the molecules (for which the zero-point motion is
negligible).

Moreover stochastic approaches, considering ensembles
of independent trajectories, are always predictive, in the
sense that the ensemble behavior is well defined, even
in the spinodal region (see Ref. [15] for more details).
Moreover it shall be noticed that, at the limit of classical

V. CONCLUSIONS

We have presented a general method to identify and
to study unstable modes in the &amework of the linear
response theory. For a cubic box of nuclear matter with
boundary conditions, we calculate the time r, character-
istic of the exponential growing of Huctuations, in the
realistic case of a finite range force, for systems which
lie in the spinodal instability region. In the same &ame-
work we are able to derive the difFusion coefficient of the
Boltzmann-Langevin theory, which is proportional to the
amount of Huctuations present in the system.

Realistic calculations in 3D are feasible adopting the
prescription of replacing the correct amount of Huctu-

ations by a simple noise. In particular, using the noise
associated to the use of a finite number of test particles in
ordinary Boltzmann-like calculations, we derive the num-
ber of test particles to be used, as a function of the main
characteristics, namely the density and the temperature,
of the system. This controlled amplitude of Huctuations,
that we introduce in the dynamics, allows us to deal with
processes in which Huctuations are very important such
as, for instance, multifragmentation events.
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